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Abstract

Self-organizatior and generation of large shear flow component in turbulent
resistive interchange convection in magnetized plasma is considered. The
effect of plasma density-electrostatic potential coupling via the inertialess
electron dynamics along the magnetic field is shown to play significant role in
the onset of shear component. The results of large-scale numerical simulation
and low-dimensional {reduced) model are presented and compared.
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1. INTRODUCTION

One of the serious problem in thermonuclear plasma confinement is anomaly
of particle and energy transpori caused by plasma convection across the magnetic
field. This convection is driven by free energy release during the growth of pertur-
bations in generically unstable thermonuclear plasma.

The most dangerous consequences for plasma confinement might arise from
the development of magnetic perturbation which can cause rearrangement of mag-
netic configuration and trigger its complete disruption. For this reason, magnetic
configuration and plasma parameters are usually chosen in the way when such a
perturbation is as much suppressed as possible. There are many experimental evi-
dences that, indeed, in large tokamaks and stellarators the magnetic perturbations
are basically absent, especially in the peripheral plasma near magnetic separatrix
and scrape-off-layer {SOL).

In the absence of magnetic perturbation. plasma convection across strong con-
fining magnetic field is mainly controlled by electrostatic field and pressure gradient
forces which cause drift vortex flow perpendicular to both the magnetic field and
the force. This flow, in turn, leads to seli-consistent spatial redistribution of plasma
density and electrostatic potential. Within one-turn-over time scale, such a non-
linear vortex flow becomes complicated and is usually treated in terms of drift
turbulence. The corresponding turbulent convection is widely believed to be the
cause of transport anomaly in magnetized plasma. In such a scenario, the stronger
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fluctuations of plasma density and electrostatic potential correspond to higher con-
vective transport, i.e., exactly what is observed in the low-confirement (L) mode
in tokamaks and other machines.

In contrast to L-mode, there also exists high-confinement (H) mode of opera-
tion when fairly intensive turbulent convection near the separatrix spontaneously
undergoes drastic self-reorganization with consequent improvement in plasma con-
finement. Depending on plasma parameters, the transition from L- to H- regime
may occur in reversible way in the form of edge-localized modes (ELMs). In this
case, the configuration spontaneously, but repeatedly, returns to L-regime with
further transition to H-mode and so on.

A key and universal feature of the improved confinement mode observed in
various plasmas in tokamaks (1-6), stellarators (7-10) and linear machine (11) is
the generation of radial electric field and poloidal shear flow (here radial direction
corresponds to minor radius of toroidal plasma, ie., the direction of confinement,
while the poloidal direction corresponds to minor bypass around magnetic axis).
Generation of shear flow is usually accompanied by considerable suppression of
plasma density and potential fluctuations, so that the conveciive turbulent trans-
port is essentially reduced as well. Respectively, a mechanism for self-consistent
shear flow generation is a necessary moment in understanding the physics of the
observed L-H transition.

Concerning this problem, two different scenarios are usually considered: either
i) generation of radial electric field via the process of charged particle orbit loss
(i.e., the kinetic effect), or ii) shear flow self-generation via nonlinear interaction
and reconnection of the instability-driven convective cells (see (12-14)). The latter
seems to be strong candidate because it is based on a robust effect which could
be easily treated in terms of drift plasma fluid dynamics. The details of nonlinear
interaction of driving instability and self-consistently generated shear flow depend,
of course, on the peculiarities of the considered plasma dynamics.

In the case of edge localized modes (ELMs) in the scrape-off layer (SOL) plasma,
which is our main concern in the present paper, experimentally observed edge
plasma perturbations are usually of a flute-type character, i.e., look like a ”dense”
or "hot” plasma filament strongly alongated along the magnetic field {see, e.g.,
(15,16)). They are localized at the outside of the torus and exist even in the
case when pressure gradient near the edge plasma is well below the ideal balloon-
ing stability threshold (hence, no considerble magnetic perturbation is developed).
Such a features indicate that driving instability in the SOL is, probably, a kind of
pressure-driven resistive interchange (RI) mode akin to a flute-like mode in open
systems (this is because of a lack of closed magnetic surfaces in the SOL). Inter-
change instability is also akin to Rayleigh-Taylor instability in stratified fuid, so
that one can expect the onset of Bénard-like convection at the nonlinear stage of
interchange instability. Indeed, proposed in (17} and also considered in (18-22),
the model of self-consistent generation of Bénard-like convective cells with their
periodic rearrangement into the shear flow at the nonlinear stage of RI-instability
reproduces qualitatively well many important features of the ELMs.

