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abstract

Multiresolution approximation (MRA) of the vector fields on T? is studied. We intro-
duced in the Fourier space a triad of vector fields called helical vectors which derived
from the spherical coordinate system basis. Utilizing the helical vectors, we proved the
orthogonal decomposition of L2(T?) which is a synthesis of the Hodge decomposition of
the differential 1- or 2-form on T? and the Beltrami decomposition that decompose the
space of solenoidal vector fields into the eigenspaces of curl operator. In the course of
proof, a general construction procedure of the divergence-free orthonormal complete basis
from the basis of scalar function space is presented. Applying this procedure to MRA of
L2(T?), we discussed the MRA of vector fields on T? and the analyticity and regularity
of vector wavelets, It is conjectured that the orthonormal solencidal wavelet basis must
break r-regular condition, i.e. some wavelet functions cannot be rapidly decreasing func-
tion because of the inevitable singnlarities of helical vectors. The localization property
and spatial structure of solenoidal wavelets derived from the Littlewood-Paley type MRA
(Meyer’s wavelet) are also investigated numerically.

Keywords: orthonormal divergence-free vector wavelet., Hodge-Belirami decomposition.

[1] Introduction

Divergence free vector fields with coherent structures
are ubiquitous in a lot of natural phenomena, for
example. coronal flare of the Sun, dipolar magnetic
field of the Earth, or the coherent vortices in suffi-
ciently subsonic motions of fluid, for example Great
Red Spot in Jupiter. Wavelet analysis has been re-
garded one of the promising tools for surveying such
coherent structures. Becanse they are remarkably lo-
calized not only in physical space but also in Fourier
space within the limit of the uncertainty principle.
Using wavelet transformation, one can obtain the in-
formation of scale and location simultaneously.
Theory of discrete wavelet transformation is well
known as multiresolution approximation {MRA) of
function spaces. The wavelet bases are remarkably
useful becapse they are the orthonormal complete,
for some cases unconditional, basis not only of L2
gpace but also of many function spaces such as Sobolev
spaces, Holder spaces, Hardy space, Besov spaces,

etc [1]. Dyadic dilation property of the wavelet basis
seems quite akin to the idea of scaling laws, which
appears in many fields of physics such as quantum
field theory [2], critical phenomena [3] or fully devel-
oped turbulence [4].

The wavelets, however, are scalar function so that
application to divergence-free vector field contains
a problem. Surely one can apply the scalar-valued
wavelet transform to each component of a divergence-
free vector field, say u(z) = ( uz{z.y, z}, wylz. v, 2).
u,(2,y, z) ). and obtam the wavelet spectrum of the
field,

u(e) = 3 ((¥au)iale),

A
{¥n, uyﬂ“(“’); (li’/\,uz>t13x(m)) . (D

where 1), is scalar wavelet and (%, ) denotes lnner
product. Each term of the spectrum

we) = ({2, w)da ()



(0r, ) (=), (. w: )62 (=)) (2)

1s not a divergence-free vector field in general. This
discrepancy has its root in the fact that only two
of three components are independent, but on the
whole they are dependent cach other. (Furthermmore
they depends also on boundary conditions.} Thus
the divergence-free vector-valued wavelet function is
required for practical purposes.

Divergence-free vector wavelet bases have been
proposed by Battle and Federbush[5], and Frick and
Zimin[6]. Battle and Federbush adopted such a con-
structing way that minimizes the value of integral
J(V x A)>d= under the two constraints, the diver-
gence-free condition and an appropriate boundary
condition. On the other hand, Frick and Zimin pro-
posed such a wavelet that is, roughly speaking, given
by the curl of the function given by Fourier integral
of a step function supported on a spherical shell in
the Fourier space. The former approach requires the
variational calculations when the wavelet transfor-
mation is carried out. The latter approach, on the
other hand, has no such steps because it is based on
the sharp decomposition of Fourier space into spher-
ical shells. The obtained wavelet functions, however,
are not orthogonal each other in general, and not lo-
calized well, in other words, breaks r-regular condi-
tion. Because of these discrepancies, the approaches
they proposed do not seern popular in practical ap-
plications.

In the present work, we propose a general con-
struction procedure of the orthonormal complete di-
vergence-free vector wavelet basis of LZ(T?3), in which
only two popular algorithms, fast Fourier transform
(FFT) and fast wavelet transformn (FWT), and no
additional novel one is required.

The procedure we will describe here is based on
a quite different idea from the previous two. There
are two key ideas for the construction. One is that
any function expansion using an orthonormal com-
plete basis, say {fi;A € A}, is a unitary transform
from L*(T3) to {?(A), where A is an appropriate
set of indices. Therefore the Fourier coefficients of
the base functions fi({k) are regarded as components
of an infinite dimensional unitary matrix which acts
on {? space which maps Fourier coefficients to {f:}
expansion coeflicients. The other one is that all the
orthonormal complete basis of the function space of
solenoidal vector fields on T2, which is denoted by
LZ(T3) hereafter, is given by a certain unitary trans-
form of the complex helical wave basis [7, 8]. Thus
funetions to which complex helical waves are uni-
tary transformed by the matrix {.7-' {7 A}} constitutes
an another orthonormal basis of L4(T3). As an or-
thonormal complete basis of L2(T?), wavelet basis is
adopted here.

This study 13 an attempt to construct the mui-
tiresolution approximation of the vector fields. In
the present study we restrict our interest on the vec-
tor fields on the three-torus T2 and the possibility

of construction of mmitiresolution approximation of
them. The reason of choice of the manifold T3 is
mainly due to the fact that the Hodge decomposi-
tion theorem is established on bounded manifolds.
Thus we base our attempt on the MRA of L?(T3)
though the theory of wavelets is firstly established
on the unbounded Euclidean space RY.

