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Abstract

The condition of validity of the direct-interaction a.pproximé,tion and the Reynolds-number reversed ex-
pansion truncated at the lowest nontrivial order is assessed numerically for a dynamical system composed of
coupled equations of many variables with quadratic-nonlinear terms of weak or strong coupling as well as linear-
viscous and randomly forcing terms. Although these two theories lead to an identical set of integro-differential
equations for the correlation function of the dependent variables and the response function, their parameter
regions of validity are different from each other. The direct-interaction approximation works well for larger
number of degrees of freedom if the nonlinear couplings are as weak as the Navier-Stokes equation, but not
when the nonlinear coupling is strong. The Reynolds-number reversed expansion, on the other hand, works
well whenever the nonlinear term is smaller in magnitude than the other termé irrespective of the strength of

the nonlinear coupling,.
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1 Introduction

The direct-interaction approximation (DIA) was originally introduced and applied to incompressible isotropic
homogeneous turbulence by Kraichnan (1]. This is an approximation without neglecting the nonlinearity
of the basic equation, and without introducing any ad hoc adjustable parameters. Lagrangian versions of
DIA [2-4] give excelient predictions for various statistical quantities such as the Kolmogorov universal form
of the energy spectrum function and the skewness of the velocity gradient. It is an interesting observation
that a set of integro-differential equations for the Eulerian velocity correlation and the response functions
derived by DIA [1] are also obtained by different kinds of approximations. For example, they are rederived
by diagrammatic techniques developed by Wyld [5] and Martin et al. [6], and also by a method described in
Leslie’s textbook [7] as an explanation of DIA, which is a Reynolds-number expansion followed by a forma_l
replacement of variables. This last method was justified in ref. [8] by a kind of systematic expansion, which we
call here the Reynolds-number reversed expansion (RRE). It was shown in ref. [8] that the Lagrangian-history
DIA and the abridged-Lagrangian-history DIA (2] equations can be also derived by this expansion. It should
be noted, however, that DIA and RRE are based upon completely different ideas and procedures though they
lead to a same set of final equations. In fact, as shown in the present paper, each theory has diﬂ'ereﬁt parameter
region of applicability. Obviously, RRE should work for small Reynolds numbers, i.e., for weak nonlinearity.
For DIA, on the other hand, no systematic studies have ever been made to clarify its applicability, which we

investigate and discuss in this paper.

In order to make it easier to survey a wide range of parameters we deal with a dynamical system which is
‘ simpler than the Navier-Stokes equation but still retains important ingredients of the latter, that is, quadratic-
nonlinear and linear-viscous terms. A random force is imposed to prevent the solutions from decaying. This
system is different from several typical models studied before to check statistical theories of turbulence and
to discuss the characteristics of turbulence [9-12]. Qur model equation is introduced and solved numerically
as an initial value problem in §2. It turns out that the strength of nonlinear coupling is important for the
DIA formulation. A case of weak nonlinear coupling, for which DIA works well, is simulated in this section.
(It will be shown in §5.3 that DIA is not applicable to a case of strong nonlinear coupling.) Then, DIA and
RRE are formulated in §§3 and 4, respectively. It is stressed that the largeness of the degrees of freedom and
the weakness of the nonlinear coupling are prerequisite in the derivation of the integro-differential equations
by DIA. Validity of all the working assumptions introduced in DIA is confirmed numerically in §5. Further

discussions on the difference between the two theories and their validity are provided in §6.



2 Model equation

We consider the temporal evolution of a set of N real variables X, (i =1,2,---, N) governed by
d .
aXi(t)=; ; Cijp X;(8) Xe() — i Xi() + Fi(t)  (i=1,2,---,N), (2.1)

where ), stands for vazl {The .summation convention for repeated subscripts are not used throughout this
paper.) The coefficient, v;, of the linear term is a positive constant, which is an analogue of the viscous effect
in the Fourier representation of the Navier-Stokes equation. It can be assumed, without loss of generality, that
the time-independent coefficients, Cj;i, of the quadratic-nonlinear terms should be symmetric with respect to
the secand and the third subscripts, ie,

Cijr = Cix;j . (2-2)

We further assume that

Cijt + Cjgi + Criz =0 (2.3)

so that the sum of the energjr of three modes £ (X;®+ X2+ X,%) may not change through the direct interaction
among them. This property of detailed balance of energy ‘is analogous to the Navier-Stokes system, and
guarantees the conservation of the total energy of the system &£ = 3 3., X;2 when the viscosity » (and therefore
Fj, see (2.4) below) vanishes. There is still an arbitrariness in the choice of the numerical values of the
coefficients with the above properties. Concrete examples will be given in the subsequent sections (§§2.1 and
5.3). Here, notice that model equation (2.1) can be equivalent to a forced Navier-Stokes equation if coefficients
Cijx and v; are appropriately chosen (cf. (6.1)). In the following we put v; = v for simplicity.

The inhomogeneous term Fi(t) is a random driving force. It is piecewise constant in each time interval

At, which is set to be equal to the time increment of the numerical simulations, and the amplitude obeys a

Gaussian distribution of zero mean and of variance given by

2v
2 _
d T NAt (2.4)

The forcing at different time intervals or of different modes are assumed to be statistically independent of each

other. Variance (2.4) has been chosen so that the averaged total energy be a half of unity
= 1 -z 1
E‘EZ‘,:Xf‘E (2.5)

in the statistically stationary state *. The overbar stands for an ensemble average (or a long-term average in

a single run of the simulation).

