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abstract

We present a numerical scheme to apply to wide variety of partial differential
equations (PDEs) in space and time. The scheme is based on high accurate
interpolation of the profile for independent variables over a local area and repetitive
differential operations by regarding PDEs as differential operators. We demonstrate
that the scheme is applicable to all of hyperbolic, ellipsoidal and parabolic equations.
The equations are solved in terms of the primitive independent variables, so that the
scheme has flexibility for various type of equation including source terms. We find that
the conservation holds accurate because of the high order scheme when we use a
Hermite interpolation. The interface is found to be sharply described by adding an
artificial viscosity term.

keywords : Partial Differential Equation, Hermite Interpolation, Non-conservative

form, Numerical Scheme

1. Introduction

Most problems appearing in science and enginecring are modeled by partial
differential equations (PDEs) in space and time. The motivation to start this study was
to construct an accurate approximation for local domain area by using the governing
PDEs as efficiently as possible. We are able to make use of the equations derived by
differentiating the given equation once or more. Since the domains are connected each
other, we have a discretization scheme for initial boundary problems. When we have
high accurate approximation profiles, we expect that an universal scheme will be
obtained. We construct a high accurate interpolation on the discrete space to an
approximate sotution profile. The scheme presented in this paper consists of spatial



interpolation and multiple differential operations, and we call this scheme IDO
(Interpolated Differential Operator).

For hyperbolic equations, many sophisticated schemes have been presented, for
example TVD[1,2,3], ENO[4,5,6,7], PPM][8,9] and so on, and these obtain successfully
good results for compressible fluid problems. These schemes solve the hyperbolic
equations in a conservative form using flux correction. In this paper, we do not
transform any independent variables into those taking account for the conservation or
characteristics of the given equation. We take account for only flow direction. The given
equations are solved for the primitive variables, so that for hyperbolic equations, the
scheme becomes a non-conservative scheme. Although the scheme has a disadvantage
for conservation, it makes possible to apply more flexibly to variation of PDEs, i.c.,
multicomponent flow[10] and including source terms. Recently CIP (Cubic Interpolated
Propagation) scheme[11,12] has been presented, and applied to many
problems[13,14,15]. In the CIP scheme, the spatial profile is described by a third order
Hermite interpolation in the advection phase and updated by shifting the profile
according to the local analytic solution. The CIP scheme for non-conservative form has
been developed[16,17], and have results comparable with the best of conservative
schemes.

A similar scheme DA-CIP with IDO has been presented by Utsumi[18]. The
scheme applies a third order Hermite interpolation to the spatial derivative of the given
equation. The time integration is split into two stages; fourth order Runge-Kutta
integration and CIP advection. It is shown that hyperbolic equations are solved
successfully. The Kond-P scheme[19] also uses Hermite interpolation to solve diffusion
equation. In this paper, the IDO scheme also uses a Hermite interpolation, however,
different kinds of interpolations are able to used if only they describe the higher
derivatives enough accurately. A rational function[20] or hyper function are possible to
be candidates.

This paper is organized as follows. In the next section, the basic concept of IDO
scheme is illustrated in detail. For initial value problems, time-integration is also
described. In section 3, the relation between CIP and IDO is discussed. Section 4
examines the accuracy of the IDO scheme by solving mass continuity equation and
Poisson equation. In section 5, we apply IDO to various equations and the
computational results are presented. In the final section, we give the conclusion and the
subjects to study in the next paper.

2. Basic Concept



In this paper, we present a numerical scheme (Interpolated Differential Operator)
IDO to solve hyperbolic, ellipsoidal and parabolic differential equations. The IDO
scheme 15 constructed on the basis of discrete space (grid points) such as FDM, FEM
and so on. The independent variables defined at the grid have a spatial profiles
spreading over the local area which covers several grid points. The profile should
approximate the solution of the governing PDE within the area. The IDO scheme
requires a spatial interpolation enough accurate to describe high order spatial
derivatives.

The given equations are solved in the original differential form described by the
primitive independent variables. We regard the derivatives appearing in the equation as
differential operators, and we can use the equations derived by temporal and spatial
differentiation. We consider the following equation,

fi=31, (1)
where the subscripts ¢ and x denote time and spatial derivative operation, respectively.
The symbol 3, stands for a spatial differential operator. By taking time derivative of
eq.(1), we have a series of the equations f, = 3,3 f ,f,=3,3,3,f, ---,and so
on. Higher order time derivatives are also expressed by the spatial derivatives by
successive operation of 3J,. In the IDO scheme, the term J_f is not replaced by a

o=

finite difference expression, but J_ operates the interpolation proﬁle F(x).