This paper is organized as follows. In §2 notations
in the paper are explained. The orthogonal decom-
position of the vector field on T2 is proved in §3.
Algorithm of helical wavelet decomposition is given
in §4, which is an anthology of the properties of heli-
cal basis. Construction the theory of MRA of vector
fields is tried in §5. The Riesz basis condition, which
is one of the basic properties of MRA, is shown to be
broken. Section 6 is devoted to the discussion on the
regularity, i.e. the localization property of the helical
wavelet. Finally some remarks are given in §7.

[2] Nomenclature

Before going into the details, some notations should
be fixed.

Let us denote by R? a linear space spanned by
a Cartesian basis {e,,e,, €.}, and T® the quotient
space R?/Z3. x(T?) is a set of vector fields on T3
defined as

X(T%) = {w;u(@) = 3 w(ae;,

i=r,y,s

Ug, Uy, Uy € C(T?) },

where {e;,ey, e} Is the basis of the tangent space
T.T? at the point = € T? obtained by the canonical
identification. In other words, x(T?) is the set of
all the C° sections of the tangent bundle TT2. We
identify, if required, the space with the set of 1-forms
Q(T3), or that of 2-forms Q3(T3).

The completion of F with respect to the norm of
the Banach space E is denoted by closg {F}. In the
following analysis, we study the function space given
by the L?-norm completion of x(T3),

LL(T%) = S {x(T9)}, (3)
= {u; u(z) :~ Z u, (x) ey,

Uz, Uy, U, € L2(T3) }, {4)

which Is a Hilbert space equipped with a nner prod-
uct,

(u;v)x = .[1‘3 u(x) - v(z)d= (5)
= [ (@) + won e

+m)_vz (z)) da,



where u, v € Li(T3), - denotes the scalar product
of two vectors, ¥ the complex conjugate, and d= the
Lebesgue measure on T3. By definition. any Hilbert
space is a Banach space with the norm naturally de-
termined by its inner product Concerning L;(TS)
the norm is

L5 (T3] = /()

(6)
) [[ra(l%(x,y,Z)l2 + luylz, v )

L
)

+lu(z,y, z)tz) d:c} ,

where }| ¥ | E|| denotes the norm of a Banach space £.
In the following, we drop the symbol T2 in definite
integrals, and represent T2 by a periodic unit cube,
te. T3 =10,1]3.

Fourier series representation of f{z) € L} (T%) is
formally written as

f(=)= " Flk)exp(2nik-z),

keZ®

where f(k)’s (k € Z®) are Fourier coefficients. The
calligraphic letter F 1s used to denote the sequence
of Fourier coefficients, i.e. Ff = {f(k),k eZ?}. It
1s also used for the Fourler transform of a set of func-
tion and a function space, for example FL*(T?) =
{Ff; feL¥(T?)].

Let us consider a trivial bundle M = Z° x R*.
Fourier transform of a vector field is defined by the
Fourier transform of the components with respect to
the Cartesian basis as follows:

G(k) = G, (k)8 + iy (k)8, + T ()&, (8)

where k € Z3 and {€,,€,,€,} is a Cartesian basis of
the fiber R® of M. Thus {k,u{k)) € M and Fu is
a sequence of three dimensional vectors.

Being introduced the I2-norm of FLZ(T?) de-
fined by

(7)

J(R)12 + (3, (k) 2),

(9)
.’FL?C (T?) becomes a Banach space. Applying Parse-
val identity to each Cartesian component ug, u, and
u. of a L2 (T?) vector field u, we conclude that the
LZ{T?) norm and I2(Z?®) norm are equivalent. Due
to this equivalence of two norms, the fundamental
sequence of u(x) defined by

un(z) = Y a(k)exp(2rik-z), N € N. (10)
0<|Rl<N

is a Cauchy sequence of vector fields in the sense
of LZ-norm. In the following, the derwvatives are
formally defined by Fourier series,

Ou; 1 Z

52, = )P 2 k, Ui (k) exp(2nik - ®),
? 7 kez*\{0}

(11)

wherc 1, 7 =z, y and =.

We distinguish the terms divergence-frec and sole-
nordal In the present work; the former s used for such
vector fields u that satisfy V « = 0 The latter term,
on the other hand, is used when a vector field u s
given by curl of certain vector field a. u = V x a.
Dufference of these two kinds of vectors persists in the
fact that the harmonic vector fields. which are con-
stant function for the case of T, are also divergence-
free In terms of forms, divergencefree fields corre-
spond to clesed 2-forms and solenoidal fields ezact
2-forms

[3] orthogonal decomposition of
the vector fields on T

in order to construct complex helical waves, a triad
of vector fields {e,(k), es(k). e, (k)} which is almost
identical to a spherical coordinate system basis is in-
troduced in the Fourier space. In the present study,
they are defined in terms of the wavenumber vector
k and Cartesian coordinate system basis {e,.e,.e,}
as follows:

k
e,(k} = m,
er(k) x ez (er(k}fe:)
e"ﬂ(k) = [ b4 er(k) ) (12)
m {otherwise),

eg(k) 1= e (k) x e (k).

The helical vectors h, (k), where the index s denotes

polarity of them and is +, — or 0, are a triad of com-

plex valued vector fields on she Fourier space that

are defined by

ep(k) + e, (k)
\/§ 1
—iey(k

h_ (k) — Eg(k) le‘P( ) ,

V2
ho(k) == —1e. (k).

We also use the notations kg (k), hz— (k) and hp (k)
instead of hy(k), h_{k) and ho(k}, respectively.