!By taking an ensemble average of equation {2.1) multiplied by X; and summed up over 1 < i < N, we obtain the energy

equation as
- —_-— N
vy XF=5 FXi= 7 AL,
i

in the statistically stationary state.



N (a'n: bni c‘ﬂ)

7 (1,2,4)
10 (1,2,7)
20 (1,2,17),(4,5,11)

40 (1,2,37), (4,5,31), (6,7, 27), (8,10, 22), (11,12,17)

Table.1. Triplets (@.,ba,¢s) adopted in the present numerical simulation.

2.1 Direct numerical simulation

Before going to the formulation of the closure equations, it may be useful to see the statistical property of
model equation (2.1). We solve it numerically as the initial value problem. The coefficients Cj;; are specified
by the following two steps. First, those coefficients of which any two subscripts are identical are put zero,
namely,

Cix =0 (ifi:jorj::kork=i). (2.6)

Next, we take a circle of circumference N and assign N points with equal distance apart on it {Fig.1). For any
triplets of integers, 4, j and k, we introduce a, b and c as three arc lengths divided by these three points in
such a way that the point i is sandwiched by a and ¢, and that @, b and c are placed counterclockwise. Here,
we choose a series of triplets of natural numbers (an, bn, ¢z) (2n + by + ¢ = N; n = 1,2,3,-++) so that there
is no common element in a set {z|z = a4, bn.Ca, N —an, N = by, N —cp; n = 1,2,3,---} 2 . The coefficients

Ciji are then defined by
{ IN-b ( if 3n such that (a,b,¢) = (@n,bn,cn) ) , (2.7a)

Cijx =

0 ( otherwise ) , (2.7b)
where (a,b,c) = (a',V,c’) implies that (a,b,c) is equal to (a’,¥,¢’) itself or its cyelic permutation. The
coefficients thus determined guarantees that [I] Ci;x satisfies conditions (2.2) and (2.3), [II] the system is
symmetric with respect to ¢ and [III] there is only a single, at the most, direct interaction between each pair of
modes {X;}. The last property (weak coupling) may be reminiscent of the triad interaction among the Fourier

components of the velocity in the Navier-Stokes equation, which is essential in the formulation of DIA (see

§§5.3 and 6).

The initial values of X; are given by random numbers under the constraint that 3, X;* = 1. The fourth-

order Runge-Kutta scheme is employed for the time integration. There are two control parameters which

2The choice of ax, bn and cy i8 not unique, and one adopted in the present paper is shown in Table.1.



characterize the present system, that is, the degrees of freedom N and the viscosity v. In order to examine
the dependence of the statistics of the system on these parameters we perform two series of simulations;
(N, v) = (7,100),(7,10),(7,1),(7,0) and (N,v) = (7,0), (10,0}, (20,0), (40,0). In the first series we examine
the viscosity dependence, while in the second the dependence on the numbers of degrees of freedom. The time

increment At is taken as 5 x 1073, 2 x 1073, 1072 and 10~* for N = 7, 10, 20 and 40, respectively.
2.2 Correlation function

The two-time two-mode correlation function
Vin(t, ') = Xi(t) Xa(t) (t>1t) (2.8)

is one of the representative statistical quantities which characterize the dynamical system (2.1). The governing

equations for it are derived from (2.1) as

5 *’”J Vin(t, ') = Z): Con X; ) e Xnlt) (1> 1) (29)
and
[a('iz +2 | Vin(t,t) = ;; Cijk X;(8) Xi(t) Xn(t) + Fi(t) Xu(t) + (i o 1) . (210

These equations cannot be solved because of the appearance of a higher-order (third-order) correlation function
which originates from the nonlinearity of (2.1). This is the well-known closure problem. As closure theories to

solve it, we consider DIA in §3 and RRE in §4.

For a later comparison with the statistical theories we show here the the auto-correlation function (i = n)
obtained by the numerical simulations described in the preceding subsection. The viscosity dependence of the
auto-correlation function is depicted in Fig.2(a) in which those for » = 0, 1, 10 and 100 are compared in the
case of N = 7. The time is normalized by the viscous time-scale 1/v in Fig.2(b) (see (2.9)). We see that the
characteristic time-scale of the velacity auto-correlation function ch@nges in proportion to the viscous time for

v 1.

In Fig.3(a) we show the dependence on the number of degrees of freedom of the auto-correlation function,
where those for N = 7, 10, 20 and 40 are compared in the inviscid case. The decaying time-scale of the function
decreases as NV increases. The time is normalized by the times-scale v/IV, /c1 of the nonlinear term in Fig.3(b)

(see the paragraph below (5.9)).
3 Direct-interaction approximation
In this section we deal with DIA. For later use, we introduce a response function of X;

Culllt) = szis  (¢20), (3.1)



where & stands for a functional derivative. The evolution equation of Gy, is derived from (2.1), by taking a

functional derivative with respect to X,(t'), as
3 / ! I f
Ginltlt) =33 2Cux X;(t) Gra(tlt) = v Gin(elt) (> 1) (3:2)
ik

The boundary condition is given by

Gin(tlt) = bin , (3.3)
where &;,, denotes Kronecker’s deita. In the following we derive a closed set of equations for Vi, and Gin by
the use of DIA from basic equation (2.1) and its products {2.9), (2.10}, (3.2) and (3.3).

