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Abstract

The behaviors of the nonlinear dipole vortex in the drft unstable plasma are studied by
numerical approaches. Model equations used in numerical simulation are derived from two-
fluid model and are composed of two equations with respect to the electrostatic potential and
the density perturbation. When the initial dipole vortex is inclined at some angle with respect
to the direction of the drift velocity, the dipole vortex oscillates or rotates in the firsi stage.
These phenomenon also happen in the stable system. In the second stage, one part of the
dipole vortex grows and another decays because of the destabilization. The shrunk vortex
rotates around the enlarged vortex. Consequently, a monopole vortex appears out of the dipole

vortex.
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§1. Imtroduction

The dynamics of the nonlinear dipole vortex in the uniformly magnetized plasma have been long
studied. Most of them were analytical and numerical investigations on the modon of Larichev
and Rezinik!), which is the anti-symmetry dipole vortex solution of the Hasegawa-Mima (H-M)
equation®) and propagates stably with constant phase velocity. The oscillation of the modon in
the propagation direction has been discussed by Makino ef. ¢l3). When the anti-symmetry line of
the modon is initially inclined at some angle with respect to the direction of the drift velocity, its
propagation direction oscillates. Although this initially inclined modon is not stationary solution of
the H-M equation. it propagates stably. They have explained this oscillation phenomena by using
the fact that one part of the modon is induced to move by the velocity field of the other.

It is important to investigate the behaviors of the modon in various situations, which include
such effects as shear flows, polarization drift and higher derivative of unperturbed density and ion
temperature. Su e? al have shown that in the presence of a sheared drift velocity the dipole vortex
separates into monopole vortices.*) It has been also shown that the higher order analysis through
a new technique based on a transformation of variables is much easier than a straightforward
iteration.9

In present paper, we study the dynamics of the dipole vortex which is initially the modon in the
drift unstable condition. Specifically. we investigate effects of the collisional drift instability in quasi-
two-dimension. A nonlinear formulation for the collisional drift unstable system has been performed
by Hatori and Terashima.”) If there exist an electron-ion collision, the Boltzmann distribution is
not valid and consequently the electric current flows parallel to the magnetic field. Therefore, the
drift unstable model are composed of equations with respect to the electrostatic potential and the
density perturbation. Kono and Miyashita have investigated the formation of a coherent structure
through turbulence in the course of nonlinear evolution of the collisional drift wave instability.®)
Their model equation is the Hasegawa-Mima equation with the effects of collisional drift wave
instability and viscosity damping.

Our model equations in the quasi-two-dimensional two-fluid system are derived in § 2. Numerical
results are demonstrated in § 3 for two cases, where the anti-symmetry line of the initial modon is
inclined and not inclined. It is concluded in § 4 that a monopole vortex emerges out of the dipole

vortex in the drift unstable system.

§2. Drift Unstable Vortex Model

~ Ions arc assumed to be cold for simplicity. so that the ion stress tensor is neglected. The phenom-
ena we are concerned are low frequency so that electron inertia is neglected. Two-fluid equations

in the present case are

0=—-Vp, —en.(E+v. x By) + R, {2.1)



11,7, (% + v, - V) =en{F +v, x By} — R, {2.2)

where p,.—¢.n, and v, are clectron’s pressure. charge. density and velocity. respectively, and
m,.n, and v, are ion's mass. density and velocity. respectively.”) The frictional force is defined by
R = —mncv (0.51up + v ). where v, is clectron-ion collision coefficient and thie relative velocity
u = v, — v,. and thesc expression are given by Braginskii.” The unperturbed maguetic field is
uniform in the z divectiou. By = Byz. The electric field is clectrostatic, E = —V¢. The electron
gas 18 the perfect gas. p. = n.T..

Equations of contimuity for both species e and ¢ are written by

In.
It

We assume the quasi-neutrality n, = n, = n. and n = ng{z)(1+n,;). where np{z) is the unperturbed

+V-(nsw) =0, (s=¢eor%). (2.3)

density with a gradient in z direction and ny is the perturbed density.
The electron and ion fiow velocities v, and », are obtained from egs. (2.1) and (2.2)
Ve = U4 + g+ VDL + Up)- {2.4)
v, =VE+ v, +VUp., {2.9)
where vg.,vg and v, are the electron diamagnetic drift, the F x B drift and the polarization

drift, respectively.”? Velocities vp and wpy are caused by diffusion due to electron-ion collision

perpendicular and parallel to the magnetic field. These velocities are defined by

T
ude:—eBeU;:v x Vlnmn,, (2.6)
zxV

vp = %‘ (2.7)

B 8
v, = ~;c°—z (E + v; - VL) V6. (2.8)
VD1 =—D_4_Vj_lnn€, (2.9)

2

‘UDH = D”V” (E - ].1'17’?,5) N (210)
where diffusion coefficients are D, = ve;T, /mewze and Dy = 1.967, /neve;. in which we =

—eBg/m.. Hereafter. we neglect vpy. since D) < D).