It should be noted here that we used definition
of helical vectors which is used in Ref.[9] with shght
modifications, introduction of hy(k) and normaliza-
tion of h (k) vectors. The helical vectors are defined
on R3\{0}, and infinitely differentiable vector fields
on R3\{0} except on the line along the north pole
and the south pole for z and y component of k. (k)
and around k = 0 for z components of hy (k) and all
the components of hg(k). In this section, however,
we treat the vector field on T? and restrict the case
for & € Z5\{0}.

Utilizing the helical vectors, we define the com-
plez helical waves that are complex valued vector
fields by

Vik,s;z) = ho(k)exp(2nik - ),

hy {k):=

(13)

(14)



for k € Z3\{0} and s = 4+, —, 0. According to the
polarity of the helical vectors, we will call each helical
wave X4, ¥—- and D-mode, respectively. It should
be remarked that we introduced D-mode of com-
plex helical waves that is not defined by Tesieur(g]
or Waleffe[9]. We will see in the following that this
mode is curl-free.

The helical vectors are defined to satisfy the or-
thonormal relation

ko (k) - hoi(k) = 6(s|s"), (15)

for 5, s = 4+, —, 0 at each k. Hereafter §(A|B)
denotes Kronecker’s delta whose value is one only
when the two arguments A and B, which are not
only numbers but also vectors, symbeols, etc.. coin-
cide, otherwise it gives zero. Therefore the complex
helical waves are such vector fields that are orthonor-
mal in L2 (Ta)

(V(k,s;2), V(E, s’;a:)}x =d(k,s |k".3') . {16)

Scalar and vector products of the wavenumber vector
and the helical vectors are

ik hy(k) =0,
ik x hy (k) = |klhy(k),

ik - ho(k) = |E|. (17)
ik x ho(k) =0, (18)

Corresponding to these products, divergence and curl
of complex helical waves are

V. Vik,+2) =0,
V-V(k,0,2) = 2r|k|exp(2rik - ),
V x V(k,+;3) = £27|k|V (k, +;2),

Vx Vk 0z} =0 20)

The E+-modes are eigenfunctions of the curl opera-
tor which are associated with the eigenvalues +2r|k|
and the D-mode belongs to the kernel of the curl
operator. Thus it is obvious now that the indices of
helical vectors +, — and { correspond to the signs
of eigenvalues, and that the implication of the al-
ternative indices ¥4-, X~ and D) are solenoidal unth
posttive helicity, solenoidal with negative helicity and
dilatational, respectively.
Since e.(—k) = —e,(k), es{—k) = es(k), e, (—k)

= —e.(k), the complex conjugates of helical vectors
at k are equal to ones at —k:

k. (k)

Therefore, complex conjugates of the complex helical
waves satisfly

= h,(—k). (21)

Vik,s;2) = V(-k,s;z), (22)

for k € Z®{0}, s = +, —, 0. The X+ and E—
vectors are complex conjugate each other,

(k) = he(K), (23)

so that the L4-modes of the complex helical waves
are complex conjugate each other:

Vik £ 2) = V(k,Tx). (24)

Using these helical vectors, we define the helical
decomposition of Fourier coefficients (or I L -sequence),

say {u(k)}}, by

(k) = Gy (k)b (k) + @ (K)_ (k)
(ko (K) (25)

where %,(k)’s are the s-mode helical Fourier cocffi-
ctents defined by the scalar product

8, (k) := @(k) - b, (%), (26)

for each k € Z*\{0} and s = 4+, —, 0. Each helical
Fourier coeflicients {4,(k)} is a sequence of scalars.

Conversely, by multiplying helical vector on each
terms of a scalar ({-)sequence {u(k);k € Z°\{0}},
one can make a vector sequence {u{k)h.(k);k <
Z3\{0}} which we call the helical pull up of a se-
quence {#(k)} to s-mode hereafter.

It should be remarked here that the helical de-
composition of solenoidal vector field on T® has algo
been discussed by Constantin and Majdaf[10]. In
their paper, the decompesition is given by #. (k) =
u(k) + ie. (k) x u(k) for each k € Z*\{0} under
the assumption that the vector field is solenoidal
k- u(k) = 0. It is easy to see that, under the same
assumption, the identity @4 (k) = \/_ 2ty (kYhy (k) is
satisfied for each k ¢ Z\{0}.

The helical decomposition of Fourier coefficients
is unitary in the sense that the identities

T8 (0 = BT (4 T 04+ ol
are satisfied for each k € Z*\{0} if {#(k)} and
{#(k)} belongs to I5(Z3\{0}). This property leads

to the identities
[z (R} + [ty (k)1 + [ (K| (28)
= [T (k)| + [E_(K)|* + [t (K}

for every k € Z*\{0}, and to the following conse-
quences.

Proposition 1 Ifa three-vector sequence {(k)} be-
longs to I3, (Z®), each of its helical projections {u,(k)}
is 1?(Z3\{0}}-sequence for s = +, — and 0. Con-
versely, if an sequence {G(k)} belongs to I*(Z*\{0}),
each of its helical pull up {@(k}h, (k)} is 5 (Z°\{0})-
sequence for s = +, — and 0.

PrOOF: equation {28) leads to the inequalities
[ (k) [* < o (R + [y (R) P + fit: (R)I,

for every k € Z3\{0} and s = +, — and 0. Thus the
I%-norm of {4, (k)} satisfies

3 (k)

kez\(D3



< 3 (AR + jE (B + [5:())
kezm 0y

AN

<3¢

The latter part 1= proven by two steps. First, the
absolute values of the helical vectors are one, 1e.
lhs(k)| = 1. so that all the Cartesian components of
them are equal to or less than one, ie. {(h{(k));| < 1,
for every k € Z2\{0}, s = +, —, 0, and j = z. y,
z. All the Cartesian component of helical pull up
satisfles

(kYA (R)); | = [a(k)[| (R, (K));{ < lu(k)]

so that they are 12(Z%\{0})-sequence. Thus the heli-
cal pull up is an {2(2°\{0})-sequence by definition.
0

Thus the helical transform is unitary transform
acts on I2(Z°\{0}).

