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Abstract

This article overviews some aspect of the recent theoretical activities in Japan on
the problem of turbulent transport in confined plasmas. The method of seli-sustained
turbulence is discussed. The process of the renormalization is shown and the turbulent
Prandtl number is introduced. Nonlinear destabilization by the electron momentum
diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-
test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue
equation is solved, and the least stable mode determines the anomalous transport
coefficient. Formula of thermal conductivity is presented for the system of bad average
magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for
the average good magnetic curvature (current diffusive ballooning mode (CDBM)
turbulence). The transport coefficient, scale length of fluctuations and fluctuation level
are shown 1o be the increasing function of the pressure gradient. Verification by use of
the nonlinear simulation is shown. The bifurcation of the electric field and improved
confinement is addressed, in order to explain the H-mode physics. Improved
confinement and the dynamics such as ELMs are explained. Application to the
transport analysis of tokamaks is also presented, including the explanations of the L-
mode confinement, internal transport barrier as well as the role of current profile

control.



1. Introduction

Plasma structure in confined plasmas has long been subject to intensive studies.
Associated with this, the research on the theory of nonlinear interactions in plasmas has
been motivated. There have been noticeable progresses in nonlinear plasma physics;
the problem of solitons and that of plasma turbulence. Solitons has special rélevance
for plasmas, due to the intrinsic coupling between the plasma dynamics and the
electromagnetic fields. The turbulence is also the key concept for the study of the
confined plasmas. Dr. Petviasivili has left prominent steps both in these two directions
of the nonlinear piasma theory. Those include, e.g., the foundation of the Kadomtsev-
Petviasivili equation, which is one of the very few examples of integrable systems in
higher dimensions, {1] or the investigation of the instability driven by plasma
inhomogeneities [2]. In this article, we overview some aspect of the recent theoretical
activities in Japan on the problem of turbulent transport in confined plasmas. (The
scope of this article is not the worldwide review and references are far from exhaustive.
An effort of review is given in [3], which supplements the material in this article.)

The anomalous transport has been known from the beginning of the fusion
research [4]. Its origin is considered to be the low-frequency fluctuations, which are
enhanced by plasma instabilities and give rise to the cross field transport. The
theoretical task is to develop the methodology that allows to determine the fluctuation
level and induced transport in the unstable plasmas. One of the established methods is
called as the mixing-length-estimate, which balances the linear growth rate of the mode,
YL, 10 the nonlinear stabilization by the back-ground turbulence, y4 ~ DkZJ_ (D being the
cross-field diffusion coefficient) [4]. This theory gives an estimate D ~ y;_ kf, and the
main theoretical study afterwards has been the precise determination of the linear
growth rate in the complex plasma geometry [S]. The efforts have not been sufficient
to explain the plasma transport phenomena [6], and a break-through for the
methodology itself is necessary. It has also been known, either theoreticaily or by
numerical simulations, that the plasma is possibly subject to nonlinear instabilities [7].

In order to develop a new methodology for the turbulent transport, we have recently



developed the theory of "self-sustained turbulence” in inhomogeneous plasmas [8].

The main concepi is that the scattering of electrons by the back-ground fluctuations can

cause the nonlinear growth of the mode, y,,, and the stationary turbulence is realized by
the balance y,,, ~ Y4 The chained interaction of the mode growth and enhanced
transport becomes important when we take into account the diffusion of perturbed
current. The eigenmode equation for the dressed test mode is deduced by
renormalizing the turbulence. By solving the marginal stability condition for the
dressed test mode, we obtain the turbulence level as well as the transport coefficient.
The stationary state is no longer near by the equilibrium, but is characterized by the
subcritical excitation of the fluctuations.

This article is organized as follows. In section 2, the model equation and
renormalization are given for the case of current diffusive interchange mode (CDIM).
Stability of the dressed test mode and the turbulent-driven transport are shown in
section 3. Analytic estimate is compared to numerical simulation in section 4. In the
next section, the analysis is extended to the case with magnetic well, for which we
analyzed the current diffusive ballooning mode (CDBM). The electric field bifurcation
and the H-mode physics are discussed in section 6. These analysis are applicable to
tokamaks, and some examples, e.g., L-mode and internal transport barrier are finally

discussed in section 7. Summary and discussion is given in section 8.

2. Model Equation and Renormalization
2.1 Model Equations

We study the high-aspect-ratio, toroidal plasma with magnetic hill and strong
magnetic shear. Such a case applies to the central region of tokamaks where q 1s below
unity {9] or the configuration like torsatron/Heliotron [10]. The minor and major radii
of the torus are given by a and R, respectively. We use the toroidal coordinate (r, 6,
{). The reduced set of equations for the electrostatic potenttal ¢, pressure p, and

current J are employed [11]. The equation of motion:
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the Ohm's law:
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constitute the set of basic equations. In these equations, the bracket [f,g] denotes the
Poisson bracket, [f, g]= (V fog)-g , (g 1s the unit vector along the field line), Q' is
the average curvature of the magnetic field, V' is the vector potential, 1/€ denotes the
finite electron inertia, £ = (a/8)* = (amp/c)z, and 1/g, is the classical resistivity. The
transport coefficients u, ., A, .. are the contributions from collisional diffusion and are
the viscosity for the perpendicular momentum, the current diffusivity, and the thermal
diffusivity , respectively. In writing Egs.(1)-(3), the normalization for resistive MHD
(magnetohydrodynamic) modes is employed:(ev/a)t — t, rfa = 1, @/{eav,B,) — o,
WileaByo) =, Jany/eBo) —J, p2uy/eBg) = p, o7 1, Juga?) - o 1,

uy(Tapa?) =y, M fngad) = &, fx Ap/a%) — ¥ Where € is the inverse aspect ratio,
a/R, v, is the Alfven velocity, By is the main magnetic field, and Tap = Riv,.

This set of equations (1)-(3) is a simplified one, and the generalization which
includes the dynamics of the parallel motion [12] has also been analyzed. The coupling
with the parallel motion turns out to be the correction of the order of B[13], and is
neglected here for the transparency of the argument. The finite gyro-radius effect and
the electron pressure terms in Ohm's law are neglected. (These effects give correction
of the order of @./y, ybeing the growth rate or the decorrelation rate of the mode. As
is shown in [8], for the case of helical systems, we have the estimates sy 1s O(1/10),

showing that these effects are small.)




2.2 Renormalization

The nonlinear equations (1}~(3) are transformed to the equations for the test
mode (denoted by k) in the presence of background fluctuations (denoted by k;) by
employing a renormalization. In the process of renormalization, the back-interaction of
the driven mode (denoted by k;) on the original test mode is kept. The ExB
nonlinearity is taken into account. The detailed procedure was given in [8]. The driven

mode is given as
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where Yo =¥@) + Ty Y52= )+ T p. Y2 = Y@ + oo 12 is the eigenvalue of
the k; mode, #{Us, I, 5/t = ¥(2XUs, J5. Pa}, Ty2, T2 and I, denote the
decorrelation rate of U,, J,, and p, by the back-ground turbulence, respectively.
(Suffix 1 and 2 denotes the abbreviation for k; and k,, respectively.) Other notation 18:
U is the vorticity, U =—k3¢, iA,p, = (Q'xa-sz, G, = kga(dpp/dr), po is the

equilibrium pressure profile, and the nonlinear interaction terms are defined as

N, =[@1, U Nj= 9. I Ny =[o, pi &)

2.3 Diffusion Approximation and Mean Field Approximation

__54



The noniinear contribution to the original test wave is obtained by calculating
the back-interaction of the driven mode (ky) with the background turbulence (-k;).
Such a contribution has the form as X{¢.;, U,] and is proportional to 2., 9y
Uyl]. Making the assumption that the wavelength of the turbulence is much shorter
than the scale length of the envelope of fluctuations, and that the convective momentum
associated with the turbulence is small, the nonlinear terms can be expressed in the

form of a diffusion matrix [8]. The simplification of the isotropic turbulence is made as

{09 ,/3d") = (3¢ /rad]) = (k1101172 : 9

Bracket < > means a spectrum average. Only the diagonal elements are kept in the
following argument. With these approximations and assumptions, Eqgs.(1)-(3) reduce
to a set of linearlized equations for the dressed test wave as follows:

The equation of motion:
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the Ohm's law:
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and the energy balance equation:
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where the suffix O denotes the equilibrium distribution, and the suffix k denoting the

test wave is suppressed for simplicity.