In the present paper we consider further development of this model mainly
in the part concerning the effect of plasma density - electrostatic potential cou-
pling, i.e., a tendency to establish Boltzman distribution, which arises as a result



of dynamical force balance for inertialess electrons in the presence of pressure and
potential inhomogeneouty along the field lines. This is a well-known effect which
plays important role. for example, in drift plasma dynamics based on Hasegawa-
Mima equation. The point, however, is that the Boltzman coupling is usually
considered for the poloidally periodical perturbations only. L.e, only the deviations
of plasma density and potential from their poloidally averaged background profiles
are assumed to be inhomogeneous along the magnetic field and, hence, coupled via
electron longitudinal dynamics. At the same time, poloidally averaged background
profiles, as themselves, are supposed to be longitudinally homogeneous. In the bulk
plasma with closed magnetic surfaces this assumption is quite reasonable because
the poloidal averaging, iv this case, corresponds simultaneously to the averaging
along magnetic field line. But in the case of SOL plasma with open magnetic field
lines the procedure of poloidal averaging does zot necessarily correspond to the av-
eraging along the field line, and the background pressure and potential profiles are
not necessarily homogeneous along the magnetic field. In the toroidal SOL plasma
such a longitudinal inhomogeneouty of the poloidally averaged profiles seems to be
quite natural because of a certain asymmetry of the outer and inner parts of the
torus. Indeed, let us assume for a while that there exists longitudinally homoge-
neous poloidally averaged pressure profile in the SOL plasma, and that this profile
is unstable against, say, RI-mode, otherwise there is no driving force for turbu-
lent convection. This convection, in turn, causes deformation of the background
pressure profile, namely, its ﬁatter}ing, within a time scale of about one-turn-over

time of the conective cell, 7. ~ -= (here I, is the characteristic scale length
v

of convective cell, and v, is drift How veloeity in the cell; in the case of highly
nonlinear flow this velocity is about a sound speed c¢; ). Then, in the toroidal
geometry, the unfavourable curvature of the magnetic field lines, which is a driving
force of the RI instability, is localized on the outside of the torus. Respectively,
the growth of instability, accompanied by generation of convective cells, as well
as the corresponding flattening of pressure profile, takes place outside of the torus
only, while in the rest part of the SOL no driving force exists, and both the plasma
convection and pressure profile flattening are considerably suppressed. Hence, the
flattened background, i.e., poloidally averaged, pressure profile might be longitu-
dinally inhomogeneous with the characteristic scale length of inhomogeneouty ||

of the order of the torus length. Usually {; > [, , and the corresponding charac-

teristic time scale of heavy ion longitudinal dynamics, Tﬁz) ~ % , is much larger
than the convection time scale 7, , l.e, the longitudiral ion dgrnamics does not
play essential role and can be neglected. As for inertialess electrons, they react im-
mediately to any force disbalance along the field line and redistribute their density
in such a way that the longitudinal force balance is recovered, mostly through the
appearance of longitudinal electrostatic field. This process inevitably imposes the
changes in poloidaly averaged profile of the electrostatic potential which, in turn,
determines the poloidally averaged shear flow structure.

In the present paper, the described above mechanism of shear flow generation
is counsidered in the simplest case of a slab SOL plasma geometry in the plane
perpendicular to strong magnetic field, while the longitudinal plasma inhomogene-



outy and corresponding differential operators are treated in a ”finite-difference” or
"single-mode” approximation. This allows to consider still two-dimensional prob-
lem with taking into account some important features of three-dimensional plasma
dynamics.

The paper is organized as follows. In section 2 basic equations are introduced
and the model is described with some details. In section 3 the results of large scale
numerical simulation are presented which clearly demonstrate the onset of ELM-
like activity and shear flow generation. Two different regimes controlled by either
interchange instability or Boltzman coupling are found and discussed. In section
4 low-dimensional model of the phenomenon is considered. The conclusions are
summarized ir section 5.