In order to obtain model equations, we introduce the smallness parameter e. which is € ~ e¢/Te ~

! aﬁ ~ :}:;UE -V ~ pQDVﬁ and p2V* ~ 1. where p2 =T./mw?, ph = Dy fwe

Wy O

s d
m ~ 2nglz) ~

and w., = eBy/m,. We obtained two model equations. conservation law of the potential vorticity

and the continuity equation of the current from cgs. (2.1)-(2.10). as follows:
i) o+ O
(———l—vE-V)In(w' + ):0 (2.11)
at )

Vi - (nw,) — nDyVi (;—‘b - inn) = 0. (2.12}

and



where Q = 2.V x vg is the z component of the vorticity. Equation (2.12) shows the balance
between the ion polarization current in the plane perpendicular to By and the electron current
parallel to By.

We introduce dimensionless variables by (z,y)/ps — (2,¥), 2/pp — 2z, wat — t, e¢/T. — ¢ and
Q/we; — w = V2 ¢. In the dimensionless variables, to the order of €2, model equations (2.11) and

(2.12) are replaced by

d .
(—8t+zxv¢-V)g:0 (2.13)
and
(—8+2xv¢-V)w—V2(¢——n)*0 (2.14)
Bt ; v ‘

where ¢ = w — n| — vz is the potential vorticity, in which 1y = dlnng(z)/dz is the unperturbed
density gradient. These equations are same as the Hasegawa-Wakatani equation if ion viscosity
perpendicular to the magnetic field By is neglected.!?)

The dispersion relation derived from eqs. (2.13) and (2.14) is w? +ioy[(1+ 4% Jw — w.] = 0 where
We = —kyiyp is the drift frequency and oy = (ky/k )? with ky and k) being wave numbers parallel

and perpendicular to the magnetic fleld By. The growth rate - is given by

1
v = =501+ k) + —=[of(1 + k1)?

1
22
+H{oj (1 + kD)* + 160jjwl} /272, (2.15)
and therefore always v > 0. This instability is caused by the second term on the left hand side of
eq. {2.14), which is difference between the electrostatic potential and the density perturbation. If
the Boltzmmann distribution is valid, that is n = ng(z) exp(e¢/Te) or n1 = ed/T., the growth rate v
is zero and eq. (2.11) is same as the Hasegawa-Mima equation. Therefore, it is important to include

the second term of eq. (2.14), Vﬁ (¢ — n1), in order to investigate the quasi-two-dimensional drift

instability.
From egs. (2.13) and (2.14), some relations are obtained, as follows:
9 [ S =0 (2.16)
o ) 1T '
%[wdsmﬂ[(qb—nl)dS:O, (2.17)
%/nldS—pf(qb-nl)dS: 0, (2.18)
W, _ 3 [(V.g)
o 8t] 3 99
iy f (¢ — 11)dS = 0. (2.19)
Wy a fu?
A
—p./w(qb —n1)dS =0, {2.20)



oWw; 0 nd
ot af,/ 2 @3
d¢
_/ [;,m;(gb — 111} + T B0 dsS = 0. (2.21)
Y

where the parameter g means the square of the wave nwnber parallel to z direction. p = kﬁ. and
Vﬁ = —kﬁ in eq. {2.14) is assumed. These equations describe time evolutions of flux of the potential
vorticity. circulation. nass. kinetic energy of the £ x B drift motion, enstrophy and space average
of the square density perturbation, respectively. We have introduced the quantities W, Wy and
W3 for later use. We ensured the accuracy of the numerical simulation by checking relations (2.16)-
(2.21) in § 3. It is noted that under the transformation, z — —z. ¢ — —¢, n; — —nj, the basic
eqs. (2.13) and (2.14) do not change the form. In other words. the equations have anti-symmetry
against y-z plane. This anti-symmetry property is utilized in § 3 to confirm the preciseness of

nurmerical results in case of the non inclined propagation of the modon.

$3. Numerical Simulation

We carry out the numerical simulation of eqs. (2.13) and (2.14) in order to investigate the
stability of the dipole vortex. As for the initial condition we used the dipole solution. the so-called
modon. which is a stationary solution of the Hasegawa-Mima equation. It is written in the polar

coordinate system (r,8) by

(3.1)

[AJ1(kr) + arjcosé  (r < rg)
¢(r.0) =
BKi(pr)cosd (r > 7o)

where rg is the separatrix radius. r = (z? + y2)1/2, A=—(u+ V@)T@/k2J1 (krg), B = ury/ K (pro).
o =u+ {u-+1y)/k%, and the propagation speed of the modon v is given by

u:v0/(p2—l). (3.2)
From the formula (3.2). the value of u is limited by » < 0 or u > {ig], when 1 is negative. A

parameter k£ is related to p by the continuity relation of the derivative 8¢/0r at r = rg as follows:

Ja(kro) _ _kKa(pro)
J1(kro) pKi(pro)

Initial condition is however not limited to the modon solution. We use also inclined modon

(3.3)

sohutions which are obtained by transformation of the angle variable ¢ to  — 6y in the solution
(3.1). We call the angle 6y the declining angle.

