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Abstract A convoluted pattern of streamlines in a steady state of thermal convection of
a Boussinesq fluid between two concentric spheres rotating with a common angular velocity
is investigated numerically at Rayleigh number 3200, Taylor number 8000, Prandt]l number
1, and the radius ratio 0.5 of the two spheres. Five pairs of Taylor-Proudman vortex
columns with opposite rotation are generated, which arrange alternatively parallel to the
axis of rotation across the middle in the equatorial plane of the spherical shell. These
vortex columns retrograde at a constant angular velocity. The flow field is steady in a
frame rotating with this angular velocity. The velocity filed is symmetric with respect to
the equatorial plane. Two kinds of nontrivial closed streamlines which turns once around
the rotating axis of the spheres and seven different kinds of non-trivial stagnation points
of velocity are found in the steady flow frame. The entangled topological structure of the
velocity field is resolved by visualization of closed streamlines and streamlines emanating

from stagnation points.
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1. Introduction

The thermal convection between two concentric rotating spheres as well as in a single
rotating sphere has long been studied by many researchers as one of the simplest models
which represent the dynamics of melted material in the core of celestial bodies, such as the
sun and the earth. The structure of it is expected to play a key role for understanding of the
physics of such problems as pattern formation of core and its secular variation, magnetic
field generation, etc. [1-3]. Owing to interactions between two different spatial symmetries
involved, that is, the spherical symmetry of the boundarics and the axisymmetry of rotation
of the shell, the flow field can be intrinsically three-dimensional and complicated entangled
streamlines can be generated. In course of study of a thermally driven MHD dymanc in a
rotating spherical shell we have reached a conclusion that there may exist a close relation
between the flow structure of the thermal convection and the mechanism of magnetic field
generation [4]. This has motivated us to study the detailed structure of thermal convection
as described in this paper.

The structure of thermal convection in a rotating spherical shell or a sphere has been
investigated so far mostly by linear theories. Among others, Roberts [5] and Busse [6]
showed by a linear stability analysis that Taylor-Proudman vortex columns develop as the
most unstable mode which are arranged in parallel with the rotation axis in the middle
of the equatorial plane. Later, the structure and the dynamics of these vortex columns,
especially asymmetric shape of their cross-section was investigated in detail numerically as
well as theoretically [7-10]. To the authors’ knowledge, although there are quite a few direct
numerical simulations of the full dynamical system [11, 12], the detailed flow structure of
the thermal convection, which may play a dynamically important role, has not been well
understood.

In this paper we describe the three-dimensional flow structure of a thermal convection.
The fundamental equations of the current thermal problem and the numerical method
to be employed are briefly explained in §2. The numerical results are presented in §3.
After discussing the way of approach to a final steady state in §3.1, we describe the
structure of the flow filed in detail; the structure of high-vorticity regions, especially the

Taylor-Proudman columns in §3.2, two kinds of closed streamlines in §3.3, the locations of
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stagnation points in §3.4 and the local structure of streamlines near each stagnation point
as well as the global flow structure in the whole spherical shell in §3.5. Finally. section 4

is devoted for concluding remarks.

2. Formulations

We consider the motion of a Boussinesq fluid of density p in two concentric spheres of
radii r; and ro (= r; 4 d) rotating with a common constant angular velocity £2 (see figure
1). The temperature is kept uniform both on the inner and the outer spheres and constant
at all the time. Tt is hotter on the inner sphere than on the outer by AT, which drives a
thermal convection. There is gravity force g = —p~7 which is pointed to the center, where
~ is a constant and 7 is a position vector relative to the center of the spheres. Then. a set
of equations describing the time-evolution of the flow field are written, in a frame rotating

with the spheres, as

%—?z—VP-{—aqur-i-ux(qu)—%Zux 7+ vV, (2.1)
arT

5 =~V (@T) + kV3T, (2.2)

V-u=0, (2.3)

where u is the velocity, P = p/p + 3|u|? + 1|r> — 1|2 x 7}® is a modified pressure, o
is the thermal expansion coefficient, T is the temperature, v is the kinematic viscosity of
fluid, and « is the thermal diffusivity. The boundary conditions for the velocity and the

temperature are given by
u=0, T=AT at r=ry (2.4)

a=0 T=0 at r=r7rs (2.5)