2. BASIC EQUATIONS

In many respects, dynamics of scrape-off-layer plasma is described by two-
fluid magnetohydrodynamic equations which are the continuity and momentum
equations for the electron {e) and ion (i) components:

Mg

E‘FV(HQV )= O, (1)
@ 1
d;s :;—Z(E+§[v“xB1)— : VPt (v v v (2)
Here d;; Eaal+(va-V)v“; a=ei, B=ie; n,, v* and P, are den-

sity, velocity and pressure of the a-th component, respectively; 7.; is characteristic
momentum exchange time between ions and electrons closely related with plasma
electric resistivity; v, is the kinematic viscosity coefficient; other notations are as
usual.

Drift convection, which we are interested in, is relatively slow process in com-
parison with plasma oscillations, and charge separation effects are averaged out
on the convective time scale. In this case, with high accuracy, plasma is assumed
to be quasineutral, n, = n; = n, although an electrostatic potential of the plasma,
¢, is not necessarily equal to zero. Slow evolution of the electrostatic potential is
described by the equation for electric charge density, (n; — n.) , with averaged out
fast time derivative term,

v.-J=0, (3)

where J = e(n;v; — n.v.) is an electric current density. In explicit form, the rela-
tionship between equation (3) and evolution of the electrostatic potential becomes
clear when plasma dynamics, i.e., the velocity v**, is substituted explicitly (see
equation (8)). Then, the electron continuity equation (1) can be considered as the
equation for quasineutral plasma density = ,

on 1
E + VJ_(TLVJ_) — EVHJH =}, (4)
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where ”|[” and 71" stand for the directions along and across the magnetic field

B . respectively, i.e., for example. V, = (g V), V.=V - gv“ and so on.
Longitudinal part of the divergency V(nv) in equation {4) is expressed in terms
of electron longitudinal velocity only, t.e., in terms of longitudinal electric current,
Vy(nyy) = —2(VJy) , while the longitudinal dynamics of heavy ion is neglected.

In order to close the set (3) and (4) we have to express perpendicular flow
velocity v, and longitudinal current demsity Jy in terms of the principal variables
n and g .

Hereafter, we assume that the magnetic field perturbation is absent and, hence,
only the potential electric field E = —V ¢ should be taken into account in equa-
tion {2). Then, steady-state magnetic field in the SOL is as strong as this is in
the bulk plasma. So, in the main order of B~! expansion, the perpendicular flow
velocity v, corresponds to the [E x BJ-drif,

c c

V_._Zﬁ[EXB]:—B—Q—[BXVL@] (5)

Expression (5) follows from equation (2) with neglected pressure and inertia terms

which, however, should be retained in equation (3) for the electrostatic potential
(see below, equation (8)).

In the considered approximation, longitudinal component of electric current
density is determined by longitudinal electron motion only and can be found from
the momentum equation (2). For the inertialess electrons one obtains:

1 1
“Jyj= Vg +—VP,
i 1+ ~Vife (6)

m, ir e :
where o~ ! = 2e = 5~ is plasma resistivity. The momentum exchange time
TLE  Tes Teiwpe
scale T, 1s not specified in the present analysis, and it is sufficient to treat o
as a phenomenological plasma parameter (o = constant). For the same reason, it
is sufficient to assume that plasma temperature T is a constant as well. Then the

longitudinal part of electric current divergency can be written as

(Vi) =~ 0V (p + = In(n)). 7

Thus, in low-resistive, ¢~' — 0 . longitudinally inhomogeneous, Vy # 0 , plasma

the longitudinal electron dynamics tends to establish Boltzman distribution with
e

strongly coupled plasma density and electrostatic potential, n ~ exp(m%'i). Note
that equation (7} and, hence, Boltzman coupling effect are valid for the poloidally
averaged n and ¢ as well.

Substituting expression (7) into equation (3) and also using the general equal-
. 1 . . .
ity (Vy-J)=V L{ﬁ[B x {J1. x B]]} with the magnetic pondermotive force

[J1 x B] taken from momentum equation (2), one obtains equation for plasma
¢

B

flow vorticity, rotyvy = —Viy (or, equivalently, for the electrostatic potential).

Namely,
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CVipx ViVigh — Vi + yViVie =

TB3
= mn[ L( 5) X Vin]

~inn)). ®)

Here we neglect all the plasma mhomogeneouty and inertia effects retaining
only the most important ones: i) convective and diffusive vorticity transport (see
the left hand side of equation (8)), ii) an effective ”gravitational” driving force in

ThB3 1
Vils
M,Ne B
term in the r.h.s., respectively.