Most schemes for hyperbolic equation solve conservative form, however, the IDO
solves it in the primitive form without any transformations of independent variables.
Non-conservative form is applicable more flexibly to various kinds of differential

equations with source terms.

2.1 Interpolation

In the IDO scheme, an independent variable has a spatial profile described by
spatial interpolation covering several grid points. Various interpolations are possible if
only they can describe spatial derivatives accurately, and in this paper we use a Hermite
interpolation, which is determined by both the values and the derivatives. The Hermite
interpolation has an enough accuracy, less computation and local interpolation area
using neighboring grid information. We use two kinds of interpolation whose
interpolated domain area are different.

Now we consider the i-th grid point and the interpolation function in one-
dimension when the independent variables f and f, have been given at all the grid
points. In general, numerical information propagates in all the directions, so that the
interpolation has to cover the area from i—1 to i+1. The Hermite interpolation is



obtained by the four matching conditions of F(-Ax)=f,,, F(-Ax)=/f .,
F(Ax)= f,,,, and F (Ax)= f, ... The coefficients of the fifth-order polynomial are

determined as follows,

F(x)=ax’+bx*+cx’+dx’+f, r.x +f, )
0. =~ = i) ac Unia * 4 * ) @)
b==—$(fm-2f+f-,)+m(ﬁ,-+.—f,.--i): @2
‘. Ax, s U= fi)- 2(f,  +8L % fuia) 2-3)
d, =25 =21+ fio) =i Grin = Fos) 24)

The higher derivatives more than f are obtamed by differentiating the interpolation
function with respect to x. At the i-th grid point, we have f, =F_(0)=2d,
S = F(0)=6c,, frw=Fo(0)=24b, and f_. . =120a,, and higher derivatives are
Zer0.

Another interpolation is used specially for advection term uf, and their derived
terms; for example, £, +uf, = 0. We call this upwind interpolation. When the advection
velocity » is positive, the interpolation covers the area from i-1 to i-th grid. The
interpolation function has the following third-order polynomial

F(x)=ax’+bx*+ [, x+ f, (3)
where the coefficients du and b, are determined by the matching conditions of
F(-ax)=f,,, F.(-Ax)= f, ., so that we have

o= s +§,,-_,) J=ta) (Zﬁ,;+fx,:-1)_3(f,.—jzi_,)' 3-1)
Ax Ax Ax Ax
In the case of u <0, the interpolation covers the area from i to i+1-th grid, and the
coefficients are derived by the condition of F(Ax) = f,,, F (Ax)=f, ,,, as follows,

(f:r: .fxr+l) (f;—f;q,]) (2-f;,i+-f:t,l'+1) (.f;_.f;H)
au = ) 3 Py bu = - 3 2 .
Ax Ax Ax Ax

The higher derivatives more than f, are obtained by taking derivative of the
interpolation function as f,_(0)= F,_(0)=2b, and f_, (0)=6a, at the i-th grid point,

and higher derivatives more than f__ are set to be zero.

(3-2)

In general, the derivative terms included in partial differential equations are
classified into advection term and non-advection term, and the two kinds of

interpolation are applied respectively.

2.2 Time advance

In the initial-value problem, time integration of the governing equation is done as



follows. We execute Taylor expansion for the independent variable with respect to time

f, and we have an explicit scheme for time advance

n+ n n nAtz n
=+ At S —=+ fa

e O(Art) 4)
Atz 3

f =L+ A+ S = e
where the superscripts n+1 and # mean the values of the time 7+ A¢ and ¢, respectively.

The series of time derivative of f"and f are replaced to the spatial derivative terms
by using the given equation. We can select the order of the Taylor expansion, however,
the order of spatial derivative is not able to exceed the order of the interpolated
polynomial function. Moreover, there is the upper limit of the time interval Az du to the
numerical stability. In this paper, we no not discuss it, and we use Af with which we
found that the scheme is stable. On the other hand, we expand with respect to time
¢ + At , we obtain the implicit formulation of time advance,

+O(Ar*) (5)

2 3
fn+I=fn +_ﬂn+lm_ﬁ:+l%+ﬁ;+!%+o(m4) (6)
n+ n n+ n+ Atz n+ Ats
L= L+ L= f =+ fid e+ Oar) (7)

The numerical technique to solve eq.(6) and (7) depend on the governing equation, as is
well known in the way of finite difference scheme.