The mean field approximation is employed to perform the stability analysis and
obtain the transport coefficients and turbulence level. We approximate the constants

{81 Mo Xic) by 2 set of turbulent driven diffusion coefficients {u ¢, A, x}. We have
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In these expressions summation is taken over the background fluctuations, k;. The

coefficient L, is the electron viscosity.

3. Stability of Dressed Test Mode and Transport Coefficient
3.1 Eigenmode Equation

The renormalized equations are given as a linear form for the dressed test wave
with diffusion coefficients {it,, A, %). Eliminating J and p from the set of equations, we

have
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The term Go denotes the driving term of the interchange instability ,
Ide
Gy=-Q e (19)

showing that the combination of bad magnetic curvature and pressure gradient causes
the instability [14]. Equation (18) is the eigenvalue equation for the dressed test wave.
The collisional diffusion coefficients are suppressed for the simplicity.

[t has been shown that the mode can be strongly destabilized by the current
diffusivity. The asymptotic form of the growth rate, in the presence of small but finite

nonlinear interactions, was given as [8,15)

Even a weak turbulence easily influences the growth rate. The schematic picture for the
growth rate vs the background fluctuations is shown in Fig.1. The marginal stability
condition is determined by the balance between the nonlinear destabilization and
nonlinear stabilization. The nonlinear stationary state is different from the conventional

picture it which the linear growth balances the nonlinear damping.

3.2 Marginal Stability Condition
The marginal stability condition for the least stable mode determines the
anomalous transport cocfficient. We obtain the marginal stability condition by setting

Y =0 1n Eq.(18). We solve this equation by the Fourier transformation,
9(.9.9 2;;1 exp (imﬂ—ingf dko, Kexp{kx)  The mode is microscopic, and the

(m,n) component is localized near the relevant rational surface r = rg (x denotes the
distance from the rational surface, X =r - r;). The (m,n) modes are treated separately in
Eq.{18), because Eq.(18) is linearlized for the dressed test wave. We solve each {m,n)

component and suppress the suffix (m,n) unless necessary. In this subsection, the

argument k is the radial mode number.




In the vicinity of the rational surface, the paratlel mode number is expressed as

kj = kosq'1x where s is the shear parameter

s = q lr(dg/dr) (21)

and q is the safety factor. By employing the Fourier transformation, X is replaced by

the operator i(d/dk). The eigenvalue equation is then given as
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where the perpendicular wave number is given as kzl = k% +%*. The equation is now
expressed in terms of a second order ordinary differential equation with respect to the
radial mode number k.

As in the study of the ballooning mode turbulence in tokamaks [8,15], we use

the approximation to neglect the first derivative, do/dx. This approximation yields
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from Eq.(22). We rewrite 7 in the form

Gy gy
x=h=s x(m)

(24)
where h is a numerical coefficient io be determined by the eigenvalue equation Eq.(23)
or Eq.(22). The maximum value of h gives the transport coefficient in the stationary

turbulence. For simplicity, we introduce the normalized poloidal wave number as

2 1/3
b= kz(q Mh.) (25)



and the normalized radial wave number as
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By using this normalization, the cigenvalue equation Eq.(23) is rewritten as

dz(P 2 2_a,4_hLl,6 2
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The eigenvalue H is related to the coefficient has h = H™*2, Neglecting z2 and 7% as

in [15], the eigenvalue equation Eq.(27) is solved by the WKB method as

(H - b2 pls L J1-y8dy = % (28)

The eigenvalue H is a function of b (i.e., normalized poloidal mode number):
H=b%+Cb (29)

i 312
where the coefficient C is givenas C= (% f v 1=y dy) :
0

Equation (29) indicates that the stability boundary (i.e., the level of anomalous
transport to suppress the nonlinear instability) is dependent on the mode number, as is
schematically shown in Fig.2. The eigenvalue H takes the minimum H¥* of
H* =9(C/®¥  at the mode number satisfying

b=b* = (C/8)*% | (30)

The least stable mode is specified by b*. The coefficient h in Eq.(24) is given as

h=H:3?=(16/27)C"*>, (31)




3.3 Transport Coefficients

Using the stability boundary for the least stable mode, Eq.(31), we have the

transport coefficient ¥ as
B q*G3*? A X2
=g X(M) (32)

The renormalization relation of the fluctuations, Eq.(13), indicates that the fluctuation

level is estimated as ¢/B ~ L, or
T kT (33)

The result shows that the transport coefficient is a function of the Prandtl

numbers, He/l, and y/i . The Prandtl numbers are found to be close to unity. For

the case of interchange mode, they were given as [16]
U/ =23, %/ =20. (34

Substituting these numbers for pe/it, and ¥/u | into Eq.(32) and have the transport

coefficient, in normalized form , as
¥ = 1.6 252G Hclaw,)? (35)

The numerical coefficient is only an order of magnitude estimate given analytically. A
careful numerical study of the variationai equation has also shown the reduced
numerical coefficient [17].

The transport coefficient is expressed in physics quantilies as

y = F@(%?)” (_C_Oc;)z‘% (36-1)
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where © is the normalized radius, r/a.

The result illustrates that the anomalous transport coefficient has the
dimensional dependence 62v4/R and is multiplied by the beta-value, indicating the
dnving by the pressure gradient. The importance of the collisionless skin depth in the
anomalous transport coefficient has been pointed out by Ohkawa [18], and similar
conclusion has been denved based on the quasi-linear treatment [19]. Comparison with
expeniment has suggested that the scale length dictating transport seems to have a
dependence like Debye length [20]. Our result verifies by use of the nonlinear
turbulence theory that the collistonless skin depth plays an important role in the
anomalous transport.

The coefficient F contains a numerical coefficient and a geometrical factor. In
the limit of a high-aspect-ratio torsatron/Heliotron configuration, the magnetic structure

1s approximately described in terms of a Bessel function {21]. In such a case, an

analytic estimate yields 22 dQ 2(

dF T

~4
ﬁ) = E(%) where m is the toroidal pitch number
?

and? is the polarity of the helical windings, respectively. This gives an analytic
expression for the geometrical factor F as
.\)2

o[ APV m 1 )P
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The important role of the magnetic shear is shown in the term F. As is widely known,
magnetic shear Is inevitable in a system with a magnetic hill. The anomalous transport
coefficient is predicted to depend as s2. When the magnetic shear is weak, the
transport coefficient becomes very large. This is in contrast to the case of tokamaks

and stellarators which is presented later.