In order to non-dimensionalize these equations we measure length by thickness d of
the spherical shell, time by thermal diffusion time d*/x, and temperature by temperature
difference AT between the two spheres, and introduce non-dimensional variables (denoted

by asterisk) as

[S<]
e

d
r=7rd, t=t"—, u=u"
K

T=T'AT, P=P"—. (2.6)



By substituting (2.6) into (2.1)—(2.3), we obtain, after omitting the asterisks,

7 1
3—;‘ = VP4 P.R,Tr+ux (V xu)+ P.Tiux 3+ PV, (2.7)
a7
— = -V (uT)+ V3T, (2.8)
ot
V-u=0, (2.9)
where
v
P = — (2.10)
K
is the Prandtl number,
vy AT d*
R, =222 (2.11)
KV
is the Rayleigh number,
202142\ °

is the Taylor number, and 2 = £2/|£2| is the unit vector along the rotation axis. Boundary

conditions (2.4} and {2.5) are respectively rewritten as
w=0, T=1 at r=n/{1-1n), (2.13)
w=o0, T=0 at r=1/(1-n), (2.14)

where 7 = r; /r2 is the radius ratio of the two spheres.
Equations {2.7)—(2.9) are solved numerically by the pseudo-spectral method. The

solenoidal velocity field is expressed in terms of toroidal and poloidal vector fields as
w(r, D0 ) = V X V x (V{1 8,0,00#) + ¥ x (W(r,9,0,t)7) (2.15)

{see Appendix I in [1]). Both the defining scalars of the poloidal and the toroidal fields

are respectively expanded in spherical harmonics ¥},,{?, ¢) in the #- and the -directions

as
L {
(T 7, 3 Py t = Z Z Im(r t lm(i?'. (P)', (2'16)
i=0 m=-—
L !
W(rd,0,t) =3 > Winlr,t) Vi (9, 0). (2.17)
=0 m=-1
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Each radial function in the above expression is further expanded in terms of Chebyshev
polynomials T,,{z} (0 < n < N), where z = (2r—ry — r2)/{r. — 7). A similar expansion is
employed for temperature as well. The expanded modes in the present numerical simulation
are truncated at L = 31 and ¥V = 32. Aliasing errors which appear in the calculation of the
non-linear terms are not removed. (We have checked that a dealiased calculation under the
same condition as the aliased one showed no substantial difference in the flow structure.)
Time-integration is performed by the use of the second-order Adams-Bashforth scheme
for the non-linear terms and the second-order Crank-Nicolson scheme for the viscous term
with time increment At = 0.01. The Chebyshev-tau method is employed in order to satisfy
continuity equation (2.9} and boundary conditions (2.13) and (2.14) accurately.

Equations (2.7)—(2.9) under boundary conditions (2.13) and (2.14) permit a station-
ary thérmal conduction state,

7 1—(1-nkr
(1—n)? r '

U = o, T = (2.18)

A linear stability analysis shows that this state is stable if the Rayleigh number is smaller
than a critical value which varies depending on T,, P, and n. In the present simulation
we set parameters as R, = 3200, T, = 8000, P, = 1 and n = 0.5 for which thermal
conduction state (2.18) is linearly unstable. The initial velocity and the temperature fields
are generated by uniform random small perturbations superimposed on stationary state

(2.18).

3. Results
3.1. Initial growth and equilibrium state

The growth in magnitude of the flow field is monitored in the development of total
kinetic energy £(t) = fff %]ui2d3a:, the integration being carried out over the whole spher-
ical shell, which is shown against time ¢ in figures 2. The initial stage is enlarged in figure
2(b}. It begins to increase exponentially in time, then looks to saturate once by t = 0.9,
However, it mcreases slightly around ¢t = 1.6, and thereafter stays constant. The total ki-
netic energy at the final computation time is about 550, thus the root-mean-square velocity

is 6.1. The slight change of energy around ¢ = 1.6 is closely related with a competition in
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magnitude of the largest two Fourier modes as discussed below.
The orthogonal properties of the toroidal and the poloidal vector fields defined by
{2.16) and (2.17) allow us to express the kinetic energy as a sum of energies of the individual

modes, i.e.
L1

EH)=>_ Y Epm, (3.1)

=0 m=-1
where E)}.,,’s are defined by

2

Eyn = Pi+1)° frz ( flm(r))dd_r_i_ l(l-zl-l) /” (dv}m(r))ddr

2 P2 dr

i

4 @ f: (Wi (7)) dr. (3.2)

The longitudinal pattern of the convection is characterized by the azimuthal modal energy

L
Z EZO (m = 0)
Em(t) = ¢ 150 (3.3)

L
> (Bim +Ei_m) (m>0).