3. Relation to the CIP scheme
Let consider the linear scalar equation f; = —uf, with a constant advection velocity

(u = const) as one of the simplest equations. The time derivatives £,", f,” and £, "for
eq(4)and f.", f,." and f, " foreq.(5)are required to update f"and f.” at the grid
point. Taking time-derivative and substituting f, = —uf,, we easily derive the series of
the following equations

Jo =W fur Ju =W s fy=~Us fru = fras (8)
and so on. All the time derivatives are replaced by the spatial derivatives. When we

apply the upwind interpolation (eq.(3)) to this problem, available highest derivative term
15 f.",because the interpolation function is third-order polynomial. The time accuracy

of the Taylor expansion becomes Ar’ order. Substituting eqs.(8) into eq.(4) and eq.(5),

we have
fn+] — fr.- “uAtf;" 4 (qut) fx: _ (H‘A;l) f;a
= " —unt £7 +(urt)’' b, — (uArY a, (9)

=F(—uAI) s



2
fr= g —un g+ g
= f7 —2uMth, + uAt) a, (10)
= F;(— u At) .
It is found that the above two expressions are just the same as the procedure of the
advection phase of CIP scheme[16,17], which makes use of the local analytic solution
of advection equation; f(¢+At, x)= f(t, x—uAx) and f (t+Af, x)= f (f, x —uAx) .
When we substitute egs.(8) into eq.(6) and (7), we have the implicit expression of the
CIP scheme[21]. It concludes that the IDO scheme involves the CIP advection as a
special case.

4. Accuracy of the IDO scheme
4.1 Mass Conservation
Since the TDO scheme becomes a non-conservative form in hyperbolic equation, it
is useful to check the accuracy of conservation. We solve the following mass continuity
equation,
p, +(pu) =0 (11)
o +(pu),, =0 (12)
with a steady and non-uniform velocity profile of =1+ asin(kxx) ,and a=025. The
higher derivatives are written down explicitly,
Py = —UP, — U0, = U +3un,p, + (1 +u,)p (13)
Pux = ~UPue = 2U Py — Ui,

2 2 7 (14)
=u'p,, +S5uup  +Hu, +uu_dp, +Cuu, +un,)p

Pu = ~UPy — UPy (15)

Pux = "UPwe — 2uxpux U Py (16)

where p,, = -(up)m and p,. =—(up,),, are used in eq.(14) and (16). We use the
upwind interpolation for p_ and p,,. ,and the analytic expression for the derivatives of
the velocity. Time integration of As* order is done by substituting egs.(11) ~ (16) into
eq.(8) with Af =04 . The results of total mass conservation Ipdx is shown in Fig.1 as
a function of the wave number &, of the velocity profile. The initial density has a square
profile; p, =1for 7<i<27 and p, =0 elsewhere. The total mass is integrated at the
time /=200, and the mesh interval is Ax=1. When we set p, =0 everywhere in the

initial condition, the mass conservation error increases o 107 at the first time step, and
it does not change by invisible rate. However, by setting o, =p,, =05 and

Pes = Paag =05 initially, we have the remarkably improved result. Figure 1 shows

the deviation rate of IDO scheme from the initial mass, compared with the result of the



finite difference method (FDM) using non-conservative form of third-order upwind
scheme as a reference. We use the following finite difference expression for third-order
upwind scheme;
pi™ =p] —(up, + 4,p] )AL +3(u°D,, +3ull,p, + 1P} +up] )AL,

where

P, =(2pj,, +3p] —6p], +p[,) / 6Ax,

5., = (~pls +160%, ~30p] —16pT, - pt )/ 124,

i, —( ul, +8ul, —8u +ul,)/12Ax°

4, =(—u, +16u, -30u’ —16u" —u",)/12Ax>.
It is found that the IDO scheme keeps quite good accuracy in spite of non-conservative
form in spite of large nonuniformity of the advection velocity. The result of the CIP
scheme stays in between IDO and FDM.