3.4 Implication o Experiments in Torsatron/Heliotron



The predictions of the theory are discussed, comparing with experimental
results. Firstly, the dimensional dependence of % is [x] = [T} JR*[B]™ and is
independent of that of density [n]. Secondly, the formula for y includes the radial
dependence of (B/n)3'2, not T32, and predicts a larger transport coefficient near the
edge. These are consistent with observations [22]. Figure 3 illustrates a typical
example of the radial profile of the predicted thermal diffusivity. Third, the thermal
diffusivity which is deduced from heat pulse propagation, yup, can be larger than the
thermal diffusivity in the steady state. If the density profile is much flaiter than that of
the temperature, and if only the temperature is modulated by the heat pulse, the

theoretical formula of i gives the refation

Yp= 23 (38)

The theory predicts that the ion viscosity is also enhanced to the level of the

thermal diffusivity. Anomalous ion shear viscosity has been observed recently in the

CHS device, and the relation i =y was observed {23]. This observation 1s consistent
with theory [13].

The point model analysis gives the energy transport scaling law as

1p o ADZB OB 065 2RP-08(E) (39)

where A, is the ion mass number, P is the heating power and <F> 1s the average of F
near the boundary. The improvement of the confinement due to the increase of the
shear (s-2 term in F) is almost completely offset by the increment of the magnetic hill
Q. The coefficient F depends weakly on geometrical parameters such as pitch
numbers. This result may explain the fact that Tg seems to depend only weakly on the
rotational transform or on the magnetic shear in the experimental data. The predicted
indices for B, n, a, R and P, as a whole, are consistent with the experimental scaling

law [22]. When the magnetic axis is shifted inward or outward, by applying the



vertical field, the magnetic shear and well change. Competition between the changes in
shear and well is discussed in [13]. The inward shift of the magnetic axis, as a whole,
can be favourable in reducing the anomalous transport in toroidal helical systems.

We finally note the characteristics of the fluctuations. The relation between the
density perturbation and the potential perturbation was calculated from the relation

fi/n =(0./Y)e/T , giving

=}= 23

—~

ey

where Ly is defined as n'/n = -1/Ly and G, = <(R?/2a?) (dB/df) (d€Q/df). For the case
of the Heliotron-E plasma, G, = 60af{0)'L., and q'/q = 4 hold (L, being the pressure

~ 2L
gradient scale length}, and we have % = (—HE%%)%? . The term in the bracket is
o

order 1/10, showing that the density fluctuation is smaller than the potential fluctuation.
(This supports the neglect of the @« term in the equation of motion.) Fluctuation
measurements in high power heating experiments have shown that fi/n is smaller than

ed/T [24], which is consistent with the theory.

4. Numerical Simulation

In this section, we report the nonlinear simulation of the current diffusive
interchange mode by keeping the electron nonlinearity, i.e., the Ex B nonlinear term in
the Ohm's law [25,26]. We start from the three filed reduced set of equations (1)-(3) in
a shear stab plasma with bad averaged curvature. The pressure gradient is taken in the
x-direction, and main magnetic field is in the z-direction. In the slab geometry, the
shear parameter s is taken into account as k= kysx and the origin x=0 is taken at the
mode rational surface. The two-dimensional simulation is done and 9/3z = 0. The
back-ground medification, i.e., the change of the Ky=0 component, is omitted in this

simulation, in order to study the physics of the self-sustained turbulence. In the




noniinear simulation, the length and time are normalized to the collisionless skin depth
8 = ¢/, and the poloidal Alfven transit time.
This system contains the linear interchange instability. In the limit of pe=Ac=

.= 0, the linear growth rate yi_is given as

Y =-s/2ky + N (s/2k,)* + Go. (41

The parameter Gg represents the driving source, which is the product of the pressure
gradient and bad magnetic curvature. When the ion viscosity and thermal conductivity
are finite, both the longer-wave-length modes and the shorter-wave-length modes are
stabilized. If |, and 7. becomes larger, all the modes become linearly stable. For the
set of parameters f.= ¥ = 0.2 and Ac=0.01 and s = G = 0.5, the linear instability
appears in the range of 0.2 <k, <0.9 and the maximum linear growth rate is given as
¥.~0.17 for ky ~ 0.5. As the driving source decreases, the largest growth rate
becomes smaller. As is shown in Fig.4, all the mode becomes linearly stable for the
parameter of Gy < 0.4,

Nonlinear simulation is performed by directly solving Egs.(1)-(3) in the slab
geometry of the system size of L =80 in the x-direction and L,=6.4 in the y-direction.
The periodicity condition is taken in the y-direction, and M=64 modes are taken in k-
space (Ky min = 10/64 and ky nax = 10). The d®¥/ot term and the resistivity in the
Ohm's law Eq.(2) are neglected to iliuminate the transparency of the nonlinear
mechanism of the instability. In evaluating the fluctuations, we define the fluctuation
spectrums in the electric field, Wy, the current, W;, and the pressure, W, as
Wik =1 [ a1V 00ck, 2L, W (k) = [ "o {xkIPI2L and

i
Wp(k e [l dxlp(x,ky)lz]/’ZL, respectively. The fluctuation levels are expressed by

<We>, <W > and <Wp>, where the average <> denotes summation over poloidal

mode numbers, as <W.> =X W (k). The energy conservation law is derived from as
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where I'= —<ik yp*q);» denotes the average energy flux in the direction of pressure

gradient. This relation suggests that the stationary state is realized by the balance
between the energy released by the plasma expansion and dissipation via collisional
damping. The nonlinearlities, (9, ], transfer the wave energy between different modes
and act as the effective diffusion in the phase space, but the real dissipation occurs
through collisional transport.

Figure 5 shows the temporal evolution and nonlinear growth of fluctuations
(solid line). In the small amplitude limut, the perturbations grows following the linear
growth rate. However, at the time of t = 35, when the amplitude exceeds a certain
threshold value, <Wy> ~ 104, the growth rate starts to increase. In the time range of
35 < t< 30, the growth rate becomes larger as the amplitude increases. This is the
nonlinear destabilization thorough the electron dynamics. The dashed line shows the
result of reference simulation, in which the [,j] term in Eq.(2) is omitted. (This
reference case is called as "linear-Ohm's law" for abbreviation in this article.) In the
case linear Ohm's law, the linear growth and nonlinear stabilization are observed,
confirming the conventional picture of nonlinear stabilization.

The level of fluctuations for the nonlinear growth is compared to the theory.
The current diffusivity, A is estimated as Ay =)/ <W>/k y - For the value of <Wy>=
10*and &y = 0.6, Ay is estimated as 1.5x10-2 and becomes larger than A.. The
growth rate, estimated by A= Ay+A, is noticeably deviates from the linear estimation.
The one-point renormalization in the theory gives a good approximation on the
transition from the linear growth to the nonlinear instability.

The simulation in the longer time scale shows is shown in Figure 6. At the time
of 1~ 80, the inverse cascade takes place, and the level shows transient dip. Whent
exceeds 100, the saturated state is realized. The dashed line (b) shows the reference

case of linear Ohm's law (other parameters are common). The saturation level is




smaller in the case of linear Ohm's law. The case of increased A. (A = 0.2) is shown
by the line (c). For this large value, the linear growth rate becomes about twice larger
and the change in the k; of the peak growth rate 1s less than 20%. Comparing the
result of (a) and (c), we see that the saturation level is not sensitive to the linear growth
rate in the current-diffusive interchange mode wrbulence.