Theorem 2 If a scalar sequence {u(k)} belongs to
{2(Z3\{0}), the vector field that s grven by

> a{k)h,(k)exp(2rik-z) (29
keZ®\{0}

u,(x) =

converges in the sense of L2 (T*)-norm for each po-
larity s = +, — and (.

Proor: Applying Riesz-Fisher theorem to each
component, they are proved to belong to L%(T?).
Thus the vector field belongs to LZ(T?) by defini-
tion. O

We call the vector field expressed by Eq.(29) s-
mode helical vector field. This theorem allows us to
define the function subspaces of L2(T?) by

LT { ) {ak)} e B(Z*\{o}),
ug(z) = Y G(k)hs(k)exp (2nik - m)}, (30)
keZ>\{0}

and the projection operators P, that are linear maps
from Li(Ta} to L2(T3) by

3 (ﬁ(k)-M)hs(k) exp(2rik-z),

keZ\ {0}

Poule) =

(31)
for s = £+,5—,0D. We call the subspaces helical
vector spaces in general, and call each one X4, ¥—,
D-mode space, respectively.

The helical vector spaces L. (T2). LE_(T?) and
L% (T3} are Hilbert spaces w.r.t. the inner product
(*)x and orthogonal each other, that is, the inner
product of arbitrary two vectors w € L 2T?) and
v € L%(T%) is zero if the helical mode 1nd1ces do
not comc;de s # &', Therefore the following relation
holds:

I3, (TH e L3 _(T% e LT ¢ LE(T?). (32)

The orthogonal complement of the direct sum in L2 (T3)
is the space of the harmonic functions on T3. We
will discuss it later. This orthogonal reiations are
expressed in terms of the projection operators by

PP, = 8(s|s")P,. (33)

fors, s =¥+, Y¥—. D
The thecrem also enable us to define the pull up
operator P} which is 2 map from the space of scalar

functions L?(T?) to the space of s-mode helical vec-
tor fields L2(T3) by

3" (k)b (k) exp(2rik -z), (34)
kEZ*\{0}

Plu(z) =

and their adjoint operators P1™ by

Plu(z) = Z (ﬁ(k)v(k)) exp(2nik-z),

kez*\{0}
(35)
which satisfy the identity
(Pif. g), =(f, Plg}, (36)

for every f € L?(T?) and g € LZ(T?). Each pull up
operator is unitary in the sense that the identity

(7.9) = F(@)5(0

holds for every f, ¢ € L?(T®} and s = +, —, 0. Let
us define the zero-mean function space LE(T3) by

y+{(PIfPle), (D)

LT = {u(a:) :u(x) € LAH(T?, /u(z)da: = G}.

(38)
The space is Hilbert with respect to the inner prod-
uct Eq.(5), and the pull up operators become the
unitary operators from L3(T%) in the strict sense.
This unitary nature of the pull up operators allows
us to construct an orthonormal complete basis of s-
mode space from a scalar function basis.

Theorem 3 If {f» A € A} is an orthonormal com-
plete basis of LZ(T?) where A is appropriate set of
indices, then the pull up of the basis to s-mode space
P} 15 an orthonormal complete basis of L2(T3)
where s = 5+, &—, D

Proor: Orthonormality is obvious because of the

unitary relation Eq.(37). Completeness is proved as

follows: if (P} f,\,'P?g) = 0 for all A € A, then
= 0. Because the unitary relation (‘PW,\,'P’Q}

{f»,¢) holds and {fx} is complete. Therefore PTg =
0 is concluded. O

The theorem leads to an important corollary.

Corollary 4 Under the same conditions as the pre-
vious theorem, the union of the pull up of the basis to
¥+- and ¥—-mode spaces, pz_;.{fk} U ’Pg {fr}. is
an orthonormal complete basis of the function space
of the square integrable solenoidal vector fields.



Finally, we shall discuss the "residual” of the pro-
Jjection operators in order to salvage the modes with
wavenuinber 0, which are left behind the helical modes.
It is easy to see that the function defined by

wp(z) = u(z) — (Pg_;_ +P=_+ PD)u(z) (39)

is a uniform vector field on T® for every u(z) €
L2(T3). Because

uy{x) — (’PzH_ +Pe- + PD)UN(:B)

’ " (40)
= Ta(0)es + iy (O)e, + . (0)e

for every elements of the fundamental sequence of
u(2). We will denote the space of uniform vector
fields by L% and define the projection operator Pg
from L2 to L} by

Pru(z) = G, (0)e, + 4,(0)e, + G (0)e,.  (41)

By definition, L%(T3) 1 L(T3) = {0}, for s = T+,
Y—, D. Every elements of L%(T?) is a harmonic
function on T3, ie. satisfies V-h =0, Vx h =
0. The degree of freedom of L%(T?) is three. It is
known that the number coincides with the first Betf:
number of the manifold T3[11].

At this point, the orthogonal decomposition of
LZ(T3) is completed.

Theorem 5

L3(T%) = LE, (T @ L} (T*’*)@L%;(T“’)mﬁ(fs)).
42

This s the synthesis of a special case of Hodge de-
composition and the Beltrami decomposition.
Let us finish this section by giving a theorem to

construct the orthonormal complete basis of diwergence-

free vector fields. For this purpose, we infroduce
a triad of uniform vector fields { hg4(0), hs_(0),
hp;(0) }. Choice of the vector fields is arbitrary ex-
cept for the requirement that orthonormal relations
h, (0} - hy (0} = &(s|s’) must be hold.