4.2 Spatial Accuracy

The spatial accuracy of the derivatives obtained by the interpolation can be
estimated from the expressions (2) and (3). The accuracy of the numerical solution from
the equation using the derivatives is not clear. Although there are many
publications{16,17] of CIP using upwind Hermite interpolation, the scheme with use of
the center Hermite interpolation has not been discussed enough[19]. In order to know
. the spatial accuracy of the numerical solution, we solve Poisson equation by IDO
scheme.

For the independent variable f, we solve the original Poisson equation f, =¢
using the center interpolation, where ¢ is the source term. For another independent
variable f, , we use the additional equation f, =¢, derived by taking derivative of the
original equation. The explicit descriptions of the discrete formula are written down as

follows,

fm 2f+f;1) (fxr-v-]—f:ti-l):q)" (17)
; , I8
2Axl(fm f)- 2f,_\xz(fw.+8ﬁ,+f,,.) 0, (18)

In the case of ¢ =sin(k,x) and & =4n for 0<x <1, we estimate the numerical error

F(

by the formula

sm(
Yo Y
i=1
where N is the total grid number and Ax=1/(N -1). The boundary conditions at x =0
(i=1)and x=1(i=N)are f,=f,=0and f,,=f,, =k, respectively. The circles

in Fig.2 show the average error o of the IDO scheme with the center interpolation as a



function of the mesh interval Ax, and it is found that the error has a scaling of Ax®. As
a reference, the results of the finite difference scheme (f,, -2f,+ f.,)/ Ax* = ¢, are
plotted by square dots, and it has Ax® scaling. It is understood that the IDO scheme has

the spatial accuracy of Ax*, since f_ derived from the center interpolation uses fine
values of the grid without £, ; according to egs.(17). In the expression of f_,, f; isnot

included.

5. Numerical Experiments
5.1 Nonlinear Scalar equation

As ekamples of nonlinear scalar equation, we examine the shock propagation for
Burgers equation and the traveling soliton waves described by the Korteweg-de Vries
(KdV) equation[22]. Both the equations has the same form u, + uu, — f(u)=0. Burgers
equation takes f(u)=«xu_ , where k is a diffusion coefficient. As is used the same
procedure in the previous section, we obtain the higher-order time derivatives by
differentiating the governing equation as follows,

u, =-uu +xu_, (19-1)
u, =—uu_ —u +xi,,, (19-1)
u, = —uu, —uu, +Ku,, (19-2)
U, =—u M, —uu, —uu, —u, +xu,, . (19-3)

Here, by using u,, = —uu, —3uu, +xi,, and u,, =-uu,, —duu,, —3u, +xi .,
the left-hand side terms of eq.(19-2) and (19-3) are fully replaced to spatial derivative
terms. We substitute the above equations into the explicit Taylor expansion to do time
evolution. We apply the upwind interpolation to the derivative terms derived from the
advection term, and the center interpolation to the diffusion term; the derivative terms
with the symbol ~ use the center interpolation, and the other term is the upwind
interpolation. In this section, we cut the Taylor expansion up to At’. In order to
describe the shock discontinuity, we have added the diffusion term with a small
diffusion coefficient, because the IDQO scheme is a non-conservative form. The initial
condition is the following; u=a for x <50 and u=5 for x>50 at the time =0.
According to the weak solution of the conservation law, the shock speed has (a+b5)/2.
The grid spacing isAx =1. When we set a=1, b=-05 and x =03, the computational
result at the time ¢ =200 is plotted by the dots in Fig.3. The dashed line indicates the
initial state. The shock speed appears to be 0.25 and has good agreement with the weak
solution. In the case of lager k (for example «k =1), the profile of the shock interface
becomes more diffusive, however, the shock speed is same as that of x =0.3.

In the case of KdV equation, we replace ki, term to — Bzﬁm and neglect the higher



derivatives more than u, for the upwind interpolation and more than u_.. for the
center interpolation. The procedure is almost same, and only the difference is to use
gm =(ty,, ~2u,, +u,, )/ Ax* instead of the center interpolation eq.(2-3) in the
following equation,

U, =—uu, ~ 89, (20)
to keep the stability and conservation for a special case. To check the scheme, we
compute the traveling soliton waves. The initial condition is the same as the
reference(23], and shown in Fig.4 by the dotted line; u, =coskx,, u,, =—ksinkx,,
k=m, Ax=20/N, x,=(i-1)Ax, N=192. The numerical result at t=1.6/n are
indicate by the dot dashed line and the result at t=3.6/n is shown by the solid line. It is
found that both the results agree well with the results of the reference[23].

