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Abstract

An analytical model of fast spatial flattening of the toroidal current density and g-
profile at the nonlinear stage of (m = 1/n = 1) kink instability of a tokamak plasma is
presented. The flattening is shown to be an essentially multi-scale phenomenon which
is characterized by, at least, two magnetic Reynolds numbers. The ordinary one, R,
is related with a characteristic radial scale-length , while the other, R;,, corresponds to
a characteristic scale-length of plasma inhomogenety along the magnetic field line. In a
highly conducting plasma inside the g = 1 magnetic surface, where ¢ value does not much
differ from unity, plasma evolution is governed by a multi-scale non-ideal dynamics char-
acterized by two well-separated magnetic Reynolds numbers, R, and R}, = (1 —q) Rn,
where R, ~ O(1) and Ry, >> 1. This dynamics consistently explains two seemingly con-
tradictory features recently observed in a numerical simulation [Watanabe et al., 1995]: i)
the current profile (g-profile) is flattened in the magnetohydrodynamic time scale within
the ¢ = 1 rational surface; it) the magnetic surface keeps its initial circular shape during
this evoluiion.
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I. INTRODUCTION

Recent numerical simulation by Watanabe et al.[1] has revealed an interesting but puz-
zling phenomenon associated with nonlinear evolution of a resistive kink mode (m = 1/n =
instability. While the magnetic surface keeps its almost initial circular structure, the
torcidal current density profile, hence, the ¢-profile, is flattened within the ¢ = 1 surface
in the magnetohydrodynamic (MHD) time scale (Fig.1, or see Fig.2 of [1]}. It is also found
that while the magnetic surface obtained by mapping a successive intersection point of
a magnetic field line on a poloidal plane keeps its initial circular structure (Fig.2a), the
toroidal current suffers an appreciable m = 1/n =1 helical kink deformation (Fig.2b)
due to a strongly excited m =1/n=1 kink flow (Fig.2c). These seemingly intriguing
and contradictory observations in the numerical simulation invoke us to search for a fast
diffusion time scale other than the simple classical resistive time scale.

As the length scale that governs the non-ideality of an MHD plasma, we can conceive
two scales, one being the perpendicular (radial in the present case) scale of the plasma
inhomogeneity, r, , which is, e.g. the radius of ¢ = 1 surface, and the other the parallel

inhomogeneity length, [ = The perpendicular length r, is conventionally

used for defining the resistive time scale and the MHD (Alfven) time scale, thus, the
magnetic Reynolds number R,, .

In an ideal case, a magnetic field line is always on the same “ideal”, i.e., frozen into a
plasma flow, magnetic surface 4, = const , so that (B-V)¢,, =0 . In the presence of
resistivity 7, however, (B-V)¢,, ~ O(n) , and the parallel scale length I will be finite,
not infinite as is so for an ideal plasma. In a helically (m = 1/n = 1) disturbed resistive
plasma, no matter how small the resistivity may be, the effective parallel scale length will
be increased by a factor (1—¢)~! . As the change of ¢,, along B is proportional to { and

corresponds to a magnetic field line transition from one v, = const surface to another,

the effective magnetic Reynolds number near the ¢ = 1 surface, RZ , will be modified to
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* = (1—q)R,, . Therefore, the R}, will be drastically reduced near the g = 1 surface.
This reduction may probably explain an experimentally observed change of g-profile on
a time scale much shorter than the ordinary magnetic diffusion time {2-4]. However, the
physics of the sawtooth crash in a tokamak plasma (there exists considerable literature
on this subject, see e.g. the review [5] and references therein) is not considered in the
present paper. We are rather aimed to explain the numerically revealed phenomenon {1]
whose nature, probably, is closely related with the sawtooth crash.