=0

We plot in figures 3 the time-development of modal energies of the first 12 azimuthal
wavenumbers as well as some of higher harmonics of wavenumber 5. The initial stage
is enlarged in figure 3(b) for the largest three modes. In the mnitial stage all the modal
energies grow exponentially in time. Mode 6 is largest in amplitude until ¢ =~ 1.6 when
mode 5 overtakes it.

All of these modal energies saturate by ¢ = 0.9, and remain almost constant for a
while. Around t = 1.6, however, they exhibit a rapid change in amplitude, and the largest
amplitude mode is exchanged from m = 6 to 5. This corresponds to a slight change in the
kinetic energy around t = 1.6. This exchange of the largest amplitude mode also manifests
itself as the change in the number of vortex columns (see figures 6 below).

After this exchange the bchavior in time-development of modal energies is classified
into three groups. The first one is those modes of azimuthal wavenumbers of multiples

of 5, which eventually approach to some nonzero finite values. The second is those of
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wavenumbers of multiples of 5 £1. which decay exponentially in time with decay rate of
about —0.027. The third is those of wavenumbers of multiples of 5 +£2. which decay more
rapidly with decay rate of about —0.055. Therefore the flow approaches to a five-fold
rotationally symmetric state as time progresses. In passing, the above decay rates of the
decaying modes should represent those for small disturbances to the final steady state.
The sudden change of the Fourier amplitudes may be understood as follows. There
may be at least two equilibrium states, one of which is unstable and the other is stable.
At first. the flow field happens to approach to an unstable equilibrium state along a stable
manifold. But because it is unstable, the flow field can not reach this equilibrium state.
Even if it stays around the equilibrium state for some while, it eventually escapes from it

along an unstable manifold and is captured by a stable equilibrium state.

3.2 Taylor-Proudman vortex columns

According to the linear stability analysis of stationary thermal conduction state (2.18)
in a rotating sphere, a number of pairs of vortex columns with opposite rotation are
generated at some finite distance apart from the axis of rotation as marginally unstable

modes [6]. This marginal field is symmetric with respect to the equatorial plane, i.e.

( ur('r,ﬁ,go._t) = ﬂr(rs T 19'.‘3'9'- t)?

ug{r, 9,0, t) = —ug(r.m — 9, ¢, t),
(3.4)
ue{r, 9, 0.t) = u (r,7 — 3, 0.1),

L T(r.d,0.t) =T(r,—9, ¢, t).

As shown in figure 4(a), the flow field developed in the present non-linear system has the
same symmetry as (3.4) do, where we plot iso-surfaces of vorticity magnitude |w| = 52
in region 1.15 r; < r < 0.91 ry at ¢ = 25. Here, high-vorticity regions near the spherical
surfaces are omitted for better representation (see below). The black surfaces represent
the cyclones (which rotate in the same direction as the spheres), while the gray the anti-
cyclones. Ten vortex columns with different senses of rotation are generated alternatively
along the axis of rotation lying around the middle in the equatorial plane of the spherical

shell. Notice that the anti-cyclones are fatter than the cyclones, implying that vorticity in
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the former is larger than in the latter.

In figure 4(b), we plot the contour of the z-component of vorticity w, = 0,£52 on
the equatorial plane at ¢t = 25. The dark and light regions denote positive and negative
vorticity, respectively. Vorticity magnitude takes a local maximum at the center of each
vortex column. The maximum of vorticity magnitude in the anti-cyclones is about 1.7
times larger than that in the cyclones. The core size of the anti-cyclones is also larger
than in the cyclones. This difference in intensity is consistent with vortex stretching and
shrinking which are taking place in the respective vortex columns (see figure 10(b) in §3.5}.
There exist stronger vorticity regions on the inner and the outer spheres. Actually, the
vorticity takes a minimum (or maximum) value —148 (or 156) at the centers of negative (or
positive) vorticity boundary layers on the inner sphere. If we drew iso-surfaces of vorticity
magnitude over all the spherical shell in figure 4(a), the Taylor-Proudman vortex columns
would have been hided by them. This is the reason why we omitted these strong vorticity
boundary layers near the inner and the outer spheres in figure 4(a).