3.1 Direct-interaction decomposition

The DIA is formulated on the basis of the direct-interaction decomposition [1,4], in which the true field X;

is decomposed into two fields, an NDI (Non-Direct-Interaction) field X (@ ok, and a DI (Direct-Interaction)

ifiojo
(1)
field X/ - ¢o> 88
0
xi(t) X0} ke (tito) + XL (o) (E240) - (34)
Here, Xf Jiaoko (t|to) (¢ > to) is defined as a fictitious field without the direct interaction among three particular

modes X;,, Xj, and X, and to denotes the time when the interaction is removed, i.e.,

X0 altolte) = Xi(t)  and X[, (tolte) = 0. (3.5)
For simplicity of notations, the argument fp in X, (0) and X will be omitted below. It follows from
ifiodoko ifiojoko
the definition that the NDI field obeys
d (o 0 (0 0
dt Xt(li)o.?uko(t). = Z Z Cijk X(fzoJoko(t) Xk/)injuko ) - VXt(Ii)gjoko (t) + Fi(t) . (3.6)

i
{13,k }#{40.,J0.k0}

Subtraction of the above equation from (2.1) leads to the equation for the DI field as

d ) (1) .
T X e ® = X 205 X0 X3, (@) =¥ X0k, 8
3
{i.3.k}#{i0.d0,k0}

0

+ 2853, Cigjoko Jo/inJokn (t) £o}io.fu -’ﬂo(t)
(0) 0

+ 2640 Clokoto Xko/iojukn( t) XED}"DJD"D (t)

0 0
+ 2 61.’50 CkOinU Xi(u /)iojoko (t) X;g}iojoku (t) 1 (3'7)

where X,-(l) is assumed to be much smaller than X,-(D) in magnitude (see DIA assumption 1 below).

The response function Gy, is similarly decomposed as

Gt =GO ity + G (¢, (3.8)

in/finjoko infipjoko



{0)

in/ioJoko
2 ,
b—t' Ggg)/iojoko(tlt') = ZZ 2 C"jk Xj(t) chllt)/iojoko(tltl) i Ggg).f‘iojoka (tlt ) ' (39)
i &

{ivj’k}'-ré{iﬂ xjﬂxkﬂ}

Here, the direct-interaction decomposition has been made at #'. The evolution equation for the DI field of the

where G is governed by

response function is, then, obtained from this equation and (3.2) as

0 1 1
5 Gl = 3N 204 X0 Gl o ioke (1E) — 2 G (")
7k
{iljlk}¢{i07j0sk0}
0
+28iig Cigjoko Xiy (1) Gl i 1ok, (EIE)

0
+ 28445 Cigoko Xo(2) Gﬁul/i,,joku (tlt")

4 25,;3'0 Gjokoio ng {t) G(o)

ton/iofoko (

£1¢)
1]
+ 2615, Ciokoio Xi(2) Gsco)njiojuko(t[t!)

0
+ 28ik, Choingo Xig(£) Gl 1o - (HlE)

+ 26iky Cryigjo Xio (%) G-(i:l/iojuko (t') | (3.10)
" where we have assumed that |G, . | <« |G, . | (see DIA assumption 1 below). The boundary conditions
in/igjoko infiojoko

are written, from (3.3), as

GO (tt)=6n and G

infiojoko in/igjoko

(tt)=0. (3.11)

Then, it follows from (3.5}, (3.7), (3.9) and (3.11) that

t
X0 )= /todt’ 26, o () Ciggorg X0 () XD, (#)

o figdoko o/iojoko ko/iojoko

+2G0 () Crokoio X, o () X, ()

ijo/injoko ko/iojoko ip/isjoko
(0) (0} (@)
+2G ik fingoke ) Chotodo Xigigioko (8) Ko hinsoke (E) | (3.12)

and, from (3.9)—(3.11), that
i
1 0 0
Gt = [ [ 268 ot (") Citoke Xio(t") Gl i (¢'1F)
{0)
26 oo

+2G6©

ijo/i0doko

0
(tltu) Ciojoko Xko(t”) Ggol/iojoko (t"lt')

(t1t") Cranoio Xio(t") G (7|t

ign/igjoko

+2G610

ijo /iojoko

(tft") Cjokoio Xiu(tﬂ) Gm) (t"|t')

konfigfoko

0
+2 ngc))/iojoku (tlt”) Cko i o Xio (t”) G('O)

Jon/iojoko

(£"]¢')

"1t | . (3.13)

g 0} ()
+2 Giko/iujoko (L") Choiozo Xio(t") Gion/iojoko(

The DI fields x*}) and G are thus expressed in terms of the NDI and the true fields.

i/iojoko infigjoko

Before proceeding further, we summarize the assumptions employed in DIA, which are



DIA assumption 1 The DI field X ) (or G ) is much smaller in magnitude than the NDI

i/iojoko in/igjoko
field XS?l?ojoko {or Ggg)m jokn)’ over the period of order of the decaying time-scale of the auto-correlation
function.

DIA assumption 2 (I) Three variables X{/.,, X{/),

absent, are statistically independent of each other. (II) Similarly, Ggg)/i ik Gg?/‘.jk and X, are statistically

and X,E?,)t.jk, among which the direct interaction is

independent of each other.