This insensitivity of the turbulence level becomes more prominent by calculating
the linearly stable case. If Gqis reduced to 0.3 and other parameters are fixed, all the
modes becomes linearly stable (as is shown in Fig.4). In this case, growth of
fluctuation occurs in the system of the nonlinear Ohm's law: When the initial amplitude
is below the threshold value, the system remains stable and the fluctuation level does
not increase. If, on the contrary, the initial condition exceeds the threshold value, the
fluctuations start to grow and approaches a very high level, which is close to those for
the linearly-unstable cases. The fluctuation leve! as a function of the pressure gradient
is summarized in Fig.7. The linear growth rate is realized only in the very low level of
initial amplitude (about 103 or less than the saturation level). The dynamical evolution
of the fluctuations are governed by the nonlinear growth; the growth rate depends on
the {luctuation level as is illustrated in Fig.1. The nonlinear simulation confirms the
dependence of the saturation level as a function of the pressure gradient. In the
previous section it is shown that the static potential fluctuation depends like @ o G2,
and the typical scale length of fluctuations behaves as (k ) o< Gy % This indicates the
dependence of the electric field energy <Wg>, which is in proportion to @23, has a

dependence
{(Wy) < Gj (43)

The nonlinear simufation confirms the feature of the subcritical turbulence of the
inhomogeneous plasmas.
The spectrum of the fluctuations is studied. The nonlinear growth takes place in

the range of ky ~ 0.6, and the spectrum extends to the higher mode numbers. This



extension is charactenistic to the nonlinear Ohm's law. In the stationary stage, the
largest amplitude mode is observed in the longer wave length mode. This is due to the
inverse cascade from the nonlinearly excited modes of k, ~ 0.6. In the region of 0.3 <

Ky < 1.5, the spectrum is fitted to
Wolkyee k37 (44)

Above ky > 2, the collisional dissipation dominates and W, is cut-off as
Wky) = exp (- k)

The turbuient-driven energy fiux is computed and is compared 1o the theoretical
prediction. Since the simulation is done in the 2D model, the associated flux is

localized in the vicinity of the rational surface. We define the localization width L, by
Ly

the condition § > 0.1 §,,,; forIxl =L, where 4> L;lf dy q, and q = - ik;p*¢. The
[

Ly
average turbulent driven flux <q> is defined by <q>=L3;!| dxq. In the saturation
8 4 X,

stage, the time average in range of 100 < t <200 is about b, =3.0 for the standard
parameters (s=0.5, Gp=0.5). The theory predicts yx = Gg*2s2, i.e., yn = ¥2 for this
set of parameters. Both the conductivity is much larger than the collisional transport
coefficient .

The largest amplitude mode is found in the longer wave length modes. In this
particular study, the largest amplitude mode is given for k, = 10/64. This suggests that
the wave length of peak of the spectrum is much longer than the collisicnless skin
depth, though the nonlinear interaction in the range of ky~ 1 causes the nonlinear
growth and higher saturation. The inverse cascade has been observed in previous work
[27]: For instance, the simulations on 13, mode turbulence has shown the inverse
cascade, and the saturation evel was found to be the level just after the inverse cascade
takes place dominantly [26]. On the contrary, in the case of this simulation, the
increase of the turbulence energy takes place once again after the prominent inverse

cascade occurs.



5. Study of Current-Diffusive Ballooning Mode (CDBM) Turbulence
5.1 Application to the Systemn with Magnetic Shear

The theory of the self-sustained turbulence and anomalous transport is extended
to the system with magnetic shear (such as tokamaks and stellarators). In such
geometry, the interchange mode remain stable, and we must analyze the ballooning
mode, which is localized in the region of local bad magnetic curvature.

We take the high-aspect ratio {imit of circular tokamaks. The ballooning
transformation from the (r, 8) coordinates to the 1 coordinate [28] is employed, since
we analyze the microscopic modes. By the help of the ballooning transform, the
equation of the dressed test mode Eqgs.(10)-(12) can be written in a form of the ordinary
differential equation. The dispersion relation for the microscopic ballooning mode is
given in the presence of turbulence as [8,15]

d F do ofk+cosm+m—osinm)sinn] ~
dn F+EF+AF 2 dn * ¥+ XF - G+MPFp=0  (45)

Terms A, X, and M represents the impact of the renormalized turbulence as A = i.n“q“,
X =%n2q? and M = {in?q?. Zstands for the influence of the resistivity, = =n2q%/G .
Here normalization is used as /2 = T, ¢/1, ) — L XA 2’ =% 1 1Tapa? =1,

ATy fugat — A TaOUG% = 1/G and YT,, — ¥. Tap s the poloidal Alfven velocity
Tap = afRogm; / By, Bp is the poloidal magnetic field BrigR, e=r/R,
B=woni(Te+T)/B2, s=r(dq/dr)/q, k = -&(1-1/?), F= 1+{sn-asinn)Z, and o = -g’RB'
denotes the normalized pressure gradient. If one neglects the anomalous transport
coefficient, Eq.(45) reduces to that for the resistive ballooning mode, and the ideal
MHD mode equation [28] is obtained by taking 1/6=0.

5.2 Nonlinear Marginal Stability and Anomalous Transport Coefficient
Equation (45) constitutes the nonlinear dispersion relation. In the small amplitude
limit, this dispersion relation describes the nonlinear instability driven by the anomalous

current diffusion. An analytic estimate is given



¥~ ilfs(nq)‘usay g 25 (46)

showing that even the small amount of the current diffusivity can give a large nonlinear
growth rate [8,15], as is illustrated in Fig.1.

The stationary state which satisfy the marginally stability condition (v=0) gives
the relation between the transport coefficients. In the case that the normal curvature is

stronger than the geodesic curvature, 1/2 + o >s., Eq.(45) can be approximated as

ﬂ . oAn2g?

N A N PO L V22
&3 (1 (2+oc s}n)qb AAnsq&(1 +3(a-s)MYp=0. (47
This equation gives the marginal stability condition as
a3l2ﬁ'i_ 3/’2}1— vz _ fl(N) (48)

where the function f; and normalized mode number are defined as

(N} = N"31 - N4 2{% +a—s+3{o - 3)2N4}, (49-1)

N =nq(fi /). (49-2)

Equatton (49-1) indicates that the level of anomalous transport, which causes the
nonlinear stabilization, is dependent on the mode number, N. We see that the function

f1(N) takes the minimum value f(s,0) at N = N, where

2
f(s,00) = {1 +20.— 25) 2*“1"%(% (50-1)
Ni2=y/2+65-0)?/ (1+2a-25) . (50-2)



Substituting this result for the least stable mode, N = N., we have the expression of the

anomalous transport coefficient as

" /%
= - = 51
X i (3D

where the coefficient f(s,0) represents the influence of the magnetic shear.

We here again note the fact that the Prandtl numbers, |1/ and pe/y, do not
change much, compared to the magnitude of the transport coefficients itself, when the
turbulence level is varied [16]. Taking the assumption that 1/y = 1 and ple/y=1hold,

a simpler form of the anomalous transport coefficient is given From Eq.(51) as

% = f(s, 00 la32 (c/amp)z, or in the dimensionat form as
_ q pRpn3izr e Va ,,
= a0 B (52)

The function f is fitted as 0.4v5 in the strong shear limit, and approximated as Eq.(50-
1) in the weak shear limit. Figure 8 illustrates the dependence of the anomalous
transport coefficient on the magnetic shear. This form of  is consistent in various
aspect of the L-mode transport. Detailed comparison by use of the transport code is
explained in section 7.