Iso-surfaces of vorticity magnitude jw| = 52 near the inner sphere r; < r < 1.15ry, and
the outer sphere 0.91r5 < r < ry at t = 25 are drawn in figures 5(a) and (b), respectively.
The black surfaces represent the positive vorticity (w, > 0), while the gray the negative
(ws < 0). These boundary layer vorticities are generated by swirling motion induced by
nearby Taylor-Proudman vortex columns. Thickness of inner and outer boundary layers,
which is estimated by the maximum distance of the nearest null-point of w. = 0 from each
boundary on the equatorial plane (see figure 4(b)), is about 0.15(r2 — r;) and 0.18(r; — 1),
respectively. ' '

These vortex columns move westward as a whole. The variation in the longitude-time
plane of the z-component of vorticity on the middle circle on the equatorial plane is shown
in figures 6. The black regions denote the positive vorticity (anti-cyclones} and the white
the negative (cyclones). The initial stage is enlarged in figure 6(b). Six pairs of vortex
columns of opposite sense of rotation are generated in the initial period and established by
t = 0.9. However, two neighboriﬁg cyclones merge into one around ¢ = 1.6, and later the
resulting five pairs move steadily westward without changing their relative positions with

angular velocity £2,- of about ~1.24 (which is much smaller than the angular velocity of the
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spherical shell 2 = 44.7). This disappearance of onc pair of vortex columns around # = 1.6
corresponds to the exchange of the largest amplitude mode from m = 6 to 5 observed in

figures 3.

3.3. Closed Streamlines

As seen in the preceding section the vortex columns retrograde steadily with angular
velocity —1.24 so that the flow field is seen to be steady in a frame rotating with this angular
velocity. Notice that the velocity on the outer and the inner spheres move eastward in this
moving frame.

Since the flow field is symmetric with respect to the equatorial plane, the velocity
field is two-dimensional in this plane, namely, there is no flow across it. In figure 7 drawn
are streamlines on the equatorial plane. The flow direction is indicated by arrows. By
comparing with the contours of w. (figure 4(b)). we find that all the streamlines connect
the centers of the ncarest neighboring cyclones and anti-cyclones. A streamline which
spirals out of the center of a cyclone anti-clockwise spirals into that of the next anti-
cyclones of either side clockwise.

Off the equatorial plane, on the other hand, the flow field is more complicated be-
cause of intrinsic three-dimensional character of the flow configuration. It may be a usual
practice to draw streamlines for understanding of the flow structure. However, almost all
streamlines are too much complicated to represent the flow structure neatly. They are
entangled chaotically by themselves and/or with each other. Normally it is hard to expect
the existence of any nontrivial simple streamlines in this kind of system. Nevertheless
we have tried to draw many streamlines to get some idea of the flow structure. Surpris-
ingly enough, we have found two kinds of nontrivial simple closed streamlines in either
of each hemisphere. These closed streamlines were found while the velocity vector field

is traced numerically starting from some arbitrary positions.i' These closed streamlines

T Streamlines were traced by integrating the velocity vector field numerically with a
4-th order Runge-Kutta method. The starting points were chosen arbitrary. Most of
the streamlines turn eastward around the rotation axis. After many turns (typically a

few hundreds times), almost all streamlines are attracted to a closed streamline at lower
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in the northern hemisphere are shown in figures 8 which are viewed from threc different
angles. The flow direction is indicated by arrows. They close themselves after a single turn
eastwardly around the rotation axis of the spherical shell. They are five-fold symmetric
around the rotation axis. As is recognized in (a) and (b), the one which is located at lower
latitude runs through the anti-cyclones: it comes into an anti-cyclone from the inner-sphere
side, spirals up around the central axis of the anti-cyclone, ‘esca,pes out of the top, then
makes a turn to the east and goes around the outer-sphere side of the next eastern cyclone
while approaching the equatorial plane and comes to the next eastern anti-cyclone, which
completes a fundamental cycle of 1/5 of the period of the closed streamline. The other
closed streamline which is located at higher latitude (cf. (a) and (c)) runs toward higher
latitude along the inner sphere near a line which connects a cyclone and the pole, makes
a turn upward at some higher latitude near the pole, then goes down along the outer
sphere near the middle of the tops of the neighboring cyclone and anti-cyclone, and makes
another turn to tlhe cast toward the middle of the next eastern cyclone and the pole. This
completes a fundamental cycle of the periodic pattern of the five-fold symmetric closed
streamline. The mean x_relocity along the closed streamline at higher latitude is 8.2 which
is f;'mster than the root-mean-square velocity 6.1 over the whole shell, while that along the
lower-latitude closed streamline is 4.0 which is slower. These two closed streamlines will

be used as references in the following discussion of the flow pattern.

