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Abstract

CAS3D and TERPSICHORE have been designed to analyze the giobal ideal MHD sta-
bility of three dimensional equilibria. Their critical part is to obtain the smallest eigenvalue
and its corresponding eigenvector of a large but sparse real symmetric band matrix. In
CAS3D the inverse iteration have been applied to do this and the spectral shift is computed
by EISPACK eigensolver. It has been shown that application of such kind of software be-
comes very expensive in the sense of computational time and storage when matrix order and
bandwidth become very large. Here this problem is resolved by using the Lanczos algorithm
which is economical in CPU time and storage and particularly suitable for very large scale
problems. The version of CAS3D2MN with shift-and-inverse Lanczos algerithm is called
CAS3D2MN~+1. Practical calculations in CAS3D2MNv1 indicate that the shift-and-inverse
Lanczos recursion needs only 15 ~ 20 steps to calculate the smallest eigenvalue. The
computation is reliable and efficient. The storage is much smaller and CPU time is saved
significantly by 50 ~ 100 times compared with EISPACK subroutine. Finally the balloon-

ing mode in three dimensional MHD equilibria has been mentioned briefly.

Keywords: Lanczos recursion with no re-orthogonalization, shift-and-inverse Lanczos recur-

sion, Lanczos Phenomenon, gap stiffness, CAS3D2MN, CAS3D2MNv1.
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1 Introduction

One of the important part in ideal MHD stability analysis is to solve the
eigenproblem (e.g. CAS3D [1] and TERPSICHORE [2])

Pz = Kz (1.1)

where P and K, arising from finite element approximation and Fourier decom-
position, are potential and kinetic energy, respectively. Both are symmetric
matrices. Furthermore, K is positive definite. By non-physical normalization

Eq.(1.1) can be converted into

Az =)z (1.2)

as 1s done in CAS3D [1]. A is a large but sparse real symmetric matrix with
order n and upper half bandwidth b, b < n. In our applications, n is from
8435 to 120081 and & from 104 to 602. The set (A, ) is called the eigenelement
of A.

In CAS3D and TERPSICHORE, the following inverse iteration (see e.g.

)

for k=1.2...
Solve (A — ewshift I)z¥ = %!
ot = 2F /|22 (1.3)

AF = kT A gk
end
has been applied to calculate the smallest eigenvalue and its corresponding

eigenvector, in which the spectral shift ewshift in Eq.(1.3) is given by EIS-

PACK [4] subroutine (for CAS3D):

ewshi ft = \n; (by EISPACK subroutine) (1.4)
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But EISPACK cigensolver is not suitable for eigenproblems of very large but

sparse matrices such as in CAS3D2MN in the following three aspects:

e the given matrix will be modified during the computation and fill-ins are

inevitably brought in. So its sparsity will be destroyed.

o O(n?®) operations are needed to run because of application of the orthog-

onal similarity transformation.
o O(n?%) words must be specified for storage.

which greatly limit the size of problems we can handle.

In our calculations, when the radial grid points increase from 120 to 300
and Fourier harmonic number from 35 to 201. respectively, the EISPACK and
LAPACK [5] routines have failed to calculate ewshift in 10 hours on 5X
system at NIFS. So it is natural for us to consider Lanczos recursion without

re-orthogonalization which supersedes the above softwares:

e The given matrix A enters the recursion only through the matrix-vector

multiplies Ax and its sparsity will not be modified during the calculation.

o For a sparse matrix, operations required to generate the Lanczos matrices
using the recursion without re-orthogonalization is O(n?). and storage

requirements is just O(n).

It is just the above advantage that makes the Lanczos algorithm without re-
orthogonalization be particularly suitable for and extensively applied to very
large and sparse matrix problems [6-13].

In fact in our experiences. the smallest eigenvalue computed by Lanczos

recursion without re-orthogonalization is as accurate as the value after inverse



iteration and we can replace the inverse iteration in original code CAS3D2MN
by directly caleulating its corresponding eigenvector of Lanczos matrix T, and
then calculating the Ritz vector of original matrix A. But here we don’t want
to do so, since the required CPU time in inverse iteration is much smaller than
that in ewshi ft estimation when ewshift provides a good approximation to
the smallest eigenvalue.

We use the standard notation to distinguish scalars (lower-case italic let-
ters), vectors (lower-case bold letters) and matrices (upper-case bold letters).

