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abstract

An attractor of dissipative structures in solitons described by the Korteweg-de
Vries(KdV) equation with a viscous dissipation term is investigated, with the use
of an eigenfunction spectrum analysis associated with the dissipative dynamical
operator [Phys. Rev. E 49(1994)5546]. It is shown numerically and quantitatively
that the basic procesess for the self-organization of dissipative soliton are spectrum
transfer by nonlinear interaction and selective dissipation among the eigenmodes
of the dissipative operator. It is quantitatively shown that an interchange between
the dominant operators occurs during nonlinear self-organization processes, which
leads to a final self-similar coherent structure uniquely determined by the dissipative

operator.
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1 Introduction

In non-linear dissipative dynamical systems, ordered structures to each system
have attracted much attention in many fields of research. This general concept,
referred to as ”dissipative structure” or ”self-organization” has been introduced in
thermodynamic systems by I. Prigogine[1, 2]. It includes force-free fields of cosmic
magnetism(3], two-dimensional viscous fluids [4, 5], and solitons described by the
Korteweg-de Vries(KdV) equation with frictional dissipation[6, 7). One of the au-
thors (Y. K.) has recently proposed a theory of general self-organization[8, 9] to find
attractors of the dissipative structure. The theory clarifies that the realization of
coherent structures in time evolution is equivalent to that of self-organaized states
with the minimum change rate of autocorrelation for their instantaneous values. It
leades to that the atrractors are given by eigenfunctions for dissipative dynamic
operators[8, 9] in dynamic systems of interest,

Generally, dynamical systems of interest having n variables ¢,(¢,x), with i =

1,2, ...n, may be described by the following equation:

adg,
at

=Llq] + Ll[q], (1)

where L¥[q] and LP[q] denote respectively the nondissipative and dissipative dy-
namic operators which may be either linear or nonlinear [8, 9]. When the value of
LY[q] is large, then the profile of ¢ is significantly changing in time. When the sys-
tem comes close to the equilibrium state, i.e., when the value of L¥[q] is vary small,
then the dominant operator changes from L¥[g] to LP[g]. The final self-organized
profile, which is one from among the set of equilibria satisfying L¥[q] = 0, will
be determined uniquely by the operators LP[g], which are relatively dominant dur-
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ing the later phase of the self-organization process. The dynamic behavior of the
self-organization processes and the realization of coherent structures in dissipative
dynamical systems will become clear through the use of spectra on the eigenfunc-
tions for the dissipative dynamic operator[12, 13]. Generally, the selective dissipa-
tion of the spectrum components of the eigenmodes may be shown through the use
of the trigonometric functions(e.g. the Fourier analysis) or other orthogonal func-
tions except eigenfuctions for dissipative dynamic operators. However, the use of
these orthogonal functions does not lead to the self-similar change phase of the final
self-organized state, if those functions are not the eigenfunction for the dissipative
operators.

In this paper, using the eigenfunction spectrum analysis associated with the dis-
sipative operators, we will numerically and quantitatively show that the three ba-
sic processes for the self-organization in viscously dissipative solitons are spectrum
transfer and selective dissipation among the eigenmodes of the dissipative opera-
tors LP[q], and interchange between the dominant operators from the nondissipa-
tive nonlinear operators L¥[q] to the dissipative operators LP[q] in later phase of
self-organization. We will also show that the final coherent structure in viscously
dissipative solitons is the lowest eigenmode of the dissipative operator. In Sec.2, we
present a basic theory of self-organization for dissipative solutions by KdV equation
with a viscous term. Numerical analysis for results of simulation and discussion are

presented in Sec.3.