5.2. Wave equation

The wave equation described by f, —c’f,, =0 includes both the right traveling
wave and left traveling wave. By factorization, we have (B, -0, )(5, + ca,) f=0 and
split this into f, +¢f, =g and g, —cg, =0, where the symbol ¢ is a positive constant.
These two equations are easily solved by many numerical schemes, however, it is
impossible to factorize multi-dimensional wave equation. The IDQ scheme can solve
the form f, —c’f, =0 as it is. According to the Taylor expansion forms (4) and (5),
odd order time derivatives are required additionally, so that we use £, and f,. as new

i
independent variables. Taking time derivative of egs.(4) and (5), we have the following

equations.
f”“=f"+f,"At+c2f”£+c2 . N?S+C4f;n ‘2’: +O(AF) (21-1)
Sr=fr+ fI M+ fr +cf mgt; + O(Ar) (21-2)
ﬁ"*‘:ﬁ"+c2f;m+c2f;—+c4f" £+c4 mg‘: +O(AL) (21-3)
Tt = I+ fr A+ S A —+c fmAés +ctfr —4+O(At) (21-4)

Deriving the eq.(21-1) - (21-4), we use the relations f, =c’f, and £, =c*f._,and
these spatial derivatives. Since we use the center interpolation of the fifth-order
polynomial, higher derivatives than f,_ are neglected and the time accuracy of this
scheme becomes Ar” at best. The initial value problem of the wave propagation is
examined by means of the above scheme. Figure 5 shows the computational result with
¢ =1 at t = 50, and the dashed lines indicate the initial profile of £ When we give the
initial time derivatives of f, =cf, and f, =cf,., a right traveling wave appears as is



shown in Fig.5(a). The initial conditions of f, =—¢f, and f, =-cf_ generate a left
traveling wave (Fig.5(c)). In the case of f, =0 and f, =0, the profile is split to two
waves traveling in both the right and the left directions with the half amplitude
(Fig.5(b)). The results are accurate enough for most initial profiles by computing eq.(21),
however, a small numerical oscillations appear for the profile with very steep gradients.
To smear the oscillation, we add the viscous term 02c¢’f_Af* in eq.(21-3) and
2¢°f,  At’ in eq.(21-4) and obtain less diffusive result as is seen in Fig.5.

5.3 1-D Riemann Problem
We consider the Riemann initial value problem for the Euler equations as a more
complicated hyperbolic equation. The employed equations for density, velocity and

internal energy are as follows,

p, =—(pu) , 22-1)
P

U, =—uy, ——, (22-2)
p
P

e =—ue ——u,. (22-3)
p

Using these equations, we can derive the set of higher time derivatives
{0 P s Purs Pos PrcsPrsrs Yy Myys Uy s Uy s Uy s Uy s €,5€,5,€,5€, €, 5 €, } » Whose derivations
are shown in APPENDIX. All the independent variables p, u, eand these derivatives
are defined at the same grid point, and we do not use any staggad grid systems. The
initial condition is p=1, P =1 for the leftmost 100 zones and p=0125, P =0.1 for the
other zones; =0 and y =14 in all zones and Ax=001. As is mentioned in the
section 4, an artificial viscosity ¢ have to be added to the pressure term in order to
describe the shock interface. We use a differential form of von Neumann-Richtmyer
type [24] g=apcu, (c,: sound speed) only for the compression region, where the
minimum of u_ ., u,and u, ., is negative and o is a constant of order of unity. The
computational profile of the density is given in Fig.6 by the open circles, and the solid
line is the analytic solution. At the contact discontinuity, a small undershoot and
overshoot appear as is same with CIP{16,17] and DA-CIP[18]. The sharpness of the
shock interface depends on the value o and the computation becomes unstable for o <
0.3

5.4 Two Interacting Blast Waves

For a complicated compressible fluid motion, we examine the test of two

interacting blast waves which was reviewed in detail in [5,6,7,9]. The initial condition