The dominant role of current diffusive term in the Ohm's law in exciting
turbulence indicates the refation Xﬁi_ >> &1, This does not mean that the loop voltage
to sustain the toroidal plasma current is influenced by the current diffusivity. The
1

current diffusion is effective for microscopic structures. When the relation A<<d”

holds, the loop voltage is not affected by the anomalous transport. These conditions

for the magnetic Reynolds number & are combined as

1

(c/amp)zam >> G >> (c/amp)4a3’ 2, (53)



where we use the relations A ~ (c/amp)4a3’2 and k, ~ (a(oplc)a‘” 2. Equation (53) is
usually satisfied for present day experiments. When the temperature becomes low, the

1

condition ﬁ(i >> &~ " may not be satisfied. This case is discussed later in relation to

the pseudo classical confinement.

5.3 Characteristics of Fluctuations
The least stable mode gives the typical wave number for the seif-sustained
turbulence. Substituting Eq.(51) into Eq.(49-2), the characteristic mode number is

given as

k=29 % (54

a5

where the numerical coefficient u(s) is close to unity in the low shear limit and is about
0.1 for the parameter of s=1 {8,15]. This result shows that the characteristic scale
length is given by the collisionless skin depth, and that the scale length becomes longer

as the pressure gradient increases. The fluctuation level is also given as

€@ B _ q2 n327 ¢ 12 VA eB
T T g (S R T >

showing that the fluctuation level is enhanced as the pressure gradient is increased,
e®/ T < 0*? The dependence on the pressure gradient is the same as the case of

CDIM turbulence: the difference appears in the geometrical factors.

5.4 Connection to the Pseudo-Classical Transport and Bohm-Diffusion
This frame work of the self-sustained turbulence is applied to the low temperature
plasma, and the connection between the L-mode and Pseudo-classical transport can be

explamed [29]. When the plasma temperature is low, the driving source of the mode is



E rather than A in the nonlinear dispersion relation (45). The generalized form of

nonlinear marginal equation is given, instead of Eq.(48), as

(36)

~

[v4 C1(l+029N2) 252 1+pN?
e 5 F{l+T ——N
OX  (1+pNH{1-NY
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where pis the ratio p = &% ?(% and coefficients are defined as ¢, = 1/2+0t—s + 52,

ey =({12+a—s)c, .
Equation (56) determines the least stable mode and transport coefficient, as is
shown in Fig.9. In the high temperature limit, p — e, Eq.(56) reduces to Eq.(48). If

the temperature is low and the relation
8 < ;‘(‘”3(ac)p/<:)4j3 (57)

holds, the resistivity, rather than the current diffusivity, determines the growth of the
mode. The analysis on the resistive ballooning mode [30] is recovered. In such a case,

the transport coefficient is given as ¥ =2a/G , or in a dimensional form as

x= (ﬁ) Va P (s9)

where Lp, is the pressure gradient scale length, /B, Ve; is the electron ion collision
frequency and ppe is the electron poloidal gyro radius. This formula is very close to the
one obtained by Yoshikawa {or the Pseudo-classical transport [31]. The change from
Pseudo-classical confinement to L-mode confinement takes place at the condition
Eq.(57). [This result is compared to the experiments in the spherator [31], where the
transition between Pseudo-classical transport to the neo-Bohm transport was found to
occur around T=10eV. For the parameters of experiments, the transition between the

pseudo classical transport and L.-mode confinement is predicted to occur at T=8eV from

Eq.(57).}



Although various mechanisms could give rise to the Bohm diffusion [4], the
connection with Bohm diffusion can also be discussed along this line of thought. The
relation between the fluctuation level and the diffusivity gives the upper bound of the
anomalous transport. The upper bound of fluctuation level, {ii/n| < 1 , or [e®/T] <1 ,

gives the upper bound of , from Eq.(38), as

(59

>3

n

g =

1A
&+

except a numencal coefficient of the order unity.

These results Egs.(52}, (58), (59) show that the confinement characteristics
changes from L-mode to Bohm confinement via Pseudo-classical confinement. The
historical development of the confinement in Fig. 10 seems to be understood from the

consideration of the self-sustained turbulence.

6. Electric Field Bifurcation and Physics of the H-mode

The H-mode is characterized by the abrupt and spontaneous formation of the
stecp edge pressure gradient, often associated with the repetitive bursts of plasma
across the surface [32]. In order to understand the formation of this steep transport
structure, we have proposed the mechanism of the radial electric field bifurcation [33].
The radial electric field structure has multifold solutions, transition between which
occurs at a critical pressure gradient. The strong electric field that is localized near the
edge has a nature 10 suppress the cross-field transport, so as to strengthen the edge
pressure gradient [34]. This theoretical picture, at this moment, is supported by

experimental observations [35].

6.1 Generation and Bifurcation of the of Radial Electric Field

The radial electric field is generated by the radial current. Poisson's equation

can be written as €€ J_% E =¢[',-T,) where £, is the perpendicular dielectric



constant, and I, and I'; are the radial fluxes of electrons and ions, respectively. The

stationary state equation,
re[X,X‘; VP ]=Fi[X, X‘; Vp], (60)

determines the structures of the radial electric field as a function of the plasma profiles,
X(r; Vp----) (X being the normalized radial electric field, X = ep E /Tiand p, is the
poloidal ion gyroradius}

Equation (60) predicts the bifurcation of the solution X (X' and X", as well).
Since plasma transport coefficients are dependent on the electric field structure, this
bifurcation in the radial electric field causes those in the plasma transport. Theories of
the H-mode are classified into two, depending on the relation between the gradient and
flux. Figure 11 illustrates, for the two cases, the relation between the fluxes, radial
electric field and fluctuation level, as a function of the gradients Vn and VT. Figure
11(a) shows a hard transition model. In this case, the flux (and fluctuation leve} ete.)
takes multiple values at certain values of the {ixed gradients. Figure 11(b) presents
those for a soft-fransition model, where the flux can be a decreasing function of the
gradients, but is single-valued. if the system has a hard transition, a soft transition is
also available by the change of parameters. The cusp-type bifurcation (for the case of 2
hard transition) is obtained [36] as is illustrated in Fig.11{c). The change from the low
to the high confinement state ("A" to "B" in Fig.11(c)) could occur either by crossing
the transition points, or by following a smooth change. The Itoh-Itoh model and
Shaing model belong to the case of a hard transition {33,37]. Those in [38] belong to
the class of a soft transition.

There are many processes which are associated with the radial current [3].
Poisson equation is explicitly written, for singly charged ions, as

R e e A AT Y



The terms on the right hand side represent the following processes. (i) T2 ; the
bipolar part of the anomalous cross field flux (i.e., the excess flux of electrons relative
to ions), (i) F{“ ; the loss cone loss of ions, (iit) 1‘%"’ ; the bulk viscosity coupled to the
magpnetic field inhomogeneity, (iv) I‘i"V ¥, the Reynolds stress in the global flow, (v)
TN and Y€ ; the collisional flux (e.g., the ripple diffusion, or the contribution of the
gyro-viscosity), (vi) IT™ ; the ion loss owing to charge exchange. The external-driven

rf-waves can contribute to the term of T2™}". In order to provide a perspective, we

choose some of the characteristic terms. Qualitative dependencies of these terms are

shown as T ~ DX XA, - X)+ X XVIX, T~ foVipexp (- X7),

pv_ ET . _ —
= —E?B——{X + Xl Im ZIX + e where A =~ ,op(VpJn + 0, VT/T}is the

normalized gradient, Z(X + iV..) is the plasma dispersion function,

Xog=- pp(n'/n +¥neTITy) + Vy/ vy, and Vs = viGR/Vy,. The numerical coefficient fig

is a function of geometrical factors such as €. The formula of F}’V is given in [39]. In

. X+X
the more collisional case, we have . g2v.p n =0
: LRSS
%

A first example of bifurcation is given by the balance between I'2"" and T}
[33] and another is obtained by that between I'° and ™ [37]. Figure 12 illustrates
these examples of bifurcation. It is seen from this figure that the radial electric field

shows a hard transition at critical plasma parameters.