2 Basic Theory of Self-Organization

We investgate the self-organization process for solitons described by the following

KdV equation with a viscous dissipation term[14]:

8¢  8q  L&q B
Hig sl 24 2
8t +q3$ +94 o3 nam2 (2)

Here & is a constant, 17 is the coeflicient of viscosity, and the nondissipative and
dissipative operators L][q] and LP[q] of Eq.(1) correspond respectively to the
—q8q/8z — §°8°g/Bz* term and the nd%¢/8z® term in Eq.(2). In the absence
of dissipation {r = 0), the energy corresponding to the autocorrelation W, =
f2q(t, z) - g{t, z)dz is conserved, where b is the periodicity length. The rate of
energy dissipation OW,, /8t due to the viscous term in Eq.(2) is —2 fy n(8¢/8z)%dz.
The self-organized state ¢* is defined as that state for which the rate of change is
minimum for the autocorrelation of instantaneous values [8, 9]. The mathemati-
cal expressions for the above definition are written as follows, with the use of a

functional ¥ with a Lagrange multiplier a:

oW,
= —_— WZI 3
F 5 @ (3)
5F = 0, (4)
§?F > 0, (5}

where F' = [![2n(8¢/8z)? — aq®’]dz . Integrating by parts, we obtain

b 5’2q

6F:—2/0 Sq 2052 +agldz = 0, (6)
b 8%q «

2p hod

F = 2/0 5q[na$2+2ég}dx>0, (7)




where §F and 6°F are the first and second variations of F with respect to the
variation &g only for the spatial variable z, and the periodicity constraint has been
applied. Then, the Euler-Lagrange equation for an arbitrary variation é¢ is obtained

from Eq.(6), as follows[14]:

> ¢ .
57 HXe = 0. (8)

Here the parameter X is defined by A? = /27, and ¢* denotes the self-organized state
corresponding to minimal rate of change of the autocorrelation. The eigenfunctions
of Eq.(8) can be obtained for given boundary values of g as boundary value problems.

Using the same procedure in ref. [8, 9], we obtain the following:

Wi
T = —aw;, )
¢~ = ghe /", (10)

g = Asin( iz + ¢ ). _ (11)

Here W = fo ’ q*(t,z) - ¢*(t, )dz; gf is the solution of Eq.(8) for the self-organized
state g* under the periodicity condition; and the Lagrange multiplier is o = 2nA2,
with ); the smallest positive eigenvalue that yields minimized rate of change for
the autocorrelation of instantaneous values[9]. From Eq.(7), we obtain the following

associated eigenvalue problems for the critical perturbations ég that make 5%F to
vanish([8, 9]:
B*5qs

Here A2 = ay/2n, Ax and oy are the eigenvalues, and g denotes the eigensolutions.
In the present periodic boundray condition, the eigensolution of Eq.(8) becomes the

eigenfunction with the smallest eigenvalue ); of Eq. (12). The eigenfunctions a, for



associated eigenvalue problem of Eq.(12} form a complete orthogonal set and the

appropriate normalization is written as

Jou (G207 = Jor (G4 = fo-mav = s 9

where 9%a;/82? + Mar, = 0 is used. For the present case under the periodicit
k Y

condition, the normalized orthogonal eigensolutions of a is obtained as follows:

ap = \/%sin()ukm + o), (14)

where Ay = 27k/b, and k(= 1,2,3---) is the mode number.

We consider here the root mean square average of the nondissipative term, N, ,

T . . i b, 0%g.\2
and that of dissipative term, I; , which are given by D; = 3 / (’73*5) dz, N; =
) T

1 b .7 0q\2 ) .
3 /(; {q — ds) (£) dz , where dy is the constant component of g. In order to in-

vestgate the dominantly working operator, we introduce two quantities of D and N,
defined respectively by D = Dy/(Dy+ N;) and N = Ng/(D;+ N;) . We call here
D and N as "the dissipative ratio” and ”the nondissipative ratio”, respectively. By
substituting Eq.(11) into N; and Dy, the values of D and N at the self-organized

state are obtained as follows:

_ 27’]1\1
D= a5y (15)
A
N == _ 1
A+ om0 (16)

Since the amplitude A in the later phase of sclf-organization becomes small, it is
seen from Fqs.(15) and (16) that D ~ 1 and N ~ 0 for A < 2n);. Therefore, we
recognize that the final self-similar coherent structure is determined uniquly by the
dissipative dynamical operator nd%q/0z2.