There exists analogy between interchange instability in magnetized plasma and
Rayleigh-Taylor instability in stratified fluid. It is based on the analogy between
magnetic curvature effect and gravity action. Indeed, in the case of Rayleigh-Taylor

a curved magnetic field, — ) x Vyin]y , and iii) Boltzman coupling

dv
instability, flow evolution is described by Euler equation, = —ge, — ;—)VP ,

where g is the gravitational acceleration along, say, the z-direction, and p is spa-
tially inhomogeneous mass density. Respectively, the flow vorticity, rot v, is

0 1
driven by the forcing term grot vV~ —[V(;) x VP] ~ g[ejc x Vp] where it is

assumed that, for slow fluid dynamics, pressure gradient is mainly determined by
its hydrostatic quasi-equilibrium value, VP = —gpe, . This gravitational driving
force is obviously analogous to the magnetic curvature driving forczze in equation (8)
with an effective ”gravitational acceleration” ¢ ~ %I VEB | %f (here R ~ [
is the tokamak major radius). z

So far, we considered three-dimensional plasma dynamics. Let us now simplify
the problem and reduce its dimensionality by representing the longitudinal dif-
ferential operator VE in its "finite-difference” form: V, —IH This, actually,
corresponds to a single-mode approach with the only characteristic harmonic in the
direction along the magnetic field. Such an approach is quite reasonable unless the
detailes of nonlinear flow (or waves) propagation along the field lines come to light.
In the present qualitative analysis we neglect any longitudinal plasma dynamics,
besides Boltzman coupling effect, and consider only "robust” longitudinal inhomo-
geneouty in the form of a bump-like localization of the instability-driven convection
mainly in the inner part of an open magnetic field line in the SOL, while outside
the covection region, if seeing along the field line, there exist unperturbed (e.g.,
not flattened) background plasma density and potential profiles, n, and ¢ , re-
spectively. In the simplest case, we assume that no externally driven plasma flow
exists in the SOL, i.e., ¢y =0 . Then, without loss of generality, we also assume

_o(m— )

that | n —np |« ny and, hence, Vﬁ ln{n) ~ -1 . With such a simplifi-

cations, system {4) and (8) can be written in the following dimensionless form (see
(17-26)):

ON
S+ [V.i@x VN + g—;{/’_ —03(® — N) = D, V2N, )
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ON )
+ [V xV.Vi®z + gp— — (@ - N)=p, V'O (10)

Yy
Here & = ad , N= M , gy and ﬂ)o are the characteristic density
T TLp0 dx P
and radial density gradient of the background SOL plasma, ny & nyo(1 + i(%) )
x

Then, xz,y and z are the Cortesian coordinates which correspond Iocally to ra-

dial, poloidal and toroidal directions, respectively. Dimensionless coordinates in the
dnb

e
perpendicular (1) plane are X = — and Y = Y where To & Mg | (—), |
Zo Zo dx
is the SOL width. Dimensionless time 7 = - is normalized by an effective Bohm
o

diffusion time scale f; = :co(—) ' . In these notations, shear flow component
d<d>
axX

corresponds to poloidally averaged poloidal velocity, < vy >= , Where

<D= — f (-)dY represents poloidally averaged quantity.

In system (9) and (10}, there are five dimensionless parameters though only

three of them actually, control the regime of flow evolution. Namely, param-
A D) ;e

eter gp = 2§(—) , where p, = cS\—B) is the ion Larmor radius, represents
0s

magnetic curvature effect and determines the growth rate of an ideal interchange,

Htrz }\ 2“"‘3

me p3l

or Rayleigh-Taylor, instability, vrr = /g5 . Parameter o, = con-

. . [T .
trols the coupling between interchange and drift waves { Ay = 7o; p— is the

€
electron mean free path which determines plasma resistivity along the magnetic
1

field). For perturbation with sufficiently large wave number, & > ( %)g , param-
eter o; determines characteristic time scale of a particular type of drift instability,
2k?