In this paper we give a physical background of a multi-scale semi-ideal MHD phe-
nomenon. The zero-beta limit and cylindrical geometry are considered. However, the
results are qualitatively applicable to the more general case of the finite pressure and
non-cylindrical geometry. The paper is organized in the following way. In Section 2 a
multi-scale semi-ideal MHD approach is developed. First of all, in Subsection 2.1 the prob-
lem of how a magnetic field line slips from a low-resistive plasma flow is considered. The
slipping is shown to be controlled by two important factors: i) an ”effective” length of the
field line, i ~r, | %’- | (1—g)"!,instead of a characteristic radial scale length r,, and
ii) dissipative coupling of the radial and poloidal components of the magnetic field (this
geometric effect is underestimated in most previous considerations). The (1 — g} - factor
reduces a flow-induced radial shift of the magnetic field line, while the geometric coupling
effect enhances a resistive perturbation of radial magnetic field. As a result, the slipping
is shown to be controlled by the modified magnetic Reynolds number R? = (1-—gq) R,
which can become much smaller than R,, . We regard such a sitnation that R; < R,
as the semi-ideal magnetohydrodynamics. There are many different kinds of magnetic
configuration and plasma flow governed by this semi-ideal MHD. But we are here inter-
ested in a particular nonlinear evolution with undisturbed magnetic surfaces, i.e., with

B, =~ 0, like in [1]. Conditions under which the assumption B, =0 is consistent with

the nonlinear MHD equations are analyzed in Subsection 2.2. The corresponding semi-



ideal MHD ordering is discussed. Then, in Section 3, the multi-scale semi-ideal MHD
equations are derived which describe the fast ¢ - profile deformation at the nonlinear
stage of kink instability. The problem is reduced to coupling of the toroidally averaged
poloidal component of magnetic field with the radial distribution of the R}, value which

is closely related with local [ value. Conclusions are summarized in Section 4.
2. SEMI-IDEAL MHD APPROACH
Let us consider the simple Ohm’s law:
E + [VxB] = n, 1)
where 7 is a resistivity. Faraday’s law takes the form:
B

37 = "ot [V x Bl —nj). (2)

It is well known that in the presence of resistivity, magnetic field is not frozen into plasma

flow and slips from it. The slipping is usually thought to be controlled by a simple

e s oB

perpendicular diffusion, — = TAB ~ —( n >)B . But actually the slipping is a
ot Lo HaTy

complicated phenomenon that includes a non-trivial interaction between a driving force

(plasma flow) and a dissipative effect in a plasma confined by closed magnetic surfaces.
2.1. Unfrozen magnetic field.

Multiplying Eq.(2) by a gradient of arbitrary scalar function V4 and carrying out

some mathematical manipulation one obtains:

2 (B YY)+ din(V(B- V)~ (B-V)(o + V- V)p = (Vi -rollni)).  (3)

Let ¢ be frozen into plasma flow,

ad
§+V‘V)¢=O, (4)




ie., ¥ is a function of the Lagrange coordinates. In this case, Eq.(3) can be written as

a (B -V¥) 1 .
—+V. .V)—/————=—=(V¢-rot . 5
(5 )= > (V- rot(a) (5)
Here p is the plasma density obeying the continuity equation
8
=+ div(pV) = 0. (6)

In the case of ideal plasma with 77 = 0 Eq.(5) describes the freezing of %(B - V)
into the plasma flow. It means that if 1 is initially constant along a field line, i.e.
(B - V) =0 everywhere, then the line is lying on a 3 = const surface, and this property
remains at any time. As ¢ is frozen into a flow (see Eq.{4)), a magnetic surface, ie., a
1) = const surface, is frozen into the ideal MHD plasma flow.

In the case of resistive medium, Eq.(5) contains a source term on its right-hand-side
(r.h.s.) leading to a non-constancy of ¢ along a magnetic field line. The change of ¢
along B corresponds to a magnetic field line transition from one 4 = const surface frozen
into a plasma flow to another, 9 + &1 = const surface. Within a time scale of the order

of 7y p this change is proportional to

. i T .
5% ~ Tamp (B V) (VY- rot(nf)) ~ TSR (V- ror), (7)
where [ is a characteristic length of inhomogenety along the field lines and 7ygp = ;s
Ap

is a characteristic time scale of magnetic structure deformation by plasma flow, V,, being
the Alfven velocity defined by the poloidal magnetic field. Plasma density p and resistivity
n are assumed to be constant. Non-constancy of n may lead to some interesting effects
which, however, we do not consider in the present paper.

In Eq.(7), §¢ represents a magnetic field line shift in the Lagrange frame. The corre-

sponding shift in the Euler frame can be estimated as

6 l
o ~ | T (ot | ®)

Sr ==



Here V1) represents a generalized “radial” direction perpendicular to 1 = const surface
(we assume that the surface is topologically equivalent to a cylinder) and (rotj), is the
radial component of rotj perpendicular to the ¥ = const surface. Since we are interested
in a resistive breakdown of the freezing of magnetic field into plasma flow, it is quite
reasonable to assume that initial ¢ corresponds to the initial distribution of magnetic
flux. So, the ) = const surface is just the "ideal” magnetic surface deformed by plasma
flow, while é% or ér describes a magnetic field line slippage from this ideal” surface in
the presence of resistivity.