6.2 Suppression of Turbulence

In the case of the H-mode, the inhomogeneity of the radial electric fieid plays
the role in suppressing the turbulence [34]. We extend the method of self-sustained
turbulence in the presence of the radial electric field inhomogeneity, in order to obtain
the theoretical formula which describes both the L-mode and H-mode simultaneously.

The self-sustained turbuience is solved in an analytic manner for ballooning
mode turbulence and interchange mode turbulence [40,41]. For simplicity, the one for
the interchange mode turbulence is shown as [40]. The dc-component of the radial
electnic field, @, is kept in Eqs.(10)-(12). The eigenmode equation for the dressed test

mode is given as



~
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where
g = KgTaE/B (63)

denotes the normalized shear flow velocity due to the inhomogeneous radial electric
field. If one takes the limit of wg; = 0, Eq.(62) reduces to Eq.(18). The stationary
state is obtained by use of the same procedure in section 3. Expanding the eigen
function in terms of the Hermite functions, the effect of the electric field inhomogeneity

is treated perturbatively. The transport coefficient is given as

1 qugjz ¢ \2Yap
1+0.5G5 08,) s \®) 2

X~ ( (GTY
with the ion and electron viscosities of the same magnitude [40].

The typical level and correlation length of the fluctuations are dependent on the

gradients of the pressure and electric field as

w2
(k3) = (1 +0.505 'wE,) Gio(%’) : (65)
e 1 q2G3* Vap eB

~ Ly ApeB 66
T "(1+056; w2, s° (cup a T (66)

These results show that the correlation length becomes shorter and the fluctuation level

decreases owing to the electric field shear.



The same argument is extended to tokamak plasma transport based on current

diffusive ballooning mode turbulence. The result is given as

_ 1 a2 ¢ 2vVa 6
x (1+ h1wf251+ h,0f,) f(s,a) (mp) gR (67

where numerical coefficients (h ,, h,, ) are functions of s and & (see [41] for the
details.) g, denotes the curvature of the radial electric field. The ion viscosity also
follows the formula Eq.(67). The characteristic scale length of the fluctuations is also
shown to decrease by a similar factors if the electric field shear is increased.

The results Eqs.(64) and Eq.(67) indicate that the electric field inhomogeneity,
as a whole, suppress the anomalous transport, so long as it is not too large. The
efficiency for the suppression (the coefficient of the inhomogeneity parameters)
depends on the pressure gradient and other plasma parameters. Both the gradient and

curvature of the electric field is effective in reducing the transport coefficient.

6.3 Hysteresis , Limit Cycle and ELMSs

A hard transition model can predict a fast transition at the critical points. This
system has hysteresis and can generate a limit cycle oscillation. Figure 13 illustrates the
loss rate as a function of a plasma parameter in the case of a hard transition type [42].
This curve belongs to the family of the backward bifurcation (which usually appears in
sub-critical turbutence). There is hysteresis, as is shown by the dotted line. The
central branch is thermodynamically unstable, so that a limit cycle oscillation is
possible. This dynamics is discussed in relation to ELMSs (Edge localized Modes) [43].

The transport equations of the plasma parameters and the electric field are given

in a symbolic form by using the nonlinear transport coefficients as

%n(r) =V D[X, X'; n(r), T(D),+ -] Vo) + S, (68-1)
%T(r) =V y[X, X (), T, -] VI() + P (68-2)




D%X(r) = V- ufX X n), T, - 1VX(E) + NIX, X5 n(0), T(D),:--] (68-3)

where S is the particle source and P is the heating power. (In general, terms like
'pinch’ can also be included in Egs.(68-1) and (68-2).) The coefficient v indicates the
fact that the time scale in Eq.(61), determined by the flux and viscosity, may be much
faster than the usual transport process for the temperature and density. The nonlinear
term N in Eq.(68-3) indicates those source terms of the radial electric field in Eq.(61),
which aliow a bifurcation of the hard transition type. The transport coefficient is given
in the form (e.g., EqQ.(64) or (67)) u = ufX, X'; n(r), T(r), --]. This set of equations
belongs to the type of the extended-time-dependent Ginzburg-Landau equation (E-
TDGL eguation).

The system of dynamical equations of the E-TDGL type, Eq.(68), predicts a
limit cycle oscillation, which is the sequence of the transitions and back iransitions

{42,44,45]. In this analysis, the parameter g that controls the transport was chosen as

g=71— — and N is modelled by a quadratic equation of X. Figure 14 illustrates the

limit cycle oscillation seen in the {lux out of the plasma with the radial profile of the
transport coefficient. The H-phase and L-phase are realized one by one. In the H-
phase, the confinement is good so that an increment in the parameter occurs. Owing to
this improvement, e.g., the density becomes too high, so that the condition g, in
Fig.13 is reached. Then a sudden increment in the loss rate takes place, causing a jump
of the out flux and a rapid decay of the pedestal profile. If the plasma parameter
changes and the parameter g increases, the condition gy in Fig.13 is realized. Then the
transition to the H-phase takes place. These processes repeat themselves. Under a
constant supply of plasma from core, a limit cycle oscillation occurs. This is the self-
organized oscillation generated by the hysteresis and hard transition 1n the plasma
transport and electric field generation. This limit cycle oscillation is possible near the
threshold condition of the L-H transition, which is evaluated in the stationary state [42].

Small and frequent ELMs are observed experimentally in the vicinity of the threshold



power for the L-H transition, and are called dithering ELMs. This limit cycle
oscillation constitutes a model of this kind of ELMs.

The appearance of this limit cycle oscillations is very abrupt when the global
plasma parameter evolves slowly in time. As the plasma parameters reach the threshold
condition, the first burst appears, followed by periodic bursts (see, e.g., [45]). Finally
the self-regulated oscillation suddenly disappears and a stationary H-mode is
established. The oscillation amplitude jumps abruptly from zero to finite value and
from finite ampiitude to zero. This feature is characteristic of the hard type of
bifurcation which contains a hard-transition and hysteresis. The oscillations can also be
found in the case of a soft bifurcation (normal bifurcation or pitch-fork bifurcation).
The limit cycle oscillation can also be available in this type [46]. Like the Hopf
bifurcation, the limit cycle appears gradually under the gradual change of the global

parameter. This is one of the points that discriminate the models.

7. Application to Tokamak Transpert Analysis

The form of ¥ in Eq.(52) is consistent in various aspect of the L-mode transport
characteristics, i.e.,

» degradation of Tg by intense heating,

» large 7 near the edge,

» improvement of Tg by the heavier isotope,

» dependence of Tg on the plasma current,

+ weak dependence of temperature on the magnetic field,

» weak dependence of temperature profile on the heating profile,

* larger ¥FF thany,

» 1 1s enhanced o the level of %,
and so on. Detailed comparnison by use of the transport code has been performed [47],

which is explained in the following.