kyU 1
from linearized equations (9) and (10),

Ty & . This follows from the expression for instability growth rate obtained

o1ky
z—ED———+J%¢ +9p— — : 11

7 9% PYER B T (11)
where we neglect gy, for simplicity. The third control parameter, which is rather
phenomenological one, is the diffusivity D = D ~ p,. We assume that it is small
but finite, in order to suppress small scale length perturbations with & > k,, where

k. is a characteristic "cut-off” wave number. In the case when Boltzman coupling
(e8] ky

effect dominates, i.e., for 7,vgr < 1, this wave numberis k. ~ (2 D % )3 while
in the opposite case of 7,vpr > 1 itis k, = ’Y—ET . As this is also shown below,



the diffusivity D controls slow relaxation of stable shear flow structure towards the
instability threshold and, thus, determines the period of ELM-like flow evolution.
Other coupling parameter, oy = crl(g—;)? . is relatively small (this is because the
ion Larmor radius is small) and does not play essential role until finite Larmor
radius effect, i.e., the transition to Hasegawa-Mima equation, is considered.

In a hidden form, system (9) and (10) is also characterized by important geo-
metrical parameter, namely, the aspect ratio of the SOL, which is equal to dimen-
sionless length of the SOL in the poloidal direction, Y; . Usually, the SOL width
Zp is about 1 ¢cm while tokamak minor radius is about 0.5 m, so that the aspect
ratio is expected to be more than one hundred. However, for qualitative analysis,
1t 18 sufficient to consider its rather moderate value, say, Yy = 5, in order to model
self-consistent nonlinear dynamics of a long chain of instability-driven vortices with
about ten convective cells per the period ¥p.

Thus, in the present paper, we consider the following range of the parameter
values: g =0-10% 0,=0-10%, D=10"*-10"%and oy = (107* - 1070y,
which, hence, includes both the limiting cases of strong and weak Boltzman cou-
pling effect. Relatively small diffusivity value is chosen in such a way when it allows
the development of about ten Bénard-like convective cells per one poloidal period
Ya.

With such a parameters, governing equations (9) and (10) have been solved
numerically. The simulation domain (0 < X < 1; 0 <Y < 5) was implemented on
a 101 x 501 grid point, respectively. As the boundary condition, we assumed pe-
riodicity along the poloidal ¥'-direction with the period Y3 =5, and the free-slip
( V3® |x_g1=0) condition at the rigid wall, where it was also suggested that

® |x=01= N lx—0.2=0 . The initial small amplitude (less than 10~®) random per-
turbation of plasma density was considered, while the initial electrostatic potential
was not perturbed at all, ® [,—,=0.

3. SIMULATION RESULTS

Numerical simulation clearly demonstrates that, in all the cases within the
considered parameter range, large shear flow component with the poloidal velocity
< wy > ~ 1 is always generated, but its temporal evolution strongly depends on
the coupling parameter value.

Let us consider, for the begining, typical flow evolution in the case when Boltz-
man coupling effect dominates, i.e., when 7,7gr <1 (namely, we consider the
case of o1 =6, gg=1and D=7-10"%).

In Figure 1, few successive snapshots showing plasma deunsity (a) and poten-
tial (b) contour lines, as well as radial profiles of the poloidally averaged plasma
density (¢} and poloidal velocity (d), are presented for the very first cycle of shear
flow generation. For 7 < 15, linear growth of interchange instability is accom-
panied by the development of the most unstable mode with characteristic wave

number k& & §k“ ~ 14. Then, at the nonlinear stage, 15 < 7 < 20, the instability-

driven convection causes significant spatial redistribution of the poloidally averaged
plasma density profile (namely, its flattening) with corresponding rearrangement
of the electrostatic potential and, hence, flow velocity profiles. The flattening of
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(a)

(b)

(<)

(d)

FIGURE 1. Snapshots of the contour Hnes for plasma density (a) and electrostatic
potential (#) at the time moments r = 11;14;17;20;24; 40;60 (from left to right) cor-
responding to the very first cycle of shear flow generation. Poloidally averaged pro-
files of plasma density {c¢) and poloidal flow velocity (d) are also shown (the case of
g =1, o1 =6).