Theorem 6 If {f\} is an orthonormal complete ba-
sis of L*(T3), then
{F@hz(0) +PL (=)}
u{hOns @ +PL f@)  (43)
U{hp(0)}

is an orthonormal complete basis of diwergence-free
vector fields L3, (T?) & L3 _(T®) & Ly (T°).

[4] helical basis

Here we gives an anthology of the properties which
are satisfied for every helical basis.

First, we describe the procedure to obtain the
expansion coefficient of the helical basis. Consider

the helical basis which is obtained by the helical pull
up of an orthonormal basis of L3(T%), say wavelet
basis {¥,:A € A} where A is an appropriate set of
indices. The expansion coefficients of an Li-vector
field w(x) with respect to PI{¥,}, the helical pull
up of {¢#} are given by the inner products

v = (Plia(@). u(@),
(¥a(e), Plru(a) )
PR AGIC ORI

keZ\{0}
for A € A. The last equation leads to the follow-
ing procedures; (1) calculate Fu, the vector-valued
Fourier transform of w(z): (2) calculate the inner
product ﬁ-ﬂ:, and we obtain s-mode helical Fourier
coefficients {#,}: (3) calculate F~1{d,}, the scalar-
valued inverse Fourier transform of the s-mode he-
lical Fourier coefficients: {4) applying the procedure
of the scalar-valued function expansion, for example,
the fast wavelet transform algorithm to F~1{u,}.
Thus we obtain the expansion coefficients {u,\,,}. It
should be remarked here that the procedure given
above requires no novel and specific algorithm, but
only such tools as FFT and FWT, which are popular
in the signal processing.
The helical pull up of a real valued scalar func-
tion f(z) € L2(T?) is also a real valued vector field.
Because the helical vector satisfies

hy{k) = b (—k) (45)

for each k € Z® so that each component of the helical

—~

pull up of the Fourier coeflicient f(k) satisfies

(Foor. () = (F-k)h(-k)  (46)
i i
for j = 1, 2, 3 and each k € Z*\{0}. Thus each
element of the helical basis pulled up from a real-
valued function basis of L2{T?) is also real-valued.
The continuity and differentiability of each ele-
ment of a helical basis depends on those of the orig-
inal scalar function basis. These properties of the
helical basis, however, may not be identical to those
of criginal one. Since the multiplication of the polar-
ity vector b, (k) lead to the “twisting’ of the values of
the scalar function to each components. In order to
evaluate the properties, here we go via such a path
that goes through the Sobolev’s imbedding theorem.
When the function f{z) belongs to the Sobolev
space H™(T3), i.e. f(z) satisfies

@) (T = > (1+ kP EIF R < o0,

keZ®
(47)
each component of its helical pull up satisfies
|(PL () ||
= Y (1 FDEFR)P (R (k)1
keZ3
< IF()E (TP (48)



for j = r, y and z. This convergence property and
the Sobolev’s embedding theorem guarantees the con-
tinuity of the helical pull up of f(z) when s > % For
this case, the formula of the helical pull up P} f{z)
converges pointwise. The differentiability of the he-
lical pull up of f{=) is guaranteed up to r-th order
when f{x) € H*+3 (T3} where s > 7.

Next we consider the relation between the Xi4-
mode and the ¥—-mode associated with exchange of
parity, i.e. reversion of orientation of the coordinate
system on T3, The parity exchange operator is de-
noted by T here. When I acts on a real-valued scalar
function, say u(z), the relation

Tu{z)= Z #(k) exp(2nik - (—z))
kezZ*\ {0}
= Z a(k) exp(2nik - z) (49)

keZ*\ {0}

holds. Thus the mirror image of a real-valued scalar
function u is given by the inverse Fourier transforma-
tion of the complex conjugate of the Fourier trans-
form of u, that is

Tu(z} = F1 (E) ().

The mirror image of the helical pull up of a real-
valued scalar function is given by

{50)

F'Péiu(m)
= Y (k)hze(k)exp(27ik- (—=)), (51)
reZ*\{0}
= Z u(k)hzy (k) exp(2rik-z). (52)

keZ*\ {0}

This leads to the commutation relation between the
parity exchange and the helical pull up for real-valued
functions:

Pl =PL.T. {53)

[5] multiresolution approximation
of the vector fields

In this section, the properties of the MRA of L(T?),
which is defined by the restriction of the MRA of
LT3 to LD(T3), and its helical pull up’s are dis-
cussed. The omission of constant functions from the
MRA causes the absence of such solenoidal basis that
is homogeneous, i.e. given by the orbit of a function
by the action of finite group. It is discussed that
this "discrepancy” is consistent with the practically
natural postulation for approximating the constant
vector fleld on the finite number of grid points.

First, we briefly review the multiresolution ap-
proximation (MRA} of the spaces of the functions
of period 1. For details, one should consult §3.11 of
Ref.]1]. The MRA of the function spaces on T is
obtained by the periodification of the wavelet func-
tions.

-1

Consider the r-regular MRA of L?(R). denoted
by {V}(R};j € Z}. The completion of each sub-
spaces V,(R) w.r.t. the L™-norm. clospe= ) {V,{R}}.
retains the relation f(r) € V, <= f(2z) € V4.,
which 15 one of the MRA conditions. Let us defire

Vi(T) by
={f(z)

Cflz) e clos {V R)}.

fe+1)=f(0)}. (34)

The nested sequence {V,(T); j € Z} is called the
r-reqular multiresolution approzmmation of L2(T)

According to the lemma 13 in §3.11 of Ref.[1],
the spaces V}(T) have the following properties. If
j < 0, they are identical. The space V;(T) consists
of constant functions. The dimension of the space
Vi(T) is 2.