7.1 Transport Equations




In the numerical simulation, we solve the one-dimensional transport equation.
The transport code TASK/TR [48] is employed. We solve the development of plasma

temperatures, T, and T;, and the poloidal magnetic field Bg. In the present simulation,

the density profile is fixed in time as n{r) = (n{0) - n,{1 ~ (/a)™)™ + n,. The one-
dimensional transport equations are given as
ndT,-1omy 07 —p 4P, P, -P 69-1
Do le ™ Tor Xear He ¥ FOH ™ rad (65-1)
a3 1d d
03T~ Ldmy d7=p, 4P, (69-2)
d d 10
dp,= ar"NC(r L1By-Jpg- JLH) (693)

In the energy balance equations (69-1) and (69-2), Poy denotes the joule heating
power, P the equipartition power, Py, and Py; the additional heating power,
respectively. The magnetic diffusion equation (69-3) includes the neoclassical
resistivity Tine, the Bootstrap current Jgg and the current driven by the Lower hybrid
waves, Jpg. Asis discussed by Eq.(53), the anomalous current diffusivity very little
influences the evolution of the global current profile and is not kept in Eq.(69-3).

The Ohmic heating power is calculated by use of the neoclassical resistivity
Pou=NMncd J—Jpg—J1y) where ] is the plasma current. The neoclassical transport
coefficients are used according o [49]. Power deposition profile of additional heating
is assumed to be Gaussian and parameterized as Pyy(r) = ? P jexp {u (r—ry j)zr;}_’ j}.
Here we take the j = 0 heating component and choose the parameters ry o =0 and
Iy, o =a/ 2 for standard calculation. Bootstrap current is taken into account as the non-
inductive current duve in this simuiation. The Bootstrap current Jgg is calculated
according to the neoclassical formula in [49]. The analysis for the case of LH current
drive is given in [47,50].

The transport coefficients are given as a sum of the turbulent term Yy and the

neoclassical term - as X =Xt + Xnc- 1Dhe electron and ion diffusivities are not



separated in the present turbulent transport model: we here assume that they have the
same magnitude. Taking into account of the uncertainty of the order unity in the
theoretical formula of Xy, in Eq.(52) we introduce a numerical factor Crg in
simulations. {Note that the one point renormalization underestimates the numerical

coefficient [51].) The turbulent thermal diffusivities are given
2
q n327 ¢ 2 Va
= Crp o (-REP2 (L) A 70-
1B TB f(s,(x}( 6) (mp) R ( 1)

with the fitting formula for (s,0) as

1 (1 + K)S/Z

fls.a) ~ \/2(1 - 251 - 25 + 35 %(1+x)]

(70-2)

where K is the average good curvature and 8" = s — a. When the g value is below unity,
the average magnetic curvature becomes a bad one, and the formula Eq.(36) is used.
By choosing the numerical constant Cyg as Crg ~ 12, the energy confinement time in
the L-mode regime and the improved confinement was simulated. (See [S0] for the

details of the simulations.)

7.2 L-mode Confinement

The plasma parameters are taken in the range of the large tokamaks. We choose,
as standard parameters, a = 1.2m, R =3m, B = 3T, and the central electron density
n,(0) = 5% 10¥m-3.

Figure 15 shows the stationary plasma profile in the OH heating and additional
heating (20MW). In both cases, the thermal conductivity has the shape to increase near
the plasma edge. This is mainly due to the profiles of the safety factor and density.
The shapes of the electron temperature profile are similar to OH and additional heating

cases, so as to recover the profile resilience.



Dependence of the energy confinement time on various parameters are studied. It

is found, by the numerical simufation,

T 0Py "B{n2SI0® (71)

in the large current limit, where the suffix th indicates that only the thermal component
is taken into account in evaluating the energy confinement time. This result is similar to
the one obtained in the empirical scaling law [52], except the stronger density
dependence obtained here. This is because the energetic compenent is included in the
total energy confinement time; much stronger density dependence, TE,m“ng'sv was
confirmed if one measures the thermal component [53].

The dependence on the plasma current is shown in Fig.16. At high current limit,
the energy confinement time increases with I, It should be noted that, in the low
current limit, the energy confinement time starts to increase and can be twice better than
the L-mode plasmas. The mechanism of this improved confinement is related to the

current profile modification, and is discussed in the next subsection.

7.3 Current Profile Control and Improved Confinement

The influence of the current profile is predicted based on the transport coefficient
Eq.(70). The impacts of the low/negative magnetic shear and that of the change in the
intemal inductance % are explained. This feature of the turbulent transport coefficient
was attributed to the origin of the confinement improvement in the high-B, mode [54],
the PEP mode [55], and high-{;. confinement [56].

In a weak shear or the negative shear region, s < 1/3 +¢, the increment of
associated with o becomes very gradual. For the fixed pressure gradient, i shows a
noticeable reduction if the magnetic shear enters in this domain, as is shown in Fig.8.
The reduction of the thermal conductivity is expected, roughly speaking, in the domain
of the second stability. Note that large Shafranov shift is also predicted to caﬁse the

reduction in transport.



This shear dependence gives rise to the formation of the intemal transport barrier.
Figure 17 illustrates the radial profile of the improved confinement mode in the low
current limit, i.e., high~Bp plasmas. The internal transport barrier, associated with the
low magnetic shear, is demonstrated. As the pressure gradient increases so as to reach

the region
Box1 (72)

the Bootstrap current is large enough to affect the total current profile. The Bootstrap
current is driven in the micdie of the plasma so as to make the piasma current flatter.
The reduced shear makes the transport coefficient lower. If the thermal conductivity is
reduced, the pressure gradient increases. The increment of the pressure gradient leads
to the enhancement of the Bootstrap current, which causes more prominent flattening of
the current. The stronger flattening further decreases the thermal conductivity,
enhancing the pressure gradient further. Thus the internal transport barrier is seif-

organized. The energy confinement time for this high-B, mode is fitted as
0.76 '
Te~B; (L — mode) forf,>1 (73)

This improved confinement is easy to occur if the heating power is localized near the
plasma center [50]. The isotope effect becomes more prominent if coupled with the

improvement of High-f3, mode. In the high-f, mode, the isotope dependence of
Tg o ADS (74)
was predicted [57].
The other way for improved confinement is predicted by peaking the current

profile, if the current is large and the Bootstrap current is not effective. For fixed

current, the higher internal inductance implies that the internal g-value is lower. Due to



the g-dependence in the thermal conductivity, the higher internal inductance enhances
the total energy confinement. The intemnal inductance is varied by the rapid current

ramping. The numenical simulation yields the dependence
T & 9;6.6. (75)

The current profile modification thus has the potential to improve the energy
confinement time. Applications by use of the Lower hybrid cusrent drive, NBI current
drive, current ramp-up/down have also been studied based on this transport modelling.

See [47,50] for detailed analysis and comparison with experiments.

8. Summary

In this article, we overviewed our recent studies on the theory of turbulent
transport. The concept of the self-sustained turbulence is extended. The plasma
turbulence has the nature of subcritical turbulence: the anomalous transport further
destabilizes the {luctuations through the scattering of electrons. The stationary state is
realized by the balance between the nonlinear destabilization and nonlinear stabilization.
Combining the plasma dynamics and that of electromagnetic freld, the transition in
transport was predicted to occur. The hysteresis is generated by the electric field
bifurcation, causing the transition as well as limit cycle oscillations.