These assumptions may be reasonably accepted if the degrees of freedom N of the system is large enough.
Since there are a lot of direct interactions for N > 1, the influence of extracting only a single one should be
negligible, and therefore the NDI field Xfo) (or GE:)) may approximate the true field X; (or G;5,), which is DIA
assumption 1. DIA assumption 2 is based upon the idea that the correlation among three modes without direct
interaction should be weak. This assumption may also be justified only in the case of N >» 1. For example,

from (0) or X©

Jo/iogoko ko fio joko through the indirect interaction

ST : (0)
the contribution to the dynamics of X Findoko

terms is not negligibly small unless N 3> 1. We will check in §5.2 the validity of these assumptions by making

a comparison with direct numerical simulations.
3.2 Correlation function

The DIA is applied here to the governing equations (2.9) and (2.10) for the correlation functions. First,
we consider the two-time correlation function. By substituting direct-interaction decomposition (3.4) into the

nonlinear term of (2.9), we obtain

33 Cuie X0 Xe®) Xalt) =D D Cuik X X6 X ()
j ok A

© T )
+ 3037 20k Xjpa(t) Xghunlt) Xon(¥)
i k

+ Z; Cijk X:E?;‘kn(t) Xl(c?r'_)jkn(t) Xr(z,lj)_-jkn(t') ) (3.14)
7

where the higher-order terms of the DI field have been neglected under DIA assumption 1. Notice that a
different triplet of (ip,jo,ko) is chosen in each term in the summand of the right-hand side of the above

equation, i.e., (%, jo, ko) = (2,7, k).

Now we evaluate each term in the right-hand side of (3.14) in turn. It follows from DIA assumption 2(I)

that

(First term in r.h.s. of (3.14))=0. (3.15)

For the second term, by substituting the solution (3.12) of the DI field, we obtain

{Second term in r.h.s. of {3.14))



— (0) (0 0 o]
=423 / 48" Cigh Chng Giid g (U8") X\ (8) XL (1) X200 (8) X0, (87)

=4 z Z / dt” Cyjx Crnj Grr(H|t") Van(max{t',t"}, min{t', t"}) V;;(¢,t"), (3.16)
J to :
where use has been made of DIA assumptions 1 and 2. The independency between Gm Tijh and X; /3 . follows

from the assumption that X' /Z ;& = X; and DIA assumption 2(II). The third term is similarly calculated to be

(Third term in r.h.s. of (3.14))

t!
=2 EZ ]:., dt" Cijk Cajr Grn(F[£7) V;; (6, ") Via(t,£") (3.17)

by the use of (3.12). Thus the equation for the correlation function is written in terms of the correlation

function itself and the response function G, as

3 ! ¢ " rammrrrn $ogH . 1o 7
3t + U] Vin(t,t')y =4 ; ; ./to di C,'jk C_knj Gkk(t|t”) V,m(ma,x{t , b }, mm{t JA'H ij(t,t’)

+2 sz: _/; dt” Cije Cnjr Gan(t'18") Vi (£, 8") Vir(t, £")  (E> 1) (3.18)
J -

For the one-time correlation function, the forcing term in (2.10) is rewritten as

v

Fi(t) Xa(t) = % Ato? 0in = N bin (3.19)

and the noniinear terms are calculated in a manner similar to the above. Then, we obtain

d
I:a +2v

1
Vin(t, t) =4 ZZ f dt Cijk C;mj Gkk(tlt’) Vnn(t,t’) ij(t, t')
ik M
i
+2330 ft dt’ Cigi. Cngr. CrallF) Vis(2,¥') Vin(t, )
i & o
v .
TN bin + (i m) . (3.20)
3.3 Response function

An ensemble average of (3.2) for the response function is written as

£+V
ot

The right-hand side of this equation may be calculated in the same way as in the proceeding subsection.

m(tltr ZZZCkaX (t Gkn(tlt’) (321)

Substitution of direct-interaction decomposition (3.8) into the right-hand side leads to

Zch,,kx G.rm(t|t’ 2220.3kx (&) G nltlt)

+ Z Y 2CiX;(t) GG (8t - (3.22)
i ok




Thanks to DIA assumption 2(II), the first term in the right-hand side of (3.22) vanishes. By substituting

expression (3.13) of the DI field Gsn) and decomposition (3.4), we rewrite the second term as

i
(Second term in r.hs. of (322))=4> > f dt” Cijk Cens Vii(t, t") Cre(tlt") Gorn(Bt) ,  (3.23)
i kY

where use has been made of DIA assumptions 1 and 2 and the assumption that GE?,)fijk = (0. This last
assumption follows from DIA assumption 2(I) and the approximation® Gg.’}ioju ko & SX‘%)O oko / 5Xg('330ja k,c Lhe

L(t') on Xg.?‘).j L(t) (t > ¢') should be very small because there is no direct interaction between

these modes. Thus, the temporal evolution of the response function is described by

. (0}
influence of X; 145

3 PEETIr : " "
[a + U] Gia(t|t) =4 Zj:zk: /,;: dt" Cijk Crnj Vi;(t.t") G (2]t") Gan(t'|t') . (3.24)

In summary, (3.18), (3.20) and (3.24) construct a closed set of equations for the correlation and the response
functions. A closed system for the auto-correlation function Vj; and the auto-response function Gy follows by

putting ¢ = n in these equations.
4 Reynolds-number reversed expansion

In this section we consider model equation (2.1) in the limit of weak nonlinearity. We start with linear

equation and treat the nonlinear term as a perturbation. To make the formulation clearer, we introduce
1
A==, 4.1
- (4.1)

which represents the ratio of the nonlinear to the viscous terms and will be called the Reynolds number on the

analogy with the Navier-Stokes equation. Introducing a rescaled time

t=vt, (4.2)
we rewrite (2.1), (3.1)—(3.3) respectively as
d = ~ ~ - ~
EX:'(—{) =2 D00 Con Xi(0) Xi(B) - Xi(B) + B(D (4.3)
ik
Gin(ft) = 280 =7, (4.4)
X ()
a ~ -~ e o e -~ o~ ~
o7 Cn(l8) =2 303 2Cie 58 GunlE) - G (> 1) (4.5)
ik
3The evolution equation for 65;?}_.03.0 b = 6X‘.(?20J.0 ko /6 J('?zoio ko is derived from (2.1} as