Let W;(T) be the orthogonal complement of V, (T')
i Vj41{T), the space L?(T) is represented in terms
of a direct sum of the subspaces as follows:

LHT)=V,(T) & Wo(T) & Wi(T)

SW2(T) & Wa(T) @ (35)

In the present study, we will define the multiresolu-
tion approximation of L?(T?) by the tensor product
of the one-dimensional ones:

V,(T%) = V(T) @ ;(T) 8 V,(T)  (56)

for j =0, 1, 2,.... The corresponding spaces W;(T?)
(j > 0) are defined by the orthogonal complement
of V;(T?) in V;j41(T?). According to the construc-
tion procedures, Vo{T?) consists of the constant func-
tions. The dimension of V;(T?) and W,{T3) are 2%
and 7 - 2% respectively.

Now we will try to swim away from the shore
of the established MRA theory in order to find out
the hidden bank of the MRA theory of the three-
dimensional vector field.

In section three, we introduced the zero-mean
function space L2(T?) in order to construct the sole-
noidal function space by helical pull up. In terms
of the MRA of L2(T?), one can obtain a nested se-

quence of the zero-mean subspaces of L?(T?) AV(T3)].
defined by
i-1
V,(T%) = P w.(T?) (57)
i=0
for j = 1, 2, 3,..., or equivalently defined by the or-
thogonal complement of Vo(T3) 1n V;(T?). The ob-

tained sequence retains the followmg conditions of
MRA by defimition:

V,(T%) C V341(T%), (58)

f(z) € V(T?) <= f(2z) € V11 (T%),  (59)
for V5 > 1 and
L(Z:i%%) {EBJ ! Tg)} L3(T). (60)



Tt is casy to see that the dimension of V;(T3) is
2% — 1. The last condition is easy to prove. Be-
cause all the functions in the space are. by defini-
tion, orthogonal to all the constant functions that be-
long to Va(T?), that is, Jopa flz)dx =0 for ¥f(z) €

closy z(ps) {@;’f__l V; (TS)}. Hereafter we will call the

nested sequence {?,(Ts)} the MRA of LZ(T?) or the
zero-mean MRA of L?(T3).

in the previous section, we proved that the helical
pull up operators are unitary in the strict sense when
they act on LZ(T3), instead of L%(T3). Thus the
nested sequences that are given by the helical pull
up of the zero-mean MRA of L2(T3), {P]V,(T%)},
satisfies the conditions

PIV;(T%) € PIV;41(T%) € LH(T), (61)
u(z) € PIV;(T°) <= u(22) € PIV;11(T%), (62)
for ¥5 > 1, and

clos © Pty (T3 b = L3(T),
los {@Z,PIT(TY = 10T, (63)

for s = £+, X— and D. We will call each nested
sequence the MRA of LZ(T?) or the s-mode helical
MRA. Because the pull up operator is unitary, the
dimension of PIV,(T% is 2% ~ 1 for s = T4, T—
and D.

Intentionally we do not discuss the Riesz basis
condition, which is one of the properties that con-
stitutes the definition of multiresolution approxima-
tion, and r-regular condition till now. On the latter
condition we will discuss in the next section.

In order to discuss the former condition, we de-
fine the term homogeneous basis. Consider a Hilbert
space on T™, say H, and the finite group of residues
E/N modulo 1, 'y, where o, N € W and k € Z™.
We will say H has homogeneous basis if there is such
a natural number IV and a function ¢{z) whose orbit
under the action of I'n, {¢(z — k/N); k € Z™} is
orthonormal complete basis of H. For example, each
V;(T) has homogeneous basis which is given by the
orbit of the scaling function 22/2¢(272) by T'y,.

The dimension of each subspace of zero-mean MRA
of L3(T?) V;(T®) is 2% — 1. Because there is no such
an integer p that satisfies 23/ — 1 = p®, V;(T?) never
has any homogeneous basis. So is its helical pull up
PIV;(T%)

Proposition 7 Each subspace of the MRA of L2(T#)
PIV;(T?) (s = S+, £—, D and j € N), cannot have
any homogeneous basis.

Intuitively this is a consequence of a practical re-
quirement for the sighal processing or the numerical
analysis that the vector field () should be regarded
as an element of L% (T3) if all of its values on the
grid points located at @ = k/2/ are identical. In
mathematical words, if there exisis a vector-valued
homogeneous basis {¢;(x)}, where j and { are in-
dices for the resclution and the location, respectively,

it should be able to approximate not only the ele-
ments of L7(T?) but also those of L% (T?). Thus the
requirement is restated as the following postulation.

Postulation 8 Ifu(x) is approximated as u;{z) =
2. ci®u{x), where ¢; is a constant for each finite
resolution class j, ie. the inmer products cir =
(qu,,u}x are dependent only on j and independent

of I, u belongs to L4 (T3?).

Defining the helical pull up of the scaling function of
J-th resolution ¢;(x} by

®; ,(z) = $(0)h,(0) + P! (), (64)

where h;(0) is an arbitrary uniform vector field with
amplitude one, one can obtain the set of function
that is given by {['s;¢; ;()}. It approximates any
constant vector field in such a way that is stated
ahove.

[6] singularity of X4+-mode
helical vectors and spatial
coherence of solenoidal
helical wavelet

In this section the spatial coherence of helical wavelet
is discussed.