N ()

!
Py /A
+2 /—/
-2




density profile and generation of large shear flow component, which stirs and sup-
presses the convective cells, also arrest the growth of instability. As a result, in the
absence of free energy release, both the shear flow component and the perturba-
tion of radial density profile slowly decay within relatively long period é7 of quiet
evolution determined by plasma diffusivity. é7 = m = 39, (see time interval
]
20 < 7 < 60 in Fig.1). However, when the poloidal shear flow velocity becomes
sufficiently small and spatial distribution of plasma density approaches its initial
linear profile, the flow suffers another cycle of instability with the consequent gen-
eration of shear flow component (see Figure 2 which represents the second cycle
of shear flow generation immediately successive to the first one given in Figure
1). Besides very initial period, 7 < 15, flow evolution during all the other suc-
cessive cycles goes on in a similar periodical way and follows the same scenario
described above. The only difference concerns the shape of unstable plasma den-
sity perturbation. For 7 < 20, Rayleigh-Taylor instability grows in the absence of
any considerable shear flow component and is characterized by the development of
narrow, radially elongated spikes of dense plasma. In contrast, plasma density per-
turbation during all the successive cycles of shear flow generation is usually of the
form of poloidally elongated "bubble”. When such a ”bubble” approaches the wall

(see, e.g., the time moment 7 = 66 in Fig.2). plasma density gradient and, hence,
Yo N
particle lux, ¢ = D / (1-— (EXT)I xeoy) @Y, grow there significantly. However,
o Lx=0,
an efficient contact of the "bubble” with the wall takes place during a short period
of time only, &7 < 10, while during all the rest of a cycle the "bubble” is separated
from the wall by shear flow separatrix, and the corresponding particle flux value
1 T+Te
is small. Respectively, time-averaged particle flux, § = — / g d7, is reduced
Te Jr
and does not exceed considerably its value in the absence of turbulent convection.
This is clearly seeing in Figure 3.a where time evolution of both the fluxes ¢ and
g is shown together with temporal behaviour of shear flow kinetic energy per unit

1
length in the poloidal direction, W, = % (%)2 dXx.

0

In order to clarify the role played by Boltzman coupling effect in the ob-
served strong correlation between the processes of plasma density flattening and
shear flow generation, let us cousider temporal evolution of shear flow kinetic en-

> = Pp+ Pgp— @, and compare the driving terms which are the rate

dr
152 d 0P
of Reynolds stresses, Pr= — [0 i%_ < %—g—y > dX , the rate of Boltz-

H
man coupling, Py = —0a /0 <®>(<®>— < N>)dX | and dissipation rate,

1P <P>, _ . _
Q=D A (W_) dX . Temporal evolution of these quantities is shown in

erey,

Figure 3.b. One can easily see that Boltzman coupling effect always dominates over
Reynolds stresses and, hence, plays important role in flow evolution. Then, during
the phase of dissipative relaxation, the coupling rate Py goes down much faster than
the dissipative decay process as itself. This can be satisfactorily explained only by
the establishment of Boltzman distribution, < ® >=~< N > . Hence, Boltzman
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coupling effect controls flow evolution during slow dissipative relaxation as well,
eventhough, in this case, the dissipation rate ¢} formally exceeds the coupling rate

Pg.

12.44
8.0 ?' 0.12
—3
/ ;
3 g
> ~
T ~
)
z i
0.0
6.0 T T T 1
50.0 150.0
TIME TIME
a) b)

FIGURE 3.

(a) - ELM-like temporal evolution of the poloidally- (curve 1) and time-averaged (curve
2) density gradient at the wall, as well as the kinetic energy of shear flow component, W
(curve 3);

(b) - shear flow energy balance: the rates of Reynolds stresses {curve 1), Boltzman
coupling (curve 2) and dissipation {curve 3). The case of gg =1, g1 =6.

In the opposite case of 7,7z > 1 (namely, for gg = 7 with other parameters
unchanged), magnetic curvature eflect dominates, and flow evolution is changed
considerably. First of all, this concerns generation of saturated poloidally averaged
shear flow component. In contrast to the previous case, shear flow component,
being initially generated within the period of two inverse ideal growth rates ~vgr ,
is then maintained at the same saturated level < vy >=1 (see Fig.4, Fig.5 and
Fig.6, which are the analogies of Fig.1, Fig.2 and Fig.3, respectively, but corre-
spond to higher gp value). The corresponding poloidally averaged density profile
is flattened permanently as well. Hence, no considerable difference between the
particle fluxes g and § appears (see Fig.6.a). Both the fluxes exceed at least twice