All quantities are real and the only norm we use is the Euclidean norm

lgll = vqTq, llA] = Sup, lAg]] (1.5)

2 Lanczos Algorithm without Re-orthogonalization

'The Lanczos recursion is a method for replacing the eigenproblem of a given
symmetric matrix A by eigenproblems on a series of simpler Lanczos tridiago-
nal matrices, given as T',,. Subsets of eigenvalues of these tridiagonal matrices
are selected as approximate eigenvalues of the given matrix A. Their ap-
proximation accuracy depends on the magnitude of the last component of the
corresponding eigenvectors of T',, as long as the eigenvalues being considered
are 1solated eigenvalues of the associated Lanczos matrix.

Let A be a real, symmetric matrix of order n. Its corresponding Lanczos
matrices can be given by the following recursion, which is highly recormmended
by Paige [6] and widely used [7-13] due to finite computer precision. Define
b1 = 0 and g4 = 0, and choose q; as a random vector with [|g, = 1. Then

fori=1,2,...,m define Lanczos vectors g; and scalars o; and 5, by



'jz+IQz+1 = A(L - ‘),sz—] — a4,

_ Ty 3 3
@ = g, {Agq, ' g —1) (2.1)
|‘jz+1| - “AQ1 - ’31QL—1 - G"QI”
HQZ+1” =1

The 0,g, and the J,q,_; are, respectively, projection of Ag, onto g, and g,_;.

For cach m. the corresponding Lanczos matrix T, is defined as the real

symmetric and tridiagonal matrix

-0l B -
3-2 [43)
T, = (2.2)
Qm-1 Sm
L Fm Om
in compact form
AQm - Qme “+ .3m+IQm+le£ (23)

where Q., = (). 9>. ... ¢} and €], = (0,...,0,1). Thus, given a real sym-

metric matrix A and a starting vector g, the Lanczos recursion generates a

family of real symmetric tridiagonal matrices related to A and to g, through

(2.3). So problem (1.2} is equivalent to solve

Tny = py (2.4)

where the set (u, %) corresponds to the eigenpair of the Lanczos matrix Ty,
Clearly only

e storage for generating the matrix-vector multiplies Ag; ,
e storage for only two Lanczos vectors g, and g, _; of length n.

e space for the tridiagonal Lanczos matrix T, itscl.



should be specified, and arithmetic operations mainly come from calculating
Agq;. So the operation counts just grow as the square of n and the storage
requirements are just a linear function of n when matrix is very sparse. In
CAS3D2MN the ratio of zero entries to non-zero entries is about n/2b ( usually
7 100) and the matrix is very sparse. Thus the square dependence of arithmetic
operations and linear dependence of storage requirements allow us to work
with sufficient large problems needed by MHD stability analysis.

Our implementation of the above recursion is based upon the following fact

called Lanczos Phenomenon:

Given any real symmetric matrix A, then for large enough m,

every distinct eigenvalue of A will be an eigenvalue of T,,.

and the identification test:

the convergence of the eigenvalues of the

Lanczos matrices as the size m is increased.

We choose the necessary number of Lanczos steps m automatically. Sup-
pose p’ and p” are the smallest eigenvalues of successive Lanczos matrices T,
and T ( m' # m” ). If the difference i/ — p”| between g and 4" is smaller
than the given convergence tolerance, we then set u = i/ = y”.m = m” and
compute the magnitude of mth component y{m) of s eigenvector y ( of T,

)- This is according to Paige [1980] (see e.g. [7]):

For a given m and for any isolated eigenvalue u of the Lanczos
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matrix T,,. there exists an eigenvalue A of 4 such that

A = u] € 2.5 31 g(m)](1 + 2¢0) + 261 Alm'7 (2.5)

where ¢ and €, are related to machine precision €. and satisfy 4m(3eg+e;) < 1.
The term ¢, = {Gn41y{m)| plays the key role in estimating the convergence
of computed eigenvalue g. That is, if the last component y{m) is very small,
eigenvalue u will be a good approximation of eigenvalue A of A.