MRA is called r-regular when the generating scal-
ing function ¥, and the associated mother wavelets
1, satisfy the conditions

Vme Z, IC, < o0 st [0%Y(2)| < Crn(1+]z))™™

(65)
for every multi-index ¢ satisfying ja| < ». Our in-
terest here s whether the regularity of the helical
wavelet suffers from the singularities of the E£-mode
helical vectors. For this purpose, in this section we
will discuss spatial coherence in terms of the vector
valued function on R? defined by the Fourier integral
of L?(R3) function:

P, (2) :La(}"qb)\)(k)hs(k) exp{2nik-z)dk. (66)

We will call the integral transform integral helical pull
up (to s-mode) hereafter. Vector fields on T2, which
we have discussed, are given by periodification of the
function. We will assume (F,)(0) = 0 in order to
avoid the arbiirariness of the definition at & = 0.

Our afraid s as follows. In order to comstruct
solenoidal basis by helical pull up from an orthonor-
mal complete scalar function basis {¥;A € A}, the
conditions

k-hss(k) =0, _{87)
thex (k)| = 1, (68)
SiFnlE) |’ =1, (69)
AEA



are required for every & The first condition says that
the vector field 15 tangential to spheres |k| = const .
It is a well known result of the differential topology
that two-sphere S? is not parallelizable manifcld so
that the vector fields on $? have at least two singular
points[12]. Thus hys (k) must have singular ponts
for every |kl’s. The second condition says that the
vector fields should behave like the function sgn(r)
around the singular points. The third condition te-
gether with the two previous ones leads to a conciu-
sion that there must exist such functions that have
singular points in their supports Therefore, even if
¥y belongs to the Schwartz class S(R3), the vector
function Fyshyt breaks the continuity and does not
belong to & when it has singular points in its support.
Furthermore, these properties leads to an expecta-
tion that the inverse Fourier transform of F ¢ heyt
has algebraic tail like the Fourier transform of sgn
function.

Asymptotic analysis of the Fourler transform of
T+-mode helical vector at large r shows the far field
behaviour as r~2 around z ~ 0 plane {see Appendix
A). The same exponent of algebraic tail is obtained
by a simple scaling argument and the two-dimensional
distribution of the tail is required by the convergence
of wavelet function under the periodification opera-
tion (see Appendix B).

Thus it is plausible that, in the orthonormal sole-
noidal basis on R*® which is constructed by the inte-
gral helical pull up of a scalar basis, there exist such
functions that have algebraic tail. Thus we conjec-
ture that there exist no such orthonormal solenoidal
wavelet basis that all the species of wavelets decreases
rapidly at large r.

In the preceding part of this section we will ex-
amine the behaviour at large r numerically using
Littlewood-Paley type MRA. and its helical pull up.

According to the recipe by Yamada and Ohkitani
[13], the Fourler image ¢(k) of the scaling function
¢(z) is given by

d(k) = Volk)g(—k), (70)

where

(71)

xp{—(7k)~?

By definition, this scaling function is infinitely differ-
entiable and following properties are satisfied:

g(k):l for—%gkg%,
b<o(i)<1 for —2<k<—3% 3<k<d
S(k) =10 for k< —2, 2 <k,
(72)
and

PG +j)]2 =1. (73)

IEZ

Then, the mother wavelet #(x) is obtained by the
Fourier transform of the image,

{-(k):\/c’-s“ (%) _ S exp(—mik).  (T4)

Three dimensional wavelet functions are constructed
by tensor products of one dimensional ones. There
are seven species of mother wavelets ¥, (e = 1,2,. ., 7}
given by

Velz,y.2) = Ye(@)oa (W) ¥c(2), {6 m, C=0or 1),

(75)
where ¥g(z) := ¢(z} is the one dimensional scaling
function, ¥ (x) := ¥(z) the one dimensional mother
wavelet, and the label ¢ is determined as € = £+ 2+
4c.

It is obvicus from the definition given above that
Meyer’s wavelet belongs to Schwarz class. Because
its Fourier transform has compact support, are bound-
ed and infinitely differentiable. Thus the Littlewood-
Paley type MRA (Meyer's wavelet) is r-regular for
any positive integer r.

According 1o our definition of helical vectors, z
and y components of type € = 4 helical Meyer wavelets
Pl o(2)¥o(y)¥s(z) have singular points in their
support and do not belong to Schwarz class. Spatial
coherence of these two components are not obvious.
It sheuld be remarked that the Fourier transform of
these components remain bounded and compact sup-
ported so that Sobolev’s imbedding theorem guaran-
tees the analyticity of them. All the components of
helical mother wavelets except these two retain the
r-regular conditions.

In order to evaluate the localization of wavelet
functions. we introduce coherence spectrum defined

by

27 g
I('d’jels(z):cﬂr) ::L -[0 |¢J€[5($—C)i2
xrisindddde, (76)

where the onigin of spherical coordinate system (7,9, ¢)
is taken at c.

In Fig.1, the coherence spectra of the type-¢ wavelet
functions are depicted. The other parameters that
define the wavelet are the resolution class j, location
1. and helicity s. Those of the tested wavelet are set
toj = 6,1 =0 and s = +, respectively. The center of
the spectrum ¢ is taken at (27771, 2777 19,27771()
for the type-¢ scalar or helical mother wavelet, where
scalar Meyer wavelet Ygeo{®) takes its maximum.
The function js evaluated numerically on the 2563
number of grids given by & = (ic/N,iy/N,1;/N)
where N = 256, i, i, and i, are integers that satisfy
—N/2 < ig,iy. i, € N/2. The spectrum is approxi-
mated by the sum

ro 44
/ I, (z), c,ry)dr

—4A



[a(z — )
N3 ’

~ )

r—AL|T~C|<r, +A

(77)

where the radius r; and the shell thickness A are
ry = j/N and A = 1/2N, respectively.