10



consists of three constant states of gamma-law gas with y =14; the density is
everywhere unity and the pressure is 1000 in the leftmost tenth, 100 in the rightmost,
and in between it is 0.01. Both the boundary are reflecting wall separated by a distance
of unity. Two strong shock waves develop and collide interacting with rarefaction
waves reflected at the boundary. We have used the same scheme as the case of the weak
shock problem. The computational mesh used in this calculation is 1/800 uniformly.
Figures 7(a) and (b) show the velocity and density profiles at time 1=0.016. The density
jump has good agreement with conservation law, however small overshoots appear at
the contact discontinuity sides. In Figs. 7(c) and (d), the profiles at time =0.038 are
shown. The collision of shock waves produces new contact discontinuities and the
density profile becomes quite complicate. The small overshoots which appear in
Fig.7(b) still exist at this time. The contours of the density in space-time is shown in
Fig.8. Sixty contours are drawn in equally spaced logp. Although we use only 800
meshes, the results in Fig.7 and Fig.8 have excellent agreement with the results of [9]
with use of 3096 meshes.

6. Conclusion

In this paper, we have presented IDO scheme to solve various kinds of partial
differential equations. The independent variables defined at the grid have a spatial
profile with the Hermite interpolation which is determined by the values and the first
spatial derivatives of the neighboring grids. We use two kinds of the interpolations
which have different interpolation areas, and the upwind interpolation is applied only to
the advection term. When we use the center interpolation of fifth polynomial to solve
Poisson equation, the numerical solution is found to be Ax* accuracy. We have applied
the IDO scheme to mass continuity equation, and the total mass conservation is kept
very well in spite of the non-conservative form. Applications of IDO scheme to
nonlinear scalar equation, wave equation and Riemann problem have gone
straightforward with the same procedure and excellent results have been obtained. It is
concluded that IDO scheme has flexible applicability for hyperbolic, ellipsoidal and
parabolic equations and easy to construct the numerical discretization scheme simply by
using the given equation.

In the next work, we intend to investigate the numercal stability of the IDO
scheme, however we have had stable solutions for all the numerical experiment
presented in this paper by choosing At.

We have discussed one-dimensional IDO scheme through whole this paper.
Because the scheme does not depend on the characteristics, there seems to be no

11



difficulty to extend TDO scheme to multi-dimensional version if only multi-dimensional
interpolation is obtained, and it will be also given in the next paper.

APPENDIX : IDO formulation for Euler equation

We derive the IDO scheme for one-dimensional Euler equation eq.(22) in the

explicit form.

P, = —Pi—PU, (A-1)
Pu = Pl — 20U, — Pl (A-2)
u, =-uu,—(p,+q,)/ p (A-3)
uy =~ — iy, — (P + 4/ PH(P+ PP (A-4)
e =-ue, —(p+qu,/p (A-5)
e, =-ue —ue,—(p.+q.)u p—(P+Qh, p+(p+Pup,/p*  (A-6)
Pre = ~Pclt = Ity —3Pslex ~ Pl (A-7)

U, = —3ugt, — ity ~( Doy + G ) 0+ 2P + 40P P° s
+(P. +4.)P /P~ 2P +q. )02/ P’ (&%)

e, =—u,e, —2ue, —ue . — (Do +qu ) /0
27 2

2Ap, +¢ )0, [p+2p, +q,)up./p A9)

—(P+ Qe | P+ AP+ PN, /P
+(p+ P! P~ AP+ Qup; /P
The derivatives p,,, #, and e, are derived in advance, and used to obtain the

following higher time derivatives,

Pu = Pl — P, — Pl — P, (A-lO)
Pre = P~ Prclly = 2Py lhe = 2P Uy — Pty ~ Pl (A-11)
u, = s, — i, — (P +4.) (P +4. )0,/ P’ (A-12)

u, = -2, — iy, — Uy, — (P + )| PP + 40P, 1 P
+ (Do + 4.0,/ PP (P, + )P /0T = AP +0IP.P P
e, =—ue,—ue, —(p,+4.)u, ! p—(p+Qu, [ p+(p+@up, /p*  (A-14)
i —ukex — uxe,x —ue, — ue,
(P +qu ) T P~ (D + @) | P+ (Do 4P, O
—(p, +)i | p—(P+ @t | p+(P+QNihp, P (A-15)
(P +g)up, 1P+ (P + P,/ P
+H(p+qup, /P —2Ap+Qupp, 1P’
For ideal equation of state, The pressure p which is a function of p and e is written by