This slippage, in accordance with the expression (8), depends on (rotj), which, at
first glance, is scaled by % (according to [1], nor inertial neither resistive singular layer
[6] exists within ¢ =1 sur;a,ce at the nonlinear stage of m = 1,n = 1 kink instability).
The truth, however, is that (rotj), is controlled by a geometrical effect (coupling of the
poloidal and toroidal harmonics of the radial and poloidal magnetic fields) that would
change drastically the physics of the slippage. Note that this important effect is underes-
timated in most previous considerations. Indeed, in a cylindrical geometry, which is quite
natural in the case of tokamak plasma, the radial component of rof j is determined by

both the radial and poloidal components of magnetic field, if the system is poloidally

inhomogeneous. Namely, one has exactly:

. 1 1 1 3By
(rotj), = ‘u—o(rot rotB), = - [-AB, + = (B- +2 Sq 1, (9)

a 2 32
where A= }.i 19

o o) Y Eer T o
Eq.(9) indicates that the poloidal and toroidal (along the z-direction) harmonics of

B, and By are coupled. So, during a purely dissipative evolution described by Eq.{2)
with V = 0 the radial component of magnetic field car be generated, even though absent

initially. Generally, dissipative perturbations of B, can be significantly enhanced because
2 8By

of the geometrical effect described by the last term in Eq.(9), i.e., (rotj), = g
HoT



(such an enhancement qualitatively differs from a primitive increase of the operator A in

a singular layer). Substituting this expression into Eq.(8) one obtains:

ér TMHD QIZH 2 1 BB,g
r, ~ ( Ty ) ( ) ( ) | B 3?9 I: (10)
toT2 hy
where 7, = — is the ordinary resistive time scale. The quantity . in Eq.{10)
) Ty (B-V), | By 8 B,
can be estimated as E—HNr,] lNlB](819+B 6)~(—9)l_| for

m = 1/n=1 mode (here (1—g¢) just measures the angle between field line and sym-

metry direction of the mode). Then we obtain

TMHD Ts
sr 2 ) (=) 9
Tr—T ~ . (11)
T |1—q]| Rm|1—q]|

In the region where | 1 - g |~ O(1), this quantity reduses to % which describes the
ordinary diffusion. In the region of ¢ == 1, however, the resistive slippage of a magnetic
field line, ér, can be enormously enhanced. This indicates that the diffusion effect may
become comparable to the MHD effect. Hence, the actual resistive diffusion should be
characterized by a parameter R’ which is defined by R,, | 1 — g | instead of ordinary
Reynolds number R,,. Even though the R,, value is large, the parameter R}, can become
very small, say, of the order of unity, so a field line can be shifted from the "ideal”
(i.e., frozen into the plasma flow) magnetic surface by a substantial distance. That the
dissipative unfreezing of the magnetic field from plasma flow is controlled by the modified
Reynolds number R, instead of the conventional one, is a general result, which plays a
key role in the semi-ideal MHD.

Note, that in the present paper we consider namely the enhancement of reconnection
(unfreesing) due to smallness of 1 —¢. This should not be mixed with an other, quite
different effect which is related with the smallness of 1 — ¢ as well (see the paper by
Wesson [7]). Wesson [7] shows that in a system with small 1 — ¢ an ideal m =1 kink

instability can produce rearrangement of g— profile on an inertial, i.e., fast time scale.
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But ihe reconnection does not occur during this rearrangement at all (this is especially
emphasised in Wesson’s paper). Hence, a plasma flow generated by the instability should
strongly disturb a magnetic surface - exactly the opposite of what the numerical simulation

by Watanabe et al [1] has revealed and what we are aimed to explain in the present paper.
2.2. Semi-ideal MHD ordering.