3.4. Stagnation Points

Another key element which characterizes the flow structure is a stagnation point (if
any) and flow pattern around it [13]. As depicted in figures 9 from three different angles,

we found, in the present flow, 50 stagnation points except for 4 trivial ones which lie at

latitude. Also tried was a backward integration, that is, the streamlines were traced for a
velocity vector field with reversed direction. Then, almost all streamlines were a.ttract_ed
to another closed streamline. This surprising finding of attracting closed streamlines in
a solenoidal vector field may be attributed to possible systematic error inherent in the
numerical scheme employed because there cannot exist any closed attractors in a solenoidal

field.
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the cross-points of the rotation axis with the outer and the inner spheres. There are ten
stagnation points on the equatorial plane and fifteen in cach hemisphere. Since the flow
ficld is five-fold symmetric around the rotation axis. there are five equivalent stagnation
peints off the rotation axis. These stagnation points are classified into soven groups. A
number attached to each stagnation point in figure 9(a) denotes different groups. Thosc
stagnation points labeled with numbers 47 are located on the equatorial plane. The ones
with numbers 4 and 5 are respectively at the center of cyclones and anti-cyclones. while
those with numbers 6 and 7 are respectively in the vicinity of the inner and the outer
spheres. The other three kinds of stagnation points are located somewhat close to the
closed streamlines at higher latitude (cf. figures 8 and 9). In the following a stagnation

point with number # will be cited as SP#.

3.5. Flow Structure

Now we scrutinize the flow structure of the current thermal convection velocity field.
Since the flow field is five-fold symmetric around the rotation axis, it is sufficient to analyze
only a fundamental region of it. In figures 10, we draw several typical streamlines such
as two closed streamlines and streamlines connecting each stagnation point in a piece of
the northern hemisphere of longitude width f’g?r which contains one anti-cyclone and two

cyclones. The flow direction is shown with arrows.

The topological structure of velocity field in the vicinity of each stagnation point is
characterized by a set of three eigen-values and associated left-eigen-vectors of velocity
gradient tensor V. Since this tensor of rank three is real, two cases are possible, namely,
either all of the three eigen-values are real or one is real and the other two are conjugate
complex. The sum of the real parts of the three eigen-values vanishes because the velocity
field is solenoidal. According to the sign of the real part of an eigen-value a streamline
either goes out of or comes into a stagnation point along the direction of the eigen-vector
associated with the eigen-value. If an eigen-value is complex, the streamline makes a spiral
curve on a plane spanned by the real and the imaginary parts of the associated complex

eigen-vector.

Eigen-values and associated left-eigen-vectors of the velocity-gradient tensor numeri-
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cally obtained at seven stagnation points are tabulated in Table I. An eigen-value is given
at the top in each entry. Triplets of numbers at the bottom denote the direction of the
associated eigen-vectors in the spherical coordinate (.9, ¢). For a real eigen-value they
represent bi-directional unit vectors parallel to the direction of the associated eigen-vector,
while for a complex eigen-value a unit rotation vector normal to a plane spanned by the
real and the imaginary parts of the associated complex eigen-vector and pointed in the
direction of translation of a right-handed screw when it is turned in the direction given by
the eigen-value. Comments on these eigen-values and eigen-vectors will be made below on
discussion of the properties of streamlines connecting cach stagnation point.

Although there are three eigen-streamlines connecting each stagnation point, we can,
in general, trace numerically only two of them that have either the maximum or the
minimum eigen-values. The former (an outgoing streamline) is traced by integrating the
velocity field numerically starting from a point in the very vicinity of a stagnation point,
while the latter (an incoming streamline) by integrating the velocity field with reversed
sign. Therefore we can draw in general four streamlines from each stagnation point, two
of which emanate from the point and the other two approach to it. The streamlines shown
in figures 10(b-d} are obtained starting from points apart from each stagnation point by
10~* radians in the longitude.