6




The profile of ¢ distributions at each instant can be expanded by using orthogonal

eigenfunctions ay, for the eigenvalue problem of Eq.(12) as follows(8, 9]:

g = i Crk , (17)
k=1

where ¢ is the eigenmode spectrum components. It should be noted here that the
spectrum component of ¢; by this eigenfunction expantion corresponds to the basic
components ¢*, and that the spectra of ¢x(x= 1,2,3, - ) depend upon time ¢. From
product of the eigenfunction ay, of £q.(14) and spatiotemporal data of the simulation
results, we obtain numerically the components c; of eigenmode spectrum at each
time. When the profile of ¢ at each time is decomposed into the eigenfunction
spectrum c¢; assocaited with the dissipative dynamical operator, the following three
procesess will be shown: {1)The nondissipative nonlinear interaction of the solitons
induces the spectrum transfer towards both the higher and lower eigenmode regions.
(2)At the same time, since there exists a limit to the lower eigenmode, the spectrum
transfer towards the lower eigenmode region may yield spectrum accumulation at the
lowest eigenmode[13, 17]. (3)The dissipative operator n9”q/dz? causes the higher
energy spectral components to dissipate more rapidly, with decay constants of o =

272, while the lowest eigenmode A; remains until the end.

3 Results and Discussion

For the numerical simulations, we used a new type of numerical scheme for hyper-
bolic equations, named the 1D 2nd KOND-H scheme, which has a high numerical
accuracy and stability through the use of the Kernel Optimum Nearly-Analytical
Discretization(KOND) Algorithm{15, 16]. Double precision is employed for these
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calculations. Using the same process as shown in Fig. 10 of Ref.[16], we first ob-
tained a numerical solution having four solitons per periodicity length for the KdV
equation without the dissipative term, i.e. n = 0 in Eq.(2). With the use of this
multi-soliton solution as the initial profile, the self-organization process of the soli-
tons in the presence of dissipation is investigated. Four typical cases with viscosity
n = 0.02, 0.03, 0.04 and 0.08 were calculated respectively, with the use of the same
parameters of b = 50, and § = 0.42.

t-oTganization process
for dissipative solitons for the case with 5 = 0.02 , where the vertical scale is varied
to accommodate the magnitude of the numerical amplitudes at each time. Figure
1{a) is the initial profile at ¢ = 0 of four solitons per periodicity length, where the
four solitons are labeled as g1, ¢m2, gm3 and gna in order from the largest to the
smallest. In Fig.1(b) at ¢ = 200, the third soliton g is interacting with the first
soliton ¢.,1, and energy transfer from the smaller soliton to the larger soliton is
occurring. The energy of the fourth soliton has been almost absorbed into the first
soliton g,,; during the interaction with it in Fig.1(b). Tn Fig.1(c) at ¢t = 1000, after
the two smaller solitons g3 and ¢,,4 have been absorbed into the larger solitons, the
interaction and absorption of the second soliton g,,; into the first ¢,,; continues to
occur. In Fig.1(d) at ¢ = 4000, all three smaller solitons g, g3 and g,.» have been
absorbed into the first one g,,;. This implies that the energy of smaller solitons has
been transferred finaly into that of the largest soliton during interactions involving
viscous dissipation. It is found from Fig.1(d) that the lowest eigensolution of Eq.(11)

has become the final self-organized state in this nonlinear dissipative system.




Figures 2(a)-(d) show the typical time evolutions of the energy spectrum com-
ponents ¢ for the case with 7 = 0.02, where the spectrums are normalized by the
maximum component in each figure, and k is the mode number. The numeral in-
tegers in the figures indicate typical mode numbers. Figure 2(a) is the spectrum
for the initial profile at ¢ = 0. Tt is recognized from Fig.2{b} at t=200 that the
energy spectrum has been transferred simultaneously towards both the higher and
lower eigenmode regions from the initially given spectrum, in other words, the nor-
mal and inverse energy cascades[10, 11] occur during the nonlinear interactions of
dissipative solitons. From Fig.2{c) at t=1000, it is found that the rate of decrease
of the higher components are larger than the lower ones. Consequently, we recog-
nize that the selective dissipation occurs among the eigenmodes of the dissipative
operators. From Fig.2(d) at t=4000, it is found that the coherent attractor of the
lowest eigenmode of k = 1 has been realized in the final self-organized state in this
non-linear dissipative systemt.