Since we are interested in such a particular flow that magnetic surfaces could main-
tain their circular shape, without being disturbed by plasma flow, even in the case of
low-resistive plasma with R,, 3> 1, we wish to derive the conditions under which the
assumption B, = 0 is consistent with the governing MHD equations, namely, cancellation
between the dissipative and flow-induced perturbations of radial magnetic field. So, we
rather answer the question - When does the flow with (assumed) B, = 0 exist? - instead
of - Why B, = 0? The condition B, = 0 can not be derived from the general principles
just because such a condition is not a general property of MHD flows at all. Vice versa,
the flow with B, = 0 is rather a conditional flow which can be realized only in a special
case of semi-ideal MHD ordering considered below. Of course, a magnetic configuration
does not always obey this ordering. But if it obeys then the flow with B, = 0 can exist
during a considerable period of time. Therefore, assuming B, = 0, we just specify a par-
ticular solution of interest among an infinite set of other, quite different solutions of MHD
equations. After that we find the conditions when such a solution is consistent with the
governing equations and, hence, can be realized on a sufficiently long time scale.

In order to compare each term in Eq.(2) it is useful to introduce dimensionless vari-

ables:

2 t tV vV B
- Tz =2 y= b=—, (12)
rs Zo TMHD Ts VAp BO

where By is the unperturbed value of toroidal magnetic field; r, is the radius of initial

g =1 surface; zg is the length of a periodical cylinder; the Alfven velocity Vs, is defined

8




271'1',

by the initial poloidal magnetic field at » = r,, i.e., Byo = By
2y

Corresponding dimensionless form of each component of Eq.(2) is given by

b, 1 Oby
, U) = ,+ = [ Ab, — b, + 2
= (bV)u +R,,,[ > ( +2. 20, (13)
8 b,y 11 Bb,
35 1
£ = { — Ab
I (bV)u. + p— Ab,, (15)
18, & 1 8° Byo ., 87 & 18 By d 7
= () + — V= (e —— n_
where A = T 8$ 821:) + :1’;'2 6192 + ( BO ) do ! (BSU, T 81.9’ B aCU) and R TMHD
From Eq.(13) it follows that in the main order of power expansion of b, (we assume
2 0
b, - 0), dissipative, R % , and flow-induced, (b-V)u, =|bs] (1—g) 68?; ,
perturbations of radial magnetic field should be balanced, i.e.,
b;=§(1—q)Rma,<b,,>, (16)

where by and 4, are poloidally varying parts of bs and u,, while < by > is the
poloidally averaged one. In the nonlinear stage of kink instability, helical perturbations

are large, i.e., | by |=|< by >| and | 4, |~ 1, so that Eq.(16) yields
(1—q) R = R}, ~O(1). (17)

At the same time, the condition that the terms containing b, in Eq.(13) be much less

than the above two terms, dissipative and flow-induced ones, must be satisfied, namely,
b [ (1—4q) |bs]. (18)

Of course, the relationship (16) between by and < by > has to be consistent with the
formal equation for by {i.e. with the poloidally varying part of Eq.(14)) at the semi-ideal
limmit:

R, 5 o0, (1-¢q)—0, R; ~O(1). (19)




4 4, i<b,9>
Ry <by> Oz z

Substitution of Eq.(16) into Eq(14) yields that the terms

Ejau, be balanced (here % follows formally from the time-derivative of Eq.(16); the
T —~

o4,
consistency of Egs.(16) and (14) demands the term a—t:_ should not be arbitrary). On

od, | i .
the other hand, the acceleration term a—u— is known to be related with the [jx B ]
T

) and

force in the radial component of momentum equa.tion. In dimensionless variables this

( )2 R, <b;>?|4d, ], where by in

acceleration term can be written as

3
Eq.(16) is substituted. Comparing these two | —a—-—- | terms, therefore, one finds that the
T

relationship (16) is consistent with both the formal equation for b (poloidally varvin

part of Eq.(14)}) and the r-component of momentum equation within a small relative error

B
of R, < by > of the order of O(( 190)2) when
B 2 s
(FV=(r<t (20)
By

The counsistency of Egs.(16) and (14) can be explained as follows: during the evolu-
tion of a kink mode, j and B vectors are approximately parallel to each other, i.e.
|[[ixB]|K|jl|B]|, hence, the error in the acceleration term can be compensated
by a small change of the angle between the magnetic field and current density vectors.
Thus, one can conclude that the evolution of magnetic structure with practically
undisturbed magnetic surfaces can be, without inconsistency, realized by the governing

equation (2), if the semi-ideal orderings (18), (19) and (20) are satisfied.