In the turbulent transport, the parameter "gradient” is taken into as the order
parameter. The transport coefficient is increased, the correlation length becomes
longer and the fluctuation level gets higher as the pressure gradient increases. These
features are the characteristics of the transport processes in non-equilibrium matter. It
is in contrast to the collisional diffusion, which is generated by the thermal fluctuations,
i.e., Coulomb collision. The dynamics behaviour of the norlinear fluctuations has also
been studied in the I rame@ork of the self-sustained turbulence. The analysis is
reported in [58].

The normalized plasma gradient is summarized as



23
J= (%}WGO (bt A 5 (CDIM wrbulence) (75)
B+ Xoltin + 1)

which we tentatively called Itoh number after Rayleigh number in the Bernard cell
Agd*VT

convection problem &, = —= 5
CAC

(d: distance of two plates, Ag: bouyancy by

gravity). In plasmas, the nonlinear marginal stability condition is given as 3 = 5,
while that in Rayleigh-Benard problem is given as R, = R,.. In both cases, the
gradient drives instability and the enhanced viscosity and conductivity suppress the
instability. What is noticeable for plasmas is that the dissipation, through the current
diffusivity (1.e., the electron viscosity), can enhance the driving force. This is one of
the basic feature of the plasma turbulence, which is revealed by this theoretical
approach. The division of the dissipated energy between electrons and ions was found
to be nearly equal [59].

By the simulation study, it is demonsirated that the nonlinear destabilization of
the perturbations takes place when the amplitude exceeds the threshold. The saturation
level is enhanced by the convective nonlinearity, but is not sensitive to the linear growth
rate itself. Comparing with the theory based on the renormalization of turbulence, the
simulation confirms the picture of self-sustained turbulence. The estimation of yy
using the mean field approximation is also confirmed within an uncertainty of the
numernical factor.

The argument based on the scale invariance method has confirmed this result [60].
Connor has extended the model in the case that the electron pressure term is more
important in the Ohm's law than the parallel electric field. In such a case, Eq.(51) has
additional coefficient by the factor of (vf-ijw/a) [60]. This change in the factor
stmulates the future extension of this methodology to more general basic equations.

One of the main extension is to include the effect of the magnetic braiding {60,61].
Analysis for the onset of the fast nonlinear growth was developed to study the magnetic
trigger problem in sawtooth physics [62]. It was shown that at certain pressure

gradient, which 1s occasionally not far from the linear ideal MHD instability boundary,



the self-sustained magnetic braiding sets in and the transport coefficient is subject to
new transition to higher level [61,63]. This process provides the picture for the giant
ELM:s [63] or crash of the pressure [64].

These results on transport coefficients and fluctuations supply the explanation
for experimental observations, and some of the applications is reported in section 7.
Simuitaneous explanations for various confinement-mode {e.g., L-mode transport,
internal transport barrier and H-mode) are searched for, starting from one set of basic
equations. At the same time, more mysterious nature of confined plasmas is recognized
and waits novel theories; e.g., a rapid response in the transport {65,66], or the flows
against the gradients [67]. Including the formulation of the transport matrix or the
method of TSDIA (two-scale direct interaction approximation) [68], the efforts leading

to the new break-through in confinement theory are still required.
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Figure captions
Fig. 1 Schematic drawing of the growth rate as a function of back-ground fluctuation
level. Solid line indicates the case of self-sustained turbulence, and dahed line

is for the conventional picture.

Fig. 2 Eigenvalue H as a function of the mode number (a) and the learst stable mode
determines the transport coefficient h =y / [q2%s=2G3 M)y, | (b).

Fig. 3 The radial profile of the thermal diffusivity for the case of Heliotron-E plasma.
Profiies are chosen such that pyf) = pol0){ 1 ~ 1% A] , TOTO = @m0
A=0.05,T(0) =500 eV, B =2T, n(0) = 5x10°m-3, and a/R = 0.1. The
hatched region indicates the experimental observation. The dotted line shows

theoretical result, employing a multitplication factor 9 .

Fig. 4 The maximum linear growth rate as a function of the pressure gradient Gg.

(Parameters are: ie=%.=0.2,Ac=0.01 and s =0.5)

Fig. 5 Fluctuating electric field energy versus time, showing the nonlinear growth due
to the electron nonlinearlity at t > 35 (solid line). Parameters are ji.= y.= 0.2,
Ac=0.01 and s = Gg=0.5. The dahsed line indicates the simulation, for
which the convective nonlinearity {9,j] in the Ohm's law is omitted. (Quoted

from [25].)

Fig. 6 Evolution of fluctuating pressure energy. (a)Ac= 0.01 and (b) A.= 0.01 with
linear Ohm's law and (c) Ac=0.2. The case (c) has a larger linear growth rate
than the case (a). But the saturation level is less affected by the linear growth
rate in (a) and (c). Other parameters are the same as in Fi g.5. (Quoted from

[25}.)



Fig. 7 Nonlinear stability boundary in {Wy)— G plane. Parameters are the same as in
Fig.5. The regions (1) and (2) represent the nonlinearly unstable regions with

YL>0, ¥y =0, and yp <0, y)y# O, respectively. The region (3) represents the

linearly unstable region. (Quoted from {25].)

Fig. 8 Form factor 1/f(s,a) as a function of s in the small-o: limit. In the high
shear. region, the factor 1/f decreases as s increases. When the shear is very
weak or negative, the coefficient 1/f becomes very small. The reflects the

second stability against the ballooning mode.

Fig. 9 Marginal stability condition for the nonlinear ballooning mode instability
(schematic). N stands for the normalized mode number. The resistive limit

{p — 0, (a)) and current diffusive limit (p >> 1, (b)) are shown.
Fig. 10 Historical evolution of confinement time.

Fig. 11 Relation between gradient and flux. Hard transition model (a) and soft
transition model (b). The cusp-type bifurcation with hard transition is

summarized in (c}.

Fig. 12 Examples of the electric field bifurcation. In (a), the balance between Iy
and the loss cone loss is shown. The self-consistent flux, as a function of the
gradient, is shown in (b). In (c} another example, i.e., the balance between the
loss cone loss (solid line) and ' (dashed line), is demonstrated. (Quoted

from [33] and [37].)

Fig. 13 Schematic relation between the plasma parameter (g) and the diffusivity (i.e.,
the flux divided by the gradient). The dotted line indicate the hysteresis and the

limit cycles.



Fig. 14 Penodic formation and destruction of the edge transport barrier give rise to the
periodic bursts of the outflow. Note that the supply from the core is constant

in time. (Quoted from [42]}.)

Fig. 15 Radial profile of the ion temperature and the ion thermal diffusivity. Cases of
Ohmic heating and additional heating are shown. Parameters are a= Ilm, R =
3m, B = 3T, I, = 3MA, n,(0) = 5 x 10'°m~3 for the deuterium plasma.

{Quoted from [50].)

Fig. 16 Dependence of the energy confinement time on the piasma current. Heating
power is taken as P = 10MW and other parameters are the same as in Fig.15.
The broken curve indicates the ITER-89P L.-mode scaling. In the low current

limit, the enhancement over the L-mode scaling is found. (Quoted from [50].)

Fig.17 Radial profile with internal transport barrier. I,=1IMA, P =20 MW and other

parameters are the same as in Fig.15. (Quoted from [50}.)
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