Our numerical code is based on an explicit finite-difference method with fourth order accuracy
in both space and time. The simulation domain is implemented on 512 x 512 point grids. The
periodic boundary conditions are imposed at both 2 and y boundaries, which are distant from the

separatrix of the modon.



3.1  Time evolution of dipole vortex
The initial profiles are true modons, that is, the case where 3 = 0. When v = 0.24,79 = 1.0, =
—0.2 and p = 0.1, a time series of the electrostatic potentials ¢ in the frame moving with the phase

velocity « of the modon is shown in Fig. 1. Figures on the left hand side are contour plots of ¢
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Fig. 1. A time series of contour plots of the electrostatic potential ¢ and profiles as a function of y in the frme
moving with u = 0.24. Parameters are rg = 1.0, = —0.2, g = 0.1 and ¢y = 0. The initial profile is the modon of
eq. (3.1). A part of the dipole vortex on the left hand side of the contour plot has negative potential, and another

part has positive. Values of contour lines are shown int detail at upper center of the figure.

in z-y plane and others are profiles of ¢ as a function of y. The dipole vortex propagates slightly
faster than the phase velocity u. Anti-symmetry with respect to the y-axis is kept every time in
Fig. 1. The pulse height does not change. but its backward side of it against the propagation
direction is shaved slightly.



In Fig. 2. ouly the phase velocity of the modon u is changed to —0.1 and other parameters are

same as in Fig. 1. Anti-symmetry is also kept. but the pulsc height decreases and the propagation
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Fig. 2.

moving with « = —0.1. Parameters are 7o = 1.0,29 = 0.2, g = 0.1 and 8y = 0. The initial profile is the modon of

A time series of contour plots of the electrostatic potential ¢ and profiles as a function of y in the frme

eq. (3.1). A part of the dipole vortex on the left hand side of the contour plot has positive potential, and another

part has negative. Values of contour lines are shown in detail on upper center of the figure.

speed increases. A point of difference from Fig. 1 is emergence of finite wakes after { = 12. They
propagate much slower than the dipole vortex and decay soon. The propagation speed of the dipole
vortex becomes larger since the wakes push the dipole vortex toward the propagation direction.
The dipole vortex is shaved to produce wakes. The wakes are eventually exhausted.

In order to check the numerical error, time evolution of the quantities W;. Wy and W3 defined

through eqs. (2.19)-(2.21) are shown in Fig. 3. If the numerical procedure was precise, these



quantities should be equal to zero at any time. However, numerical integrations of egs. (2.19)-
(2.21}) give non-zero values of Wi, Ws and W3.
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Fig. 3. Time evolution of the quantities Wi, W and W3 defined m eqs (2.19)-(2.21), when the parameters are
samne as in Fig. 1. These quantities are analytically equal to zero. This plots are used to check the accuracy of the

numerical results in Fig. 1.

3.2 Rotation and oscillation of inclined dipole vortex

When anti-symmetry lines of initial profiles are inclined at fy = —40° with respect to the y-axis,
we show a time series of contour plots for the electrostatic potential in Fig. 4 and profiles of the
potential ¢ in Fig. 5. Phase velocities w of modons in (a), (b) and (¢) are 0.24,0.4 and —0.1,
respectively. Other parameters are such that u = 0.1, 15 = —0.2 and rg = 1.0 in all cases.

In Figs. 4 and 5. the dipole vortex of case (a) rotates, and a positive vortex grows and negative
one decays. Here, a positive (negative) vortex means a part of the dipole vortex with a positive
(negative) value of a potential ¢. The vortex of case (b) propagates in the similar way of case (a),
but a negative vortex decays faster than case {a). For case (c¢), which is quit different from cases
{a) and (b). the dipole vortices oscillate.

Either rotating or oscillating is decided by the propagation direction of the dipole vortex. If the
vortex propagates toward positive y direction, that is, 0 < u < |ig]. the dipole vortex rotates, but
it oscillates ¥ u < 0.