9 =) "N Z Z (0 5i0) 50
at G‘ﬂ/iojnkn(t!t )= 2Cij Xi/iojoko (& Gkﬂ/l‘o:’oko ey -v Giﬂ/inioku(tlt’) )
ik
{67, k}Y#{ip.Jo.ko}

A comparison between this equation and (3.9) may justify that |6_(.?) - GS.))| & |G§?)| because X; {1} = X;%Dju ko'

10



and

Gin(@lt) = 6 , (4.6)

where X;(8) = X;(t) and Fy(®) = Fi(t)/v. For simplicity of notations, we omit the tildes on %, X;, Gi» and F;

in §§4.1—4.3.
4.1 Reynolds-number expansion

For small Reynolds numbers A « 1 (i.e., » > 1) it may be legitimate to expand X; and G, in power series

of A as

Xi8) = XO0) + A xM @) + 0002) (4.7)

Gin(tt) = GO (et + A G ey + O . (4.8)

By substituting these equations into (4.3) and (4.5), we obtain, at O(1),

= x0() = X0 + R (49)
and
260w = -eOury, (4.10)
while, at O(A),
3 X0 = T X G X000 X000 - X0 (1)
and 3
% Gt = Z ij 2Cize X2 (8) Gty - G2ty . (4.12)
] |

The boundary conditions of response functions GE?J and Gs,ll) are respectively written, from (4.6), as

G (H) = bin (4.13)
and
GiM(t)t) = (4.14)
It follows from (4.10), (4.11) and (4.13) that |
XM = ZZ D f 4" Cape G (tlt") X () XO(t") (4.15)
and from (4.10) and (4.12)—(4.14) that
GRUSED SIS /t e Cabe GOt X0 () GO (")) . (4.16)
a b c .
Here, we have assumed that
xP(to) =0. (4.17)

11



4.2 Correlation function

The evolution equations for the correlation function (2.8) are derived from (4.3) as

[ % + l] Vin(t, t’) =2A z}:; C;‘jk Xj(t) Xk(t) Xn(t’) (t> t') . (4-18)

and

[ ;—t + 2] Via(t,t) = A XJ: ; Clijk Xj(t) Xp(t) Xp(t) + %5121; +(ien). (4.19)

Substitution of the Reynolds-number expansion (4.7) and (4.8) into the right-hand side of (4.18) leads to

ALY Cn X0 Xn® Xnlt) =2 35 Cuipn X8 X0 (8) X1
k) k 7 k

+32 3% 205 X0 XD (1) XP (1)
k) k

+22 573 G xP0) X0 @) xBwy, (4.20)
K k

where the terms of O(A3) are neglected under the assumption of small Reynolds number. Since Xio) is a
solution of the linear equation (4.9) excited by a Gaussian random force, it obeys a joint normal probability

distribution with vanishing covariance. This leads to
(First term in r.h.s. of (4.20)) =0. (4.21)

The second term of (4.20) can be written, on substitution of the solution (4.15) of X,-{l), as

(Second term in r.h.s. of (4.20))
1
=225 35y f dt” Cape Cisx GO (21" XV (1) XV (1) X1V () X (2)
i k a b c to ’

t
=2,\22§ij22 [t dt" Cave Cije G (#1E7) | XS0 () xP () X (¢) X (0)
b a b <

+ X0ty xOry xP () xO (e

+ xO() xOeny xP0e) X0 (t)

t
=4 YY) j dt" Cinj Cigr GO (e)y X0 (1) X0y XV (1) xV(e) . (4.22)
i kTt

Here, we have used the relation

GOt = 6 GO(2It) (4.23)

and the assumption of independency between Xgo) and Ggg), both of which may be justified by the fact that

GS? is a solution of the linear equation (4.10) with the initial condition (4.13).
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Now, we employ the procedure of so-calied reversion to rewrite (4.22). Substitution of the Reynolds-number

expansion (4.7} into the definition (2.8) of the correlation function gives

Vialt, ') = Vi, 8) + A | XO) xD(2) + XV () xO) | +0(02)
= vt ¢) + 00, (4.24)
where V,-gf) is defined by
v ) = x0) xP) . (4.25)
For the response function, the ensemble average of (4.8) yields
Conll) = G (eIt + O(N) - (4.26)

The O(X) and the higher-order terms in (4.24) and (4.26) can be expressed in terms of v and GO in
principle (e.g. (4.15) and (4.16) for the O()) terms). We can then regard (4.24) and (4.26) as the equations
for V(u) and G(O)

in !

the solution of which is written in power series of A as
VO, #) = Vin (£, ) + O(N) (4.27)
Q) = Goltit) + O(3) - (4.28)