We use inverse iteration (1.3) to compute y(m) of the corresponding Lanc-
zos matrix T... In our experiences, the above g will be as accurate as what
have been computed by EISPACK or LAPACK subroutine. At each itera-
tion only the incremental scalars a,, J,4+1 have to be generated. The Lanczos

recursion with no re-orthogonalization can be given as:

e step 1. Specify an initial Lanczos step m < n, increase step k£ > 0, and

convergence tolerances CONTOL1 and CONTOL2.

e step 2. Putting m = m + k, generate the real symmetric tridiagonal

matrix T, by recursion (2.1) and keep q,, and q,,., for next iteration.
e step 3. Compute the smallest eigenvalue u of the Lanczos matrix T',.

e step 4. Select u which appeares in successive T, by CONTOL1 and

compute its convergence by inverse iteration method (1.3).

e step 5. If convergence is observed by CONTOL2, accept u as the ap-
proximation of A,,,, of the given matrix A and terminate. Otherwise, go

to step 2 to enlarge T',.

=1



In CAS3D2MN, the matrix A is indefinite. Its negative eigenvalues indicate
MHD instability. However. A is rich in positive eigenvalues with magnitude
as large as ~ 10°. The number of negative eigenvalues is few and their mag-
nitudes are as small as ~ 1073, Particularly, these matrices have gap stiffness
behaving like what Cullum and Willoughby called the worst case [8]. Here the
large positive eigenvalues rather than the negative eigenvalues are dominant.
Recursion (2.1) converges very slowly by direct application to A. But this re-
cursion is accelerated significantly by shift-and-inverse recursion which is the

topic of the next section.

3 shift-and-inverse Lanczos Algorithm

In CAS3D2MN, the bad gap stiffness slows down the convergence of desired
eigenvalues when the Lanczos recursion (2.1) is applied directly on A. This
leads us to apply the Lanczos recursion (2.1) to A™1. With this transformation,
the desired part of spectrum becomes dominant. The Lanczos recursion is
accelerated in the sense that the size of the Lanczos matrix required to obtain
the desired eigenvalues is much smaller.

Since it is not wise to work directly with such a poorly-conditioned matrix,
we used the better-conditioned, positive definite, scaled and shifted matrix:

C ={A+ SHIFT I)/S0 (3.1)

SHIFT is carefully chosen to shift A to be a positive definite matrix and S0
1s used to scale the given matrix A. The sparsity of C is the same as that of 4
and the eigenvalues of A can be easily obtained from those of C by performing

sparse Cholesky factorization



c=U"U (32)
Here C is overwritten with upper triangular matrix U which has the same
upper bandwidth as C. Then for any given vector g, the vector p = Clq
can be evaluated efficiently by solving sequentially two triangular systems of

equations

U'Up=gq: Up=q  Up=p (3.3)

The shift-and-inverse Lanczos algorithm can be formed as follows:

C = UTU( Cholesky factorization of C)
Put q, = 0,3 = 0. and choose g, as a random vector with [{g|| =1
Fori=1tom do
q=4q;
Up=g
Ug=p
qg=q~-Fi1q;,
0i=qlq
q=4q—0:q;
8. = llall
if (3; = 0) then

911 = 0

stop
else

ity = q/B;
endif

(3.4)

Although each step using C ™" is more expensive than a corresponding step
using A, the large decrease in the number of Lanczos steps required and the
fact that the factors are also sparse, yield overall large gains in storage and
time. The convergence is sped up remarkably by working with C ~! rather than
directly with A. The smallest eigenvalue has been computed in only 15 ~ 20

Lanczos steps.



Suppose (4, y) is an eigenpair of T,.ie. T,y = uy, then

(A - SHIFT I)/S0]7'Q,,y — 1Q,yl| = |5msry(m)] (3.5)

and the eigenvalue A of A can be evaluated as

Az =Ax <= [(A - SHIFT I)/S0]"'& = [(A - SHIFT)/S0| & (3.6)

SO

(A—SHIFT)/S0 =yt (3.7)

that is

A=50/u+SHIFT (3.8)

4 Application

The original Lanczos recursion given by (2.1) and the shift-and-inverse Lanczos
recursion given by (3.4) both have been applied to solve the eigenvalue problem
resulting from the ideal MHD stability analysis in a three dimensional MHD
equilibrium. As an equilibrium, L/Ny = 2/10 planar axis equilibrium like one
in the Large Helical Device (LHD)[14] is used where L and Ny are the polarity
and the toroidal field period of the helical coils. respectively.