When the declining angle &g is +40°. behavior of vortices are same as the result of 6y = —40°,
except that a negative vortex survives as compared with one in the previous case. For example,
when the declining angle only changes fy = +40 in case (a), absolute values of any variables are

equal to ones of case (a) and the trajectory of the vortex has mirror-symmetry with respect to the
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Fig. 4. Contour plots of the electrostatic potential ¢ in the frame moving with the phase velocity u of the modou.
Parameters are rp = 1.0.1yp = —0.2.p = 0.1, and » = 0.24,0.4,—0.1 in (a)}, (b), (). respectively. In the initial
condition, an anti-symmetry line of dipole vortices are located at —40° with respect to the y-axis. Dipole vortices

of (a) and {b) rotate. In case (¢}, the dipole vortex oscillates.
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Fig. 5. Profiles of the electrostatic potential ¢ in the frame moving with the phase velocity u of the modon. Pa-
rameters are same as Fig. 4. In the inisial condition, an anti-symmetry line of dipole vortices are at —40° with
respect to the y-axis. Dipole vortices in {a) and {b) propagate toward positive y direction. In case (c} the vortex

propagates toward negative.
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Rotation angle of the dipole vortex

(degrees)
350 T

Fig. 6. Time evolution of the rotation angle. Parameters ro. vy. g, and ¥ are same as in case (a). The mark +
means time evolution of the angle when the declining angle is 8y = —40°. The mark X is at 8, = —20°

y-axis.
Figure 6 is time evolution of the rotation angle of the dipole vortex in two cases 8y = —40 and
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Fig. 7. Time evolution of the quantities W1, W> and Wi defined in eqs. (219)-{2.21). when the parameters are

same as the case (a) in Figs. 4 and 5. These quantities are analytically equal to zero. This plots are used to check

the accuracy of the numerical results in case (a) of F igs. 4 and 5

—20. The rotation angle increases with the time ¢. The plot of fy = —40° increases rapidly as

compared with case flg = —20°. Therefore, the rotation speed of the dipole vortex is an increasing
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Fig. 8. Contour plots of the electrostatic potential ¢ in z-y plane and the profiles of ¢ as a function of y. These
plots are for the drift unstable vortices. Parameters are v = 0.24,r0 = 10,00 = —0.2, u = 0.1 and = —40°.

function of the declining angle #y. Figure 7 is a sample in order to check these simulation.

§4. Discussion and Conclusion

When the initial dipole vortex is not inclined, finite wakes appear, the pulse height decreases and
the propagation speed increases. We discussed these phenomenon in the previous section.

Hereafter, we discuss the mechanism of the rotation of the dipole vortex in detail. Figures 8 and

12
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Tig. 9. Contour plots of the electrostatic potential ¢ 1 z-y plane and the profiles of ¢ as a function of y. These
plots are time evolution of the modons based on the Hasegawa-AMima equation. Parameters are v = 0.24,r9 =

10,29 = ~0.2 and p = 0.1.

9 are time evolution of the dipole vortex in the unstable and stable system. respectively. Figure 8
in time interval ¢ < 30 is same as the Figs. 4 and 5. Parameters u, rp. 19 and 8y are same values
of case (a) in the previous section. Figure 9 is based on the H-M equation.

We can separate behaviors of the dipole vortex in the unstable system into two stages, when we

compare it with the stable system. In the first stage, ¢ < 20, the dipole vortex in Fig. 8 seems

13



to behave similar to the one in Fig. 9. At ¢ = 10, the dipole vortex in both cases moves toward
positive z direction, which is the low unperturbed density side. The oscillation mechanism of the
vortex has been explained in the stable system by Makino et al.3! In the early stage of the unstable
system we can explain in the similar way. From eq. (2.13), the potential vorticity ¢ = Vigb—gé—vo:r
is conserved along the trajectory of the vortex, so that V2 ¢ — ¢ decreases and consequently the
electrostatic potential ¢ increases. In Fig. 9, due to the induced flow from the enlarged positive
vortex, the shrunk negative vortex rotates clockwise around the positive vortex.

In the second stage, t > 30, the distinction between two behaviors in stable and unstable cases
is evident. The stable dipole vortex continues to propagate across the y-axis to the high density
region, rotates clockwise with 180° and recovers the original shape of the dipole vortex in the initial
condition. Then it rotates counterclockwise with 180° to recover the initial configuration. In the
unstable system a small negative vortex continues to rotate around a large positive vortex, since
the small vortex does not recover in the drift unstable system. The maximum value of growth rate
v in eq. (2.15) is about 0.025. The expected time 7y of destabilization is estimated 40 which is
consistent with the simulation. At ¢ = 30, which is earlier than 7, the vortex starts to deform from
the counter part of the stable case because of nonlinearity. However, we cannot yet understand the
mechanism of the unstable dipole vortex in detail and it is the future subject.

In conclusion, only a single vortex survives finally in the unstable system. In the other words,
a monopole vortex is produced in the process of relaxation of dipole vortex. On the other hand,
the dipole vortex in the stable system oscillates between the two states of dipole vortex. and never

disappear.
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