This procedure is called the reversion {8], which the naming of the Reynolds-number reversed expansion (RRE)

originates from Equation (4.22) is then written in terms of the true field variables ¥V and G as
(4.22) = 4 )2 ZZ dt” Chnj Cijk Grr(tt") Vi (4, 8" Von(max{t',¢"}, min{t’, t"}) (4.20)
at the leading order. The third term of (4.20) can be estimated in a similar manner as

{Third term in r.h.s. of (4.20))

t' .
=203 %" [ dt" Cuji Cijs Gan(F[17) Vii(t,1") Via(t,2") . (4.30)

Thus, combination of (4.20), (4.21), (4.29) and (4.30) finally reduces the evolution equation for the two-time

correlation function into

t
l% + 1} Vin(t,t') = 4X? ZZ[ dt” Cinj Ciji GratIt") Vi;(8,8") Vin(max{t', ¢}, min{t', t"})

+ 222 ZZ dt" Crijk Cisk Gan(U[t7) Vij(t, ") Vir (8,87 . (4.31)

Equation (4.19) for the one-time correlation function is similarly derived as

d
[&4‘2

¢
Vin(t, 1) = 42 Z Z[ dt’ Crnj Ciji Grr(t|t’) Vii(t,t') Vanlt, t)
i ok Jt
t —
+ 2% Z Z [ dt' Crjk Cijk Gan(t)t?) Vii(t, ') Vie(t, 1)

b B+ (eom). (4.32)
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4.3 Response function

The evolution equation for the ensemble average of the response function is

d
I:E +1

which follows from (4.5). Substituting (4.7) and (4.8) into the right-hand side of this equation and discarding

Gimn(tl) =X DY 2Cie X;(8) Graltt) (4.33)
i ok

the terms of O(A3), we obtain

A E Xk: 2Cik X;(t) Gen () = A Z ; 2Cij XO() G (tlt)
2 2

+22 303 205 X0 6L ()

i k

+ X3S 205 X (1) G - (4.34)
i k

In the same way as in the preceding subsection we can write each term in this equation in terms of V and G.

Then, (4.34) is converted into

t
[Q + 1] Gu(t]t) = 427 EZ f dt” Cijk Cinj V33 (t,t") Gre(t[t") Gun(t"[t') - (4.35)
i k “t

ot

4.4 Comparison of two approximations

In the formulation made in the last three subsections the time was scaled as ¢ = vt = t/X (see (4.1)
and (4.2), and remember the omission of the tilde). If t is transformed back to ¢ in the resultant equations
(4.31), (4.32) and (4.35), they become identical to (3.18), (3.20) and (3.24), respectively, which are derived by
DIA. Incidentally a so-called bookkeeping parameter (A = 1), which is sometimes introduced in this kind of

expansion [3,7,11], plays a role similar to the time transformation such as (4.2).

The RRE described in the preceding subsections is based upon an idea developed by Kraichnan {8]. He
showed it for the Navier-Stokes equation that those integro-differential equations derivgd by DIA (both in
the Eulerian and the Lagrangian formulations) are also obtained by the use of RRE. Kaneda [3] applied this
expansion (called the Lagrangian renormalized approximation by him) to the Lagrangian velocity field. The

resulting integro-differential equations are again the same as those derived by DIA [4].

Now we know that the above two approximations lead to a same set of equations in each case of model
equation (2.1) and the Navier-Stokes equation. The discussion on the differences between these approximations
for the model equation, which will be made in the next section, is therefore expected to be applied to the

Navier-Stokes equation as well.
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5 Applicability of DIA

5.1 Solution to DIA equations

In previous sections we have shown that an identical system of equations is derived by two completely
different approximations. It is quite obvious that RRE should be valid for small Reynolds numbers (v 3 1),
whereas the assumptions of DIA summarized in §3.1 be for the large degrees of freedom (N > 1). We expect,
therefore, that the equations (hereafter, called the DIA eguations) may give good predictions in such parameter
ranges that v >» 1 or IV » 1. This expectation will be verified in the following by a series of direct numerical

simulations of the model equation.

By construction (see (2.7)), the coefficients C;; do not depend on the absolute value of the suffixes but only
on their difference, and therefore the system can be statistically homogeneous {e.g., V;; can be independent
of ¢). If the system is statistically stationary as well as homogeneous, the auto-correlation and the response

functions are expressed as

Vi(t, ) =Vt -1, ' (5.1)

Giu(t,t) =G(t—t) . (5.2)
Then, the DIA equations (3.18), (3.20) and (3.24) for < = n are respectively written as

[ ad—T + u} V() = - 2c; j;m dr' G(r" Y V(|7 - ) V(')

+2 f Tar G — V)W) (3 0), (5.3)
V(0) = %T. (5.4)
and
(;i_'r + Vl G(t) = -2¢ /of dr' V(') G(+) G(r -7} , (5.5)
with boundary condition
G(0) =1 (5.6)

(see (3.3)). Here, the coefficient c; is defined by 4

cr =2 % CuxCijs . (5.7
i K

Notice the relation
e = Z ECijk'Ckij = Z Z Cijk (—Cije — Cjki) = Z Z Cije (=Cirs —Ciig) = —c1 - ez,
: ik N B ik .

which implies that c2 = —1 ¢, where use has been made of (2.2) and (2.3).
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Notice here that the original upper bound ¢ — t; of integrations in (5.3) has been replaced by the infinity. This
will be justified a posteriori by taking it to be sufficiently larger than the decaying time-scale of V(7} and G(r)
(see §5.2).