Figure 3 shows the time dependence of the dissipative ratio D and nondissipative
ratio N defined after by Eqs.{15) and (16). Here, (D, N2), (D3, N3), (D4, Ny), and
(Ds, Ng ) denote respectively the data for the cases with n = 0.02,0.03,0.04 and
0.08 . The values of I and N at the initial profile are N > D. The values of D
increase, while those of N decrease, and the two lines of D and N cross at the vertical
level of 0.5. Since the interchange time of the dominant operator is represented by
the intersection of the two lines of D and N, we find from the numerical data used
for Fig.3 that the dominant operator changes around at ¢ = 3500 for n = 0.02,

t = 1200 for n = 0.03, t = 800 for n = 0.04, and ¢ = 150 for 5 = 0.08. After



the dominant operator changes, the interchange of the two operators is no longer
observed until the end of these runs of simulation. These results clearly show that an
interchange between the dominant operators has occurred in its approach towards
the final self-similar coherent solution of Eq.(11), which is determined uniquely by
the dissipative operator 7d%q/82° .

Figure 4 shows the time dependence of the energy ( on a natural logarithmic
scale ) defined by W; = % ]0 b(q — dp)*dz . After the period of a rapid decay has
passed, each decay rate of the energy is seen o become almost constant. The decay
constant has values of 0.665x 1073 for n = 0.02, 0.962x 1072 for n = 0.03, 1.29% 1073
for n = 0.04 and 2.59x1072 for » = 0.08 . On the other hand, since the smallest
eigenvalue is A; = 27/50, the theoretical values of the decay constant « in Eq.(9)
are 0.632x 1073 for n = 0.02, 0.943x 1073 for n = 0.03, 1.26x 1073 for = 0.04 and
2.53x107 for = 0.08 . We find that the simulation results agree fairly well with

the theoretical values of decay constant @ = 29A2 .

4 Conclusion

We have confirmed numerically and quantitatively the following basic processes for
ihe self-organization in viscously dissipative solitons, using the eigenfunction spec-
trum analysis associated with the dissipative dynamic operator 79%¢/9z% . (1) Dur-
ing dissipative nonlinear interactions, the spectrum transfer and selective dissipation
among the eigenmodes of the spectrum components occur in the self-organization
phenomena of dissipative solitons[cf. Fig.2(b)-(d)]. (2) In the later phase of self-

organization, there occurs the interchange between the dominant operators from the
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nondissipative nonlin-ar operator to the dissipative operator[cf. Fig.3], which leads

to the final coherent structure uniquely determined by the dissipative operato:.
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Figure captions

Fig. 1. Typical time evolution of solitary wave forms during self-organization in the
case of 7 = 0.02: (a) initial profile at ¢ = 0, with the four solitons denoted as g,,;,

Gm2; Gm3, 20d Gy in order of size; (b) at ¢ = 200; (c) at ¢ = 1000; (d) at ¢ = 4000.

Fig. 2. Typical time evolution of the energy spectrum C; during self-organization
in the case of n = 0.02: {a) initial profile at ¢ = 0, with the mode number of k{1,2,

3, - ); (b)at ¢ = 200; {c) at ¢ = 1000; (d) at ¢ = 4000.

Fig. 3. Time dependence of the dissipative ratio D and the nondissipative ratio N.
(Dg, Na2), (D3, N3), (D4, Ny), and (Dg, Ny ) denote respectively the data for the

cases with n = 0.02,0.03,0.04 and 0.08 .

Fig. 4. Time dependence of the energy W;; (on a natural logarithmic scale ) per

perriodicity length.
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