3. MULTI-SCALE MODEL EQUATIONS

We shall now derive the governing equations that describe the process of fast g-profile
deformation and magnetic configuration with circular magnetic surfaces in the nonlinear
stage of kink instability in the semi-ideal limit.

For simplicity but without any loss of generality we consider a helically symmetric mag-

netic configuration described by two independent dimensionless (see Eq.(12)) variables,
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helical magnetic flux a; and poloidal magnetic field by. For the case where magnetic

surfaces keep their initial circular shape, i.e., b, = 0, one can write:

1 30.},
b= — o2 — 0, 2
T (21)
3ah
by — €xb, = —". 22
9 — €T o (22)
2mr, . . ye .
where € = is a "toroidicity”, and the "helical” angle
Zo
2
=092z (23)
Zg

corresponds to helical symmetry of the most unstable (m = 1/n = 1) mode, so that

2
—aa— = % and % = —Z—:%. In the same notation, operator (b - V) has the form
l(?a.h o
(b-V)= 5 ¢ (24)

Then, in the semi-ideal limit (see Eq.(19) and (20)), the governing equations (13), (14)

and (15) can be written in the following form:

by = 2z (Ra < by >), (25)

5 5 B <by>
E;(R*<bg >) + 5E(< U, > (R < by >)) = 22 T)J (26)
8<b,9>+6<u,b,9>=0. (27)

or oz

Here R,.(z,7)= 32—'” (1 —g) is a modified local magnetic Reynolds number with the
ex < b, >
< by >

1 27
in a usual way, <-:>= —/ {-)d¢ .
27 Jo

”naive” ¢ value defined as ¢ = . The averaging procedure < - > 1is defined

Note, that only the combination (by — €zb.) is a function of helical flux a;, (see Egs.(22)
and (24)) while by can not be a constant on the magnetic surface @, = const. This means
that the "toroidal” current density and helical flux can evolve separatly from each other,
eventhough the case of zero-beta plasma is considered (both the quantities will evolve

together only if a force-free equilibrium is realized at every moment of time).
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The relationship (25) between by and 4, follows directly from Eq.(13) and cor-
responds to the condition that the dissipative and flow-induced perturbations of radial
magnetic field compensate each other. Note that Eq.(25) is equivalent to Eq.(16).

Eq.(26) describes resistive, of the order of R}, ~ O(1) , evolution of the "naive” ¢
profile (actually, of the (b - V) amplitude) which takes place even in the absence of plasma
flow. Of course, in the last case, by and &. evolve separately from each other on "slow”
resistive time scale (see Eq.(14) and (15)). But their difference | by — ezb, |~| (b - V) |~ (1
which is initially small, can be strongly, in the relative sense of §(1 —¢) ~ (1 — gq), dis-
turbed on the ideal fast time scale. Eq.(26) is, thus, the equation for the combination
(bs — €zb,) multiplied by the factor R,,. The r.h.s. of Eq.(26) is the only term in the
corresponding combination of the r.h.s. of Egs.(14) and (15) which survives in the limit
(1~g)—0.

Eq.(27) describes the < by > dynamics (in the limit (1 — g) — 0 the < by > and
< b, > dynamics are closely related) which is akin to the ”ideal” one with the averaged
radial convective flux < u,by >=< u, >< by > + < G,by > . When we assume that the
plasma flow makes a helical shift with < u, >=0 (this assumption is quite reasonable
at the non-linear stage of a kink instability), it is known that the convective flux is
controlled by the poloidally varying components %, and &y only. Taking into account

the relationship (25), one thus obtains:
<tby>=<tdby>=<Er> 7 (R <by>). (28)

After substitution of Eq.(28) into Eq.(27), a closed set of two equations for two unknown

functions (R. < by >) and < by > is obtained:

d d <by>
E(R;«(b-ﬂ >) b= E( z ), (29)
5 + 3$[< "> z (R.<by>)] = 0. (30)

12
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Note that in terms of kinematic approach, which is used in this paper, any character-
istic of plasma flow, say, < 4,” > in Eq.(30), is treated as an externally defined function
of radius and time. The only restriction on #,, which fcllows from Egs.(14) and (16),
appears in the order of O(¢?), so that < .2 > can be really considered as a free function
in the main order of semi-ideal approach. Let it be a constant, like in the case of helical
shift, i.e. < ,® >= uZ (such an assumption does not qualitatively change the physics of
the flattening phenomenon but helps to simplify a problem). Using this approximation,

one obtains from Eq.(29) and (30):