Equations (5.3)—(5.6) permit a solution such that
V(r) = V(0) G(7) (5.8)

and

[ ;_T + v | G{1) = —2¢; V(0) /OT dr’ [g('r')r G(r—1). (5.9)

Incidentally, this equation shows that the decaying time-scale of G(r) (and V(7)) is inversely proportional to
V& V(0) = \/e1/N in the inviscid limit (see Fig.3(b)}.

Equation (5.9) with boundary condition (5.6) is solved numerically by an iteration method. The correlation
function thus obtained are drawn in Figs.4 for various values of N and v together with the results by the
direct numerical simulation. A case of small number of degrees of freedom is shown in Figs.4(a)—(c) for three
different values of viscosity ¥ = 10, 1 and 0. It is seen that the agreement between the prediction by the DIA
equation and the direct numerical simulation is better for larger values of ». The agreement seems perfect even
at v = 1 (see Fig.4(b)). We also compare them with a purely linear sb]ution V(1) = V(0) exp[ ~vr] (shown
with a dotted line). As seen in Fig.4(a), the three curves completely coincide with each other at ¥ = 10, which
means that the nonlinear effects may be negligible at this value of viscosity. It is interesting however to see
in Fig.4(b) that the purely linear solution deviates substantially from the results of both the DIA equation
~ and the direct numerical simulation. This indicates that the nonlinear effects on the correlation function, even
though they are not so large, are properly evaluated by the DIA equations. In Figs.4(c)—(f), we compare the
results of various values of N for vanishing viscosity (in the limit of large Reynolds number). It is seen that
the agreement of the two improves as N increases. In conclusion, the prediction by the DIA equation works

well for small Reynolds numbers (v 3 1) or for large degrees of freedom (N » 1).
5.2 Validity of DIA assumptions

It was shown in the preceding subsection that the DIA equations give an excellent predictions of the auto-
correlation function in the case of N 3 1 or v » 1. This is quite reasonable because DIA and RRE are
formulated for N > 1 and v >» 1, respectively. Here we demonstrate it numerically that the assumptions of

DIA summarized in §3.1 are actually satisfied for N >» 1.

First, in order to examine DIA assumption 1 that the DI field is much smaller in magnitude than the NDI field

during the decaying time-scale of the auto-correlation function, we compare, in Fig.5, the temporal evolution
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of the magnitude of the DI field
2
D(t) = ( > [Xf}?o,-.,ku(tw)] > (5.10)

)

for four different values of N in the inviscid case. Here { ) stands for an average over a sufficiently large
number of runs starting with random initial conditions. The time in the horizontal axis is normalized by the
decaying time-scale of the auto-correlation function (¢f. Fig.3(b)). Indeed the DI field develops in time, but
it never exceeds the NDI field in magnitude within the correlation time, namely, D(t} < 3, [Xfo)]2 =1 for
\/m t < 2. Moreover, D{t} decreases roughly in the inverse proportion to N. This concludes that DIA

assumption 1 may be better for larger values of N.

A remark on the replacement of the upper bound of the integrations in (5.3) may be in order. Remember
that the DIA equations are formulated under the assumption that the DI fields are smaller in magnitude
than the NDI fields. The behavior of D(t) shown in Fig.5 tells us that when we choose the direct-interaction
decomposition time £y so that ¢t — t; may be sufficiently larger than the correlation time, DIA assumption 1 is
actually satisfied if V > 1. Then, thanks to the exponential decay of G(r) and V(7), we can replace t — ty by

the infinity.

Next, we move to DIA assumption 2(I) on the independency among the modes without direct interactions.

This assumption is used in the derivation of the DIA equations as

X5 (® Xﬁ%k(t) Xih(8) =0 (5.11)
(see (3.15)). In order to assess this assumption quantitatively, we calculate the triple correlation factor
Xi(t) X;(2) X(¥')
VTR X507 Xe(0)?

for the true field and for the NDI field (where X;(t) is replaced by X§?3jk). In Figs.6, we plot the results for

Rix(t-t) = (5.12)

{i,7.k} = {1,2,4} for (a) N = 7 and {b) 20 in the inviscid case. It is clear from Figs.6(b) that the triple
correlation factor for the NDI field is drastically reduced for larger N. This gives a strong support of the
validity of (5.11) for N » 1. As seen in Figs.6(a), on the other hand, it does not well behave for smaller N.

This failure in the small-N case is due to the indirect interactions.

Finally, we consider DIA assumption 2(II) that G’Eﬂ}ij i fo(:l)ﬁjk and X; are statistically independent of each
other. This is based on the fact that the governing equation (e.g. (3.9)) of each mode does not contain the

other modes. This assumption is used, for example, as

G

i () Xe(t) =0 (5.13)

in the derivation of the DIA equations (see the paragraph below (3.22)). To check it we calculate a covariance

factor
Gi;(Ht') Xi(2)

 Xe(t)?

Siie(t—t) = (5.14)
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for the true field and for the NDI field (where G;; is replaced by ng}i ;&)- Notice that the assumption requires
that this factor should vanish for the NDI field. In Figs.7, we plot the results of Sq2 for (a)} N =7 and (b) 20
in the inviscid case. The other factors such as So14 show similar behavior to S412 (figures are omitted). It is
seen that Sy tends to vanish for larger N like Rijx (see Figs.6). In conclusion, DIA assumption 2(IT) is also
satisfied for ¥ » 1.