As is mentioned in Refs.[15] and [16] by using high-mode-number analysis
of the ballooning modes, there are two types of ballooning modes in such
three dimensional equilibria. One is tokamak-like ballooning mode with a
weak three dimensional effect (a weak toroidal coupling), and the other is

inherent to the three dimensional equilibria, and has not only strong poloidal
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couplings but also stroug toroidal couplings. The former’s level surfaces of
the unstable cigenvalues A are topologically cvlindrical in (. 6p. ) space, and
the latter's level surfaces are topologically spheroidal in (v. 8. a), where ¢
and a are labels of the flux surfaces and magnetic field lines. respectively,
and 6, is the radial wave number coming from the eikonal approximation. As
is well known, there is no a-dependence of A in axisymmetric tokamaks. In
the strongly Mercier unstable three dimensional equilibria, high-mode-number
ballvoning modes with cylindrical level surfaces of A and modes with spheroidal
level surfaces of A coexist. In contrast with it, in the slightly Mercier unstable
or completely Mercier stable equilibria, only high-mode-number ballooning
modes with spheroidal level surfaces of A exist.
To check the performance of the Lanczos recursion methods given by Eqgs.(2.1)

and (3.4), a strongly Mercier unstable equilibrium is used. Since the used three

dimensional equilibrium has Ny = 10 field period in the toroidal direction,

perturbation is taken to belong to N; = 5 mode family and the phase factor,
which is used in order to select the Fourier modes of the perturbation in the
desired Fourier spacefl], is chosen to be (M, N) = (8, -5).

At first, in order to clarify the properties of the matrix in Eq.(1.2), we state
the definition of gap stiffness and matrix stiffness [7] which greatly affects the

convergence of Lanczos recursion.
Definition. For a real symmetric matrix A with distinct eigenvalues Az, >

Ap, > -+ > Ap,, define the minimal gap g; for each eigenvalue Ay ,1 < 7 <5

as follows:
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g1 = (Akl - Akfz)
g3 = (Aks - Ak.efl) (4'1)
gi =minfdg, = Mg, Ak — M), for j=2,...s-1

7173
The overall gap stiffness is defined by

54(A) = maxg;/ min g; (4.2)
and the matrix stiffness by
§(A) = max |\;]/ min || (4.3)
7 7

As the gap stiffness increases, the degree of difficulty in computing the desired
part of spectrum with small gaps increases.

The overall MHD spectrum is given in Fig.1, where the number of the
Fourier modes of the perturbation L and the number of the radial meshes NS
are 35 and 120, respectively. The positive eigenvalues are clearly dominant
and the left half of them are much more larger in amplitude compared with
the right half part. From left to right, eigenvalues decrease monotonically. The
most right end is magnified and we can see only a few negative eigenvalucs.

"The eigenvalues have been scaled by the function sinh™'(ax) with o = 10°
in Fig.2. The gap stiffness corresponding to Figs.1 and 2 is shown in Fig.3.
The stiffness is so locally distributed at the left half part that it is difficult to
distingush the stiffness of each eigenvalue. The right end stiffness, which is also
magnified, is very small. This is the reason why the original Lanczos recursion
given by Eq.{2.1) does not work well. In the parameters used in Figs.1-3, it has
taken us as much as 2n steps to obtain the negative eigenvalues and 11n steps
to obtain the smallest eigenvalue, where n is the matrix order. Obviously, it
13 the location of desired eigenvalues in the spectrum, the local separation of
eigenvalues, and primally the overall gap stiffness of matrix A which determine

the convergence of the desired eigenvalues as the size m of T, is increased.

12



This original Lanczos recursion is sped up significantly by introducing a
shift and using the inverse of the shifted matrix in the recursion. namely.
by the shift-and-inverse Lanczos recursion given by Eq.(3.4). The storage is
same but CPU time has been decreased counsiderably. The comparison of the
shift-and-inverse Lanczos recursion with EISPACK and LAPACK routines 1$
given in Table 1 for calculating the smallest eigenvalues. Only the number
of Fourier modes L and the number of the radial meshes NS are changed as
shown in the first column in Table 1, which leads to the variation of the matrix
order n and upper half bandwidth b. The SHIFT in Eq.(3.1) is chosen to be
0.01. From the second column to the sixth column, the smallest eigenvalue.
the matrix order, the storage?, the CPU time. and the speedup rate of the
recursion (3.4) compared to EISPACK are shown. The name of algorithm is
marked at the right end of the Table, for which the data in the same row have
been used. From the table we can see that LAPACI subroutine has relatively
smaller storage requirement but more CPU time compared with EISPACK.
For shift-and-inverse Lanczos recursion (3.4), usually 15 ~ 20 Lanczos steps
are enough. That is, the smallest eigenvalue of Lanczos tridiagonal matrix T',
with order 15 ~ 20 is a good approximation of A’s smallest eigenvalue. Its
storage requirement is much smaller compared with EISPACK and LAPACK,
and 50 ~ 100 times of speedup are achieved ecasily. In the final part of the
table where V.S is increased upto 300 and L upto 201, EISPACK and LAPACK
have failed to calculate An... in 10 hours, but for recursion (3.4) only 903sec
are sufficient. From this point, the shift-and-inverse Lanczos recursion (3.4) is
a quite efficient tool in MHD stability analysis where EISPACK or LAPACK