In figure 10(a) shown are parts of closed streamlines discussed in §3.3. The one at
higher latitude turns around an SP2 (see also figure 8); it flows toward the rotation axis
along the inner sphere, rises up to the outer sphere near the pole, and turn toward the
lower latitude along the outer sphere, then makes another turn toward the east somewhere
near the top of a cyclone to come close to the next SP2. The closed streamline at lower
latitude,' on the other hand, turns outside a cyclone, enters in the neighboring anti-cyclone
from the i'nner-sphere side, spirals up once, then escapes out of it from the top, and makes
a turn around the next neighboring cyclone while going down to the equator.

Streamlines which pass through four sta.gna.tioﬁ points (SP4 — SP7) are shown in
figure 10(b). Since the velocity field is symmetric with respect to the equatorial plane,
there is no flow across it. Therefore the velocity field is purely two-dimensional on this

plane though it is not divergehce-free. The flow spirals out of an SP4 at the center of
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a cyclone anti-clockwise, while it spirals into an SP5 at the center of an anti-cyclone
clockwise. The other two stagnation points, SP6 and SP7. are connected to the above two
and constitute separatrices of streamlines (see figure 7 for streamlines on the equatorial
plane). There are streamlines coming straight down to an SP4 and going up from an SP5 in
the direction perpendicular to the equatorial plane. Notice that two equivalent streamlines
are drawn off the equatorial plane which originate from two SP4’s in figure 10(b). (All of
these behaviors of the streamlines can be understood well by referring to the eigen-values
and the eigen-vectors shown in Table 1.} It is seen that they are traced back around an
SP2, where they turn around it in a similar way as the closed streamline at higher latitude
does (see figure 8(c)).

Streamlines which pass through SP1’s are shown in figure 10(c), where again two equiv-
alent lines are drawn starting from two equivalent SP1’s. Both of the incoming streamlines
arrive from the west after several turns around an SP2. The outgoing streamlines, on the
other hand, run around somewhat parallel to a meridional plane. The one which runs
down to the lower latitude comes to the equatorial plane along a cyclone, makes a turn
near the plane toward the neighboring anti-cyclone. enters into it from the inner-sphere
side, spirals up while shrinking its radius, and escapes out of it from the top, then makes
another turn around the next cyclone just like as the outgoing streamline from an SP5
{see figure 10(b)).

Streamlines connecting either an SP2 or an SP3 are drawn together in figure 10(d).
Around the SP2 the flow comes in roughly along a line connecting SP2 and SP3 and spirals
out perpendicularly. On the contrary, around the SP3 the flow goes out along the above
line and spirals in perpendicularly. Those streamlines that spiral out of the SP2 will follow
a spiral-in orbit of the SP3 for a while but eventually run away eastward toward the next
cyclone. The streamiine spiraling in the SP3 looks to be more or less similar to the closed
streamline at lower attitude {cf. figure 10{a)). It is remarkable that many streamlines
tend to rotate roughly along meridional planes around three stagnation points SP1, SP2
and SP3. The positiveness of the longitudinal component of the rotation vectors for them
shown in Table I indicates actually this direction of swirling motions.

By synthesizing all the typical streamlines shown in figures 10, we may understand
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(at least a part of) the convoluted three-dimensional structure of the velocity field. In
figure 11(a) drawn are some of the streamlines piked up from figures 10. Figure 11(b) is an
illustration cartoon to give a simple idea on the flow structure which may be summarized
as follows.

On the equatorial plane the flow spirals in the anti-cyclones clockwise, and spirals
out of the cyclones anti-clockwise. The flow spirals up in an anti-cyclone, while it spirals
down in a cyclone. Streamlines are skewed like a left-handed screw in the both vortex
columns {which is opposite in the southern hemisphere). There are two characteristic
global streams roughly along the two closed streamlines discussed in §3.3. At relatively
low latitude the flow runs eastward as a whole, while meandering between the two kinds of
vortex columns. Characteristic at higher latitude is the swirling flows around stagnation
points SP1--SP3 between the shoulders of the cyclones and the pole in addition to the

eastward global motion.

4. Concluding remarks

The flow structure of a thermal convection in a rotating spherical shell was analyzed in
detail. A three-dimensional convoluted structure of the velocity field was clarified by visu-
alization with several typical streamlines such as global closed streamlines and streamlines
connecting with stagnation points.