12



(b)

(c)

(d)

FIGURE 4. Snapshots of the contour lines for plasma density (a) and electrostatic po-
tential (b) at the time moments 7 = 4;5;6; 8;10; 15; 20 (from left to right) corresponding
to the very first cycle of shear flow generation. Poloidally averaged profiles of plasma
density (¢) and poloidal flow velocity (d) are also shown (the case of gg =7, o1 = 6).
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T = 40; 42; 44; 46; 50; 56; 60

FIGURE 5. The same as in Figure 4 but for the time moments

(from left to right)

14



their values in the case of 7,vgr <1, what reminds degradation of plasma con-
finement in L-regime. However, an interesting feature of such a ”strange” L-mode
is the generation of steady-state shear flow component which, however, does not
suppress interchange instability (this is because gp is high enough) and co-exists
with instability-driven Bénard-like convective cells (see Fig.6.b). As the vortices
are strong, neither "spikes” nor "bubbles” are effectively separated from the walls
by shear flow separatrix, and this explaines degradation of plasma confinement
even in the presence of shear flow.

26.39 G 78
14. 0.05
3 —2
/ 2
s
3%
&
x
E 1 G.0
Z
'U \
2 A 2
7 4
\1
0.0 T 1 T ) T T
£0.0 120.0 0.0 120.0
TIME TIME
a) b)

FIGURE 6. The same as in Figure 3 but for gg = 7, o7 = 6.

In ( gg — o1 )-plane, the described above two different regimes of plasma flow
evolution , namely, ELMs and ”strange” [-mode, are separated by the curve

ToYrr ~ 1 or, equivalently, with the observed effective wave num-

o 2k
ber of the "bubble” structure kl ~ 1. Rather sharp transition from one regime
to another takes place while moving across the separatrix. For example, the
case gp =9, 01 =4 corresponds to typical "strange” L-mode, while the case
g =9, 01 =6 already corresponds to the ELM-like evolution, although with
relatively short ELMs period, about 50 % of its typical value observed in the case
of gg =5, o1 =10.
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4. LOW-DIMENSIONAL MODEL

The observed process of shear flow generation is, roughly speaking, a combina-
tion of four "robust” processes: i) density profile flattening via nonlinear convection;
generation of shear component via ii) Boltzman coupling effect {when density pro-
file is flattened) and/or iii) Reynolds stresses; and iv) slow dissipative relaxation of
a stable configuration towards the instability threshold. These processes, according
to the simulation results, seem to be irrelevant to the particular details of plasma
density and potential spatial structure and, hence, their description in terms of
low-dimensional model is quite reasonable. Such a model, if represents the process
qualitatively well, could help in scanning wider range of plasma parameters and
elucidate the physics of the phenomenon.

There exists well-known and successful example of such a low-dimensional
model, namely, Lorentz set for Bénard convection in unstably stratified fluid. In
Lorentz model {(but in our notations), the only flow structure taken into account is a
regular chain of vortices, ®% = bg‘) cos(kyY) sin(wX) . As for density structure,
it includes both profile flattening (the amplitude AS\?)) and a spike-like convective
deformation (the amplitude af\?)), so that N = A%‘} sin(27X) + ag\{“) sin(kyY) sin(nX) .
This model describes well many features of Bénard convection, so it is meaningful
to use the Lorentz set as a "kernel” of an extended low-dimensional model which
takes into account the effect of shear flow generation (this effect is not included
into the original Lorentz set).

One example of such an extended Lorentz model was considered in (18). How-
ever, Boltzman coupling effect did not play essential role in that simulation, and
shear flow generation was mainly controled by Reynolds stresses forcing. Respec-
tively, the density and potential structures considered in (18) did not represent
intrinsically the coupling effect.