software may fail.

2The storage requirement is mainly determined by matrix order and bandwidth. Storage
size for EISPACK is an approximate value but there is only a little difference.
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Figure 4 is the radial structure of the ballooning mode in the strongly
Mercier unstable three dimensional equilibria, where A 7 = 1 mode family is
used with the phase factor (M, N) = (133, —77) [1]. radial mesh NS = 600,
Fourier harmonics L = 273, and Anin = —1.0991 x 102 Storage require-
ment by CAS3D2MNv1 is 1.178GB and CPU time for A, is about 721lsec
while EISPACK or LAPACK can not perform. In Figure 4. we can see dif-
ferent toroidal mode number coupling to creat ballooning mode in the three

dimensional MHD equilibria.

5 Conclusion

The Lanczos algorithm without re-orthogonalization is reliable in our calcula-
tion. The shift-and-inverse Lanczos recursion is very efficient in solving large-
scale eigenproblems, such as ideal MHD stability analysis in this paper. It
provides a possible tool for us to work with more complicate problems. The
detail description for ballooning modes in the three dimensional MHD equilib-

ria will be given elsewhere.
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Figure 1. The distribution of MHD spectrum for a three dimensional MHD equilibria
obtained by CAS3D2MN. The perturbation belongs to the N = 5 mode family with
the phase factor (M, N) = (8,—5). The radial mesh number NS is 120, and the
total Fourier mode mumber L is 35. Ane = —2.14952 x 1073, A,,00 = 6.47634 x 106,
S(A) = 8.70109 x 107, The positive eigenvalues are dominant and the negative
eigenvalues are small in number and magnitude.

-10 | 1 1 1 ! 1 | ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 2. Scaled MHD spectrum of Fig.1 by sinh ™ (az) with o = 10°.
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Figure 3. Gap stiffness for spectrum in Figs.1 and 2, where g = 4.07164 x 1075,
Gmaz = 3.54277 x 102, and S,(A) = 8.70109 x 107. The Lanczos steps m in Eg.(2.1}
for Apmen 18 110,
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Figure 4. Ballooning mode in the strongly Mercier unstable three dimensional MHD
equilibria. where (M, N) = (133, -77), (NS, L) = (600,273). There are 4 groups
with different toroidal mode numbers. From left to right, the toroidal mode number
of each group is -67, -77, -87, and -97. The corresponding poloidal mode numbers
for each group are from 137 to 123, from 143 to 123, from 143 to 123, and from 142
to 126, respectively.



Table 1.(M.N) = (8, -3)

(NS.L) Ao ix1073)  Order (n)  storage (MB) CPU(s0c) S, Algorithm
(120.35) -2.14952 8435 35 17G.38 EISPACK
8435 18 367.39 LAPACK

20 11 3.14 54.25 (3.4)

(180.35) -1.97229 12635 94 374.52 EISPACK
12635 25 585.76 LAPACK

30 15 5.26 71.20 (3.4)

(120.59) -2.44352 14219 59 926.94 EISPACK
14219 43 1703.05 LAPACK

20 24 11.88 78.03 (3.4)

(180.59) -2.20349 21299 81 2063.69 EISPACK
21299 63 2688.61 LAPACK

20 34 16.75  123.50 (3.4)

(120,109) -2.92962 26269 147 2054.04 EISPACK
26269 136 10500.86 LAPACK

20 71 63.57 32.31 (3.4)

{240.119) -2.78503 57239 325 11242 .46 EISPACK
57239 - 34334.52 LAPACK

20 163 150.12 74.89 (3.4)

(300.201) -2.90651 120801 - - EISPACK
120801 - - LAPACK

20 567 902.52 - (3.4)

- means CPU times exceeds 10 hours.
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