5.3 Strong nonlinear coupling

So far we have dealt with a system (2.1) with weak nonlinear coupling (see §2.1 for the definition) for which
DIA works excellently. Now we examine what happens if there are many direct interactions. By removing the
condition in (2.7), we define here the coefficient Cyi; by

0 (fi=jorj=kork=1) (5.15a)
Cion = { iIN-b ( otherwise ) ' (5.15h)

3 .
Model equation (2.1) with coefficients (5.15) contains much more direct interactions between each pair of modes
than that with weak coupling coefficients (2.6) and (2.7). Hence, even if only a single interaction is extracted,
a substantial amount of correlation may remain. In order to check whether DIA assumption 2(I) is actually
satisfied in this strong nonlinear coupling case, we calculate the triple correlation factor (5.12) for the true and
the NDI fields. The results are shown in Figs.8 for (a) N = 7 and (b) 20 in the inviscid case. It is seen that the
correlation factor for the NDI field is not smaller (on the contrary, it is even larger) than that for the true field
both for small and large N. This indicates that DIA assumption 2(I) dose not hold in a system with strong

nonlinear coupling.

The auto-correlation function, which is calculated in the same way as in §§2.2 and 5.1, is plotted in Figs.9
for various values of N and . Here, a thick line represents the prediction by the DIA equation, a thin line the
numerical simulation result, and a broken line a linear solution. By comparing Figs.9(a)—(c), the agreement
between the theory and the simulation becomes better and better as v increases (or the Reynolds number
decreases). On the other hand, as Figs.9(c) and (d) show, the agreement does not seem to improve for large
N. Thus, it may be said that RRE works well at small Reynolds numbers for a system of strong nonlinear

coupling, but DIA does not.

6 Concluding remarks

We have given a numerical evidence for a dynamical system that DIA and RRE have different parameter
regions of va.lidity though they lead to an identical set of equations for the correlation and the response
functions. The RRE is applicable for the weak nonlinearity, whereas DIA is for the large degrees of freedom.
We have also shown that DIA may work for a system with weak nonlinear coupling, whereas strength of the

coupling does not matter for RRE.
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In relation to the applications to the Navier-Stokes turbulence, it should be emphasized that the strength of
the nonlinear coupling is important. We have seen that DIA works excellently for a system with weak nonlinear
coupling but not for strong coupling. An important difference between these two cases is in the number of
direct interactions. There is only a single, at the most, direct interaction between each pair of modes in the
weak coupling, while plural numbers of interactions in the strong coupling. The Navier-Stokes equation for an
incompressible fluid in a periodic box (of side L) is written as

O o |wk,ty=—L (2 CSS Bk 35T w(-p,t) Tm(—gt 6.1
'a_i 4 WK, L) = E(f) . E Um() L Uj P, t) um{—q,t), ()

3
j=1m=1

(k+p+g=0)

where v, ?.-jm(k) and %;(k) denote the kinematic viscosity, a geometrical operator (due to the nonlinear and
the pressure terms) and the Fourier component of the velocity for wavenumber k (k = |k|), resﬁectively
(see [7] for example). There is a single direct interaction between each pair of 4;{k). Hence, an incompressible
homogeneous isotropic turbulence is a system with large degrees of freedom and strong nonlinearity of weak

coupling. This is the reason why DIA works well for the Navier-Stokes turbulence [4].

In this paper we have investigated the two extreme cases of nonlinear interactions, i.e., the weakest and the
strongest couplings. The DIA does work in the forrﬁér, but not in the latter. It is natural to ask what happens
for a system with intermediate strength of nonlinear couplings. What determines the applicability of DIA? Is
there a (system-size dependent) critical number of direct interactions? The type of the nonlinear interaction

(other than the quadratic) may also be relevant. All of these interesting questions are left for a future study.
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Fig.1 Definitions of @, & and ¢. N points are assigned with equal distance apart on a circle of
circumference N. The arc lengths a, b and ¢ between points ¢, j and k are defined in such a
way that point ¢ is located between @ and ¢, and that a, b and ¢ are placed counterclockwise.
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Fig.2 (a) Auto-correlation functions Vj(¢,t') = Xi(t)Xi(t') for N = 7 and v = 0 (thin solid
line), 1 (thin broken line), 10 (thick broken line) and 100 (thick solid line). (b} Same as (a)
but for a rescaled time.
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Fig.3 (a) Auto-correlation functions normalized by Vi(t,t) for » = 0. The degrees of freedom
N =7 (thin broken line), 10 (thin solid line), 20 (thick broken line) and 40 (thick solid line).
(b) Same as (a) but for a rescaled time (see (5.7) for the definition of ¢;).
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Fig.4 Comparisons between the predictions by the DIA equations (thick solid line) and the evaluations
by the direct numerical simulation (thin solid line). The broken lines in (a) and (b) represent the linear
solution V(1) = V(0) exp[ —v7]. (a) (N,v) = (7,10). (b) (7,1). (c) (7,0). (d) (10,0). (e) (20,0). (f)
(40,0). The agreements are excellent in the casesof v > 1 or N > 1.
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Fig.5 Magnitude of the DI field with (iy, jo, ko) = (1,2, 4) in the case of v = 0. The horizontal
axis represents the time normalized by decaying time-scale of the auto-correlation function
Vi(t,¢') (cf. Fig.3(b)). N = 7 (thin broken line), 20 (thin solid line), 40 (thick broken line)
and 80 (thick solid line).
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(thick line) in the weak nonlinear coupling case. (a) N =7. (b) N = 20. DIA assumption 2(I)
is satisfied well for N = 20, but not for N = 7.
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