In the present paper we consider another type of an extended Lorentz set which
is mainly oriented towards taking into account Boltzman coupling effect. In the
original Lorentz set, density representation already includes both the important
effects of profile flattening and spike- (or bubble)-like convective deformation, so
it is quite reasonable to use the same density representation in our model as well.
As for the representation of plasma potential, we have to explore the following
observations (see the Figures presented above): i) poloidally averaged potential
profile, < & >, is always akin to density perturbation profile, and ii) there exists
a tendency to establish Boltzman distribution, i.e., (® — N)-coupling. This means
that it is necessary (and, actually, sufficient) to include the density counterpart
into the potential representation. With such a minimal correction, we consider the
following density and potential structures:

N =4 sin(27X) + ay’ sin(kyY) sin(rX),

@ = Agsin(2nX) + [0S cos(kyY) + agsin(ky V)] sin(rX). (12)

Here (L} denotes an amplitude from the original Lorentz set. In the present

. . L. . 2rm
analysis, characteristic poloidal wave number, ky = v where m is the cor-
0

responding poloidal mode number, is not specified self-consistently and should

16



be considered as a parameter. According to simulation results described above,
poloidal mode number is about 10 at the verv first cycle of shear flow generation,
and it is reduced till m = 1 or m = 2 during all the successive cycles.

Substituting expressions (12) into the governing equations (9) and (10), we
obtain the following extended Lorentz set:

d A L mz? ) (o
d,rN = -nAY + 0240 — v, ay’ by’
d gtL o
;j_v = —/\gag’) + o208 + ;—:%bg) +7 Ag\f) bg’)
d b(L)
df = —Aby +ypalY) + € As ae (13)
fi
dag W o
o = Moe t ey’ — € As by
d As

01 (L)
= —A5A A
dr sAe + qm2 N

Here A =472D+ 03, Aa=k’D+ 0y, =M =k’D+ %, s = 4D + 4(112,
?m  27m __ gp2mm oy 2rm

— A VR Y g~ _ 2 2 202
g_kg%((yb) 37T), B k21/0:70 k2:k W+(Yb)

Last equation in the set (13) describes dissipative relaxation towards Boltzman
distribution for the poloidally averaged potential and density profiles. This is,
actually, the process of shear flow generation in the presence of the flattened density
profile (see Introduction). As this follows from the first and the last equations
(13), both the shear flow component and the flattening perturbation of plasma
density profile tend to zero because of dissipative relaxation with characteristic
dissipative time scale A;'. However, there exists a ”source”-term in the right-

hand-side of the equation for Ag‘), namely, the term with a%)bg), which generates

nonzero amplitudes Ag{?} and, hence, As. This "source™-term describes nonlinear
convective flattening of plasma density profile because of the development of a chain

of vortices (amplitude b(q,L)) with consequent spike-like deformation of density profile

{(amplitude ag‘)). In turn, convection is driven by the development of instability
which can be saturated by two nonlinearities arising from deformations of the
poloidally averaged density and potential profiles: i) change in effective density
gradient, ie., bEDL}A%) term in the second equation (13), and ii) stiring of the
vortices by shear flow component, i.e., the nonlinear terms in the third and fourth
equations (13). Complicated interaction of these effects leads to ELM-like temporal
behaviour of all the amplitudes.

Numerical solution of the set (13) is in a good agreement with the solution of the
original set (9) and (10). In principle, the described low-dimensional model could
be useful in the analysis of ELM activity in a wide range of plasma parameters.
However, such an analysis is beyond the scope of the present paper.
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5. CONCLUSIONS

We have studied, by two-dimensional large-scale numerical simulation, the pro-
cess of shear flow generation in the plasma which is unstable against the growth
of flute-like interchange perturbations. Particular attention was drawn to the ef-
fect of density and electrostatic potential coupling in longitudinally inhomogeneous
plasma. This effect is shown to play a significant role in the onset of shear flow
component.

Two different limiting cases of shear low generation and evolution are found,
depending on the importance of Boltzman coupling effect and driving force of
interchange instability (magnetic curvature effect). When the coupling effect dom-
inates, flow evolution is akin to ELM-activity in the SOL plasma with unessential
degradation of plasma confinement. In the opposite case, plasma transport is en-
hanced considerably, eventhough shear flow component still exists. Between such a
"strange” L-mode of plasma confinement, on the one hand, and ELM-like regime,
on the other hand, there are various ”transitional” regimes characterized by differ-
ent values of the frequency of ELM-like events. In the (gp — ¢1)-plane, however,
there exists rather sharp boundary between these two regimes qualitatively cor-
responding to the balance between Boltzman coupling effect and the interchange
instability driving force.

Low-dimensional model of the process is proposed. The model is based on
well-known Lorentz set for Bénard convection with new elements which take into
account shear flow generation and Boltzman coupling effect.
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