(A-13)

12



p=(y —1)pe for the ideal equation of state, and the derivatives are derived as follows,

P.=pp:+pe, =(y-1)Np.e+pe,), (A-16)
P = -1Xp.e+2p,e, +pe.), (A-17)
Pee = (Y = 1N(Pie +3p8, +3p,2, +pe,), (A-18)
P =(1 —D(p.e+p.e, +pe, +pe,), (A-19)
P = (Y = 1Prct + Puce, +2p, e, +2p,0, +P,E,, +pe,,). (A-20)
For artificial viscosity, we use the expression g =apc,u_, and the derivatives are
g, =ac,(p,u, +piL,,), (A-21)
T = 0 C (Pt +2p, Uy, +pH,,. ), (A-22)
G = 0 CAPott, +3p, U, +3p,4, +puU ), (A-23)
G = AC (Pt + Py +P U, +PU,,), (A-24)
Qe = O (Pglly + Pl + 20,0, +2p 0, +p,0, +pU, ), (A-25)

where we neglect the dependency of e for the sound speed c, .

These derivatives are substituted into the following explicit Taylor expansions to
update to the time step 7+ Af,

Pl =p" +pr AT+ P, AL, (A-26)
Py =Pl +pRAL + 1P, A, (A-27)
W = U A S AR, (A-28)
" =u? Ul Ar+Tul AP (A-29)
€ =" +e’ At + el AL, (A-30)
e =l velAt+iel Ar (A-31)

The time accuracy of A#’ is enough for the CFL number less than 0.2. In the above
equations, the derivatives with the symbol tilde come from the center interpolation for
equal to or higher than second derivative, the derivatives without tilde come from the

upwind derivative.
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Figure Captions

Fig.l. Mass Conservation as a function of velocity nonuniformity £,. where the
velocity profile is u =1+ 0.25sin{(k_x). The solid line indicates the result of the
IDO after 500 steps with Ar =04and Ax = 1. The dashed line shows the result

of 3rd order upwind FDM of non-conservative form.

Fig.2. Spatial accuracy of the numerical solution for Poisson equation by using 1IDO

scheme. The solid circles represent the computational result of IDO scheme

showing Ax* accuracy, and the solid triangles show Ax” accuracy for the

result of the center finite difference method  (f,,, = 2f, + f..)/ Ax* = 4,.

Fig.3. The profiles of the numerical solution of the Burgers equation at # = 200. The
initial profile is indicated by the dashed line. The speed of shock front is found
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Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig 8.

to be 0.25.

The numerical results of the KdV equation with Ax =1/192 . The dashed line
is the initial profile. The dot dashed line is the profile of # =1/, and the solid
line shows thatof ¢ =36/x.

The results of wave equation by using IDO with the center interpolation. The
dashed lines show the initial profile. When the initial conditions of the first
time derivative are  f, =c¢f, and f, = —cf, , the results show left traveling wave
(a) and right traveling wave (c), respectively. When the initial time derivative is
zero, the profile is split into two waves (b).

The results of applying IDO scheme to Riemann problem. The initial profile is
p=Lu=0 P=1for x<land p=0125,u=0, P=01 for x =1. The solid
line shows the analytic solution, and the open circles denote the computational
result of the density profile.

The mteraction of two blast waves are computed by IDO scheme with a
uniform grid of 800 zones. The velocity (a) and density (b) profiles of £ = 0.016
are shown in the upper half, and those of ¢ = 0.038 are in the lower half,

Contours of density on the space-time plane for the interacting blast wave
problem. Sixty contours equally spaced in log p are shown.
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Fig.5. The results of wave equation by using IDO with the center interpolation. The
dashed lines show the initial profile. When the initial conditions of the first
time derivative are  f, =c¢f, and f, = —¢f, , the results show left traveling wave
(a) and right traveling wave (c), respectively. When the initial time derivative 1s
zero, the profile is split into two waves (b).
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Fig.6. The results of applying IDO scheme to Riemann problem. The initial profile is
p=lLu=0,P=1for x<land p=0125u=0, P =01 for x>1.The solid
line shows the analytic solution, and the open circles denote the computational
result of the density profile.
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