BF Wt §, OF
ot T ate) = (3D

< by >

where F(z,7) = (a flattened current density profile corresponds to a flattened
radial distribution of the F value). Note, that Eq.(31) does not contain the reststive
terms and describes an ideal dynamics of the < by > governed by plasma flow. This
explains the fact that the ”toroidal” current density profile can be changed on the fast
time scale. At first glance, this reminds the Wesson’s result [7]. Actually, unlike to the
Wesson’s model, Eqs.(29) and (30) correspond to undisturbed (6, = 0} magnetic surface
and describe essentially resistive process of magnetic reconnection enhanced by the effect
of a small (1 - g).

Eq.(31) can be easily solved in terms of the Bessel function, but a formal solution can

probably contain a singularity (this equation is of the elliptic type, and both the *bound-

ary” conditions for time-coordinate are given at the same moment 7 =0 ). Generally, if

0 <by>
or

mally lead to an exponential growth of Bessel’s harmonics, exp (ugpx7) - Jo(pirz) , where

the initial < by > and radial profiles are not properly adjusted, it could for-

px s the k-th zero of Bessel function Jy. But, actually, dissipative terms of the order of
Hi

R,,n 3
Hence, Eq.(31) is valid only for the first few harmonics with p <€ +/R.. , while higher

which are neglected in Eqs.(29) and (30), can be large enough at large py value.
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harmonics are effectively suppressed by resistivity even on the fast ”ideal” time scale
7= 1. In the range of parameters corresponding to {1], only the first two harmonics
really control the evolution of < b5 > and, hence, current density profiles. During this
evolution, which occurs on the fast time scale T = (ugu;)™! , current density near the axis
monotonically decreases (it follows from Eq.(30) with help of the fact that (1—¢q) isa
positive value), i.e. the current density profile tends to be a flattened one. Simultaneously,
the shape of magnetic surfaces is undisturbed because the case with b, = 0 is considered.
Thus, the proposed theoretical model of current profile flattening can qualitatively re-
solve the most important seemingly contradictory feature of the numerical simulation by

Watanabe et al.
4. CONCLUSIONS

The present analysis shows that slightly non-ideal MHD evolution of magnetic config-
uration with the field lines nearly parallel to the direction of helical symmetry exhibits a
multi-scale process characterized by the semi-ideal ordering, i.e., R, = o0, (1 -¢) — 0,

R; ~ O(1) and | b, [« (1—g)]| by | This ordering sel{-consistently contains two effects
with well separated length and time scales. On one hand, poloidal and toroidal compo-
nents of magnetic field are frozen into a plasma flow because of large ordinary magnetic
Reynolds number R, 3> 1. Consequently, their dynamics is controlled by radial con-
vective flux, i.e. by plasma velocity. On the other hand, magnetic field is not completely
frozen into the flow, in spite of large R,, value. This is because its dissipative slipping
from an ”ideal” magnetic surface can be cancelled by a flow-induced deformation of the
surface. Such a cancellation is possible when R, (1—¢) =R}, ~ 1.

The semi-ideal behaviour is replaced by the ideal one if the angle between mag-
netic field lines and symmetry direction is not sufficiently small, ie. |1—¢|> L

B
for R, > 1. In this case field lines are frozen into plasma flow and, hence, magnetic

14




surfaces are significantly deformed by the flow. On the other hand, the semi-ideal be-
haviour is replaced by the "resistive” one if R, < 1. In this case plasma flow does not
play any significant role in the evolution of magnetic configuration which is characterized
by the "resistive” time scale 7, . In conclusion, the semi-ideal evolution of magnetic
configuration corresponds to a rather special case which is quite natural for the central

part of plasma column (inside g =1 magnetic surface) during the nonlinear evolution of

{(m=1/n=1) kink mode.
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Figure Captions

Fig.1.- Flattening of the averaged toroidal current density profile {simulation results
from [1]).

Fig.2.- Simulation results [1] for the moment of time corresponding to a flattened
current density profile:

(a) - intersections of magnetic field lines with the plane of a constant toroidal coordinate.
(b) - contours of a constant torcidal current density value;

(c) - projection of plasma flow on the plane of a constant toroidal coordinate;
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