Tn our contemporary simulation study of a thermally driven MHD dynamo in a rotat-
ing spherical shell the topological structure of the streamlines as well as the characteristics
of the rate-of-strain and the velocity-gradient tensors have been found to have a close
relation with the spatial structure of strong magnetic field {[4]. The present analysis is
therefore expected to be useful for understanding of the mechanism of magnetic field gen-

eration. This work will be published elsewhere soon.
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Figure Caption

Figure 1. Configuration of the system
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Figure 2. Time-development of total kinetic energy £(t). The initial stage of (a) is enlarged
in (b).

Figure 3. Time-development of azimuthal modal energies £, (). A number attached to
each curve denotes azimuthal wavenumber m. The initial stage of (a) is enlarged
in (b) for the three largest modal encrgies.

Figures 4. (a) Iso-surface of vorticity magnitude |w| = 52 in region 1.157 < 7 < 0.917;
at + = 25. The black and gray surfaces represent the cyclones and the anti-
cyclones, respectively. (b) Contour of the z-component of vorticity w, = 0, £52
on the equatorial plane. The dark regions denote the positive vorticity, while
the light regions the negative.

Figure 5. Iso-surface of vorticity magnitude |w| = 52 near (a) the inner sphere ry < r <
1.1571 and (b) the outer sphere 0.91ry < r < ry at t = 25. The black surfaces
represent the positive vorticity (w, > 0), while the gray the negative {w, < 0).

Figure 6. Time-variation of the z-component of vorticity on the middle circle in the
equatorial plane. It is positive in the black regions and negative in the white.
The initial stage of (a) is enlarged in (b).

Figure 7. Streamlines on the equatorial plane at t = 25. Arrows denote the flow direction.

Figures 8. (a) Two closed streamlines viewed from the north pole, (b) the lower-latitude
streamlines and {c) the higher-latitude streamlines. Arrows denote the flow
direction. £ = 25.

Figures 9. Stagnation points viewed from (a} the north pole, (b) the equatorial plane and

“{c) an oblique angle. A number attached to each point indicates seven different
kinds of points with five equivalence each. ¢ = 25.

Figures 10. (a) Two closed streamlines, and streamlines which pass through (b) SP4—SP7,
(c) SP1 and (d) SP2 and SP3. Arrows denote the flow direction. ¢ = 25.

Figure 11. Topology of velocity field. {a) Two closed streamlines and streamlines passing
through SP1, SP3, SP4, SP6 and SP7 are drawn. {b) Cartoon illustrating the

structure of convoluted streamlines.
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SP1 5.32 —2.66 + 3.64 i ~2.66—3.64 i
(#£0.27,4£0.80. F0.54) | {—0.44.-0.37,0.82) | (~0.44. —0.37,0.82)
apo 1.19 4 2.21 i 1.19—-2.211 —2.38
(0.56, 0.61, 0.56) {0.56, 0.61. 0.56) (£0.59, F0.08, £0.81)
Sp3 3.18 —1.59 4 2.27 i ~1.59 — 2.27 i
(£0.07, £0.59. £0.80) | (—0.35,0.73, 0.58) (=0.35,0.73, 0.58)
Sp4 1.63 +8.33 1 1.63 — 8.33 i —3.26
(0.00, —1.00, 0.00) (0.00. —1.00, 0.00) (0.00, £1.00, 0.00)
Sps 2.26 —1.13 + 14.00 i —1.13 — 14.00 i
(0.00, £1.00, 0.00) (0.00.1.00, 0.00) (0.00, 1.00, 0.00)
SP6 1.05 0.11 —1.16
(F0.03, 0.00, +1.00) (0.00, £1.00, 0.00) (+0.03, 0.00, 1.00)
sp7 0.98 0.52 —1.50
(£0.05, 0.00, %1.00) (0.00, £1.00, 0.00) (0.03, 0.00, £1.00)

Table I. Eigen-values and associated left-eigen-vectors of the velocity-gradient tensor at
stagnation points. There are three eigen-values, either real or complex, at each stagnation
point. Figures at the top in each entry denote eigen-values. Triplets of numbers in brackets
indicate the direction of the associated eigen-vectors in the spherical polar coordinate
{r.d,¢). For a real eigen-value they represent bi-directional unit vectors parallel to the
assoclated eigen-vectors, whereas for a complex eigen-value a unit vector normal to a plane
spanned by the real and the imaginary parts of the associated eigen-vector and pointed in
the direction in which a right-handed screw translates when it is turned in the direction

given by the eigen-value.
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