In Fig.1{a) the spectra of scalar wavelet functions
are depicted. All the wavelets show rather exponen-
tial behaviour at large r with oscillations. Helical
wavelets, except for the type4 one, show almost the
same behaviour as the scalar ones (see Fig.1{(b)). The
oscillations at large v are slightly modified. There are
two remarkable features in the spectrum of the type-
4 helical wavelet. One is that the spectrum decreases
more slowly than those of the other wavelets. The
functional form of the spectrum seems rather alge-
braic at medium scales about 0.05 < r < 0.3. The
other is that the relative amplitude of the oscilla-
tions is smaller than that of other helical wavelets. In
Fig.1{c), the contribution of each component of type-
4 wavelet to the spectrum is depicted. It is obvious
from the figure that z- and y-components contribute
to the features given above. The z-component, on
the other hand, shows the same rapidly decreasing
features as others.

On the whole, the type-4 helical wavelet is less
localized and less oscillating at large r than the oth-
ers. These numerically investigated features are con-
sistent with the results of asymptotic analysis and
scaling argurment given in the appendices.

[7] concluding remarks

In the present paper, we proved the Hodge-Beltrami
decomposition of vector fields on T?. Then, we have
shown the construction procedure of the orthonormal
complete basis of the solencidal fields on T3. This
procedure has a merit that it requires only conven-
tional mumerical algorithms (i.e. fast Fourier trans-
form and fast wavelet transform) and no novel one
in calculating the wavelet coefficients.

Based on this procedure, multiresolution approx-
imation (MRA) of vector fields on T2 is constructed.
It was shown that there exists no scaling function
which has close relation to the assumption that if
a vector field is constant in numerical simulation, it
can be regarded as an approximation of a uniform
field. Nonexistence of a single scaling function which
generates MRA might have relation to the idea of
multiwavelet [14].

We have conjectured that, in any orthonormal
divergence-free three-dimensional vector wavelet ba-
sis, there must be such kind of wavelet function that
behaves algebraically at large |#| so that it breaks the
r-regular condition. This conjecture has its root in
the facts that the helical vector must be tangential
to S? for every point, and that S? is not a paral-
lelizable manifold. We feel that the requirement of
exponential decay imposed in the work by Battle and
Federbush is inappropriate if it 1s required for all the
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functions that constitutes an orthonormal solenoidal
basis [5]. In two or four dimensional spaces, exis-
tence of the r-regular solenoidal vector wavelet basis
is plausible because 5! and 53 are parallelizable.
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Appendix A: asymptotic analy-
sis of Fourier transform of helical
vectors

In this appendix Fourier transform of the helical vec-
tors is considered. Since the helical vectors have sin-
gularities, there exists such type of helical wavelet
that does not belong to Schwarz class. In order to
estimate the amplitude of helical wavelet at large r,
first we calculate formally the Fourier transform of
each component, and then, asymptotic analysis at
large v is carried out.

In Cartesian coordinates, the basis vectors of the
spherical polar coordinate system are decomposed as

(k) = peos B + psin 3
¢
taE— e,
eg(k):\;% e“’+\/c‘:2%_ﬁczey (78)
P
R

e (k)=—sinpf e, +cos 3 ey.

where {p, 3,() denotes cylindrical coordinates. We
consider here the z-component of the Fourier trans-
form of hxy (k). By operating the ninety degree rota-
tion around z-axis, one can obtain the y-component
of the Fourier transform. These two components are
relevant to the singularity problem of wavelet func-
tion.
The Fourier transform of the z-component of ey (k)

is given by

] {eg(k)), exp (2mik - z) dE
r3

/_OJEIDZXP (%‘i(prcos(ﬁ —a)+ CZ))

x P8B4 apdc

Ve

/oc (21 w(:sin(27rzC)dC)
A Al

X (2 cos o /cos Sexp (Qﬂ'ip?" cos ﬁ) dﬁ) pdp
0

—47rcosarf pAK1(2rzp) J1(2mpr)dp,  (79)
o

where we define the value at —2z by exchanging the
sign of Eq.(79) because the integrand is an odd func-
tion. Similarly, the Fourier image of the z-component
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of e, (k) is

/ (e (k) exp (27ik - xz) dk

/w] /exp 27—1 (prcos(8 —Oz}+£z))

x sin Bpdpd3d(

([ e [snia o

% exp(2wipr cos ) dﬁ) pdp

=—271d(z) sin af pJ1(27pr) dp. (80)
4]

From Eq.(79) and Eq.(80), one formally obtains the

Fourier transform of (hy(k)). as

/ (ha(k)), exp (2nik - @) dk
RS

o
=27 ] (—2pA1(27zp) cos a + &(z) sina)
0

xpJi (2rpr) dp. {81)

Because Dirac’s delta function 6(z) is zero for |z| > 0
and asymptotic behaviour of modified Bessel’s func-
tion K;(2xpz) ~ exp{—2xp:z) for |z| >3 1, function is
well localized in the z-direction. So we focus on the
behaviour arcund |z| <« 1. In the region 2mpz < 1
and 2w pr >» 1, the Bessel functions are approximated
as

K1(2mpz) ~

2rpz’

1 ( 371')
cos | 2mpr — — .
A/ PT 4

Substituting this expression, we obtain the asymp-
totic expression of Eq.(81) given by

] {(h+(k)), exp (27ik - z) dk
R?

~ 2 (—lp.v. (l) cosa £ 4(z) sina)
r T z
o 37;
x[ /P cos (Q?rpr — T) dp.
0

Let us investigate the behaviour of the definite mte-

gral in Eq.(83) by replacing the sermni-infinite interval
[0, oo) by the finite one [0, poi, i.e
3w

I{po) = \/ﬁ cos (QTpr - I) dp.

Tt is easily conﬁrmed that

3
\/;3 cos (27rpr - zﬂ—) dp

_1 orp 3T
B Ak e

s lstavam + cvam)] | @

(82)
Ji(Bmpr) ~

(83)

(84)

I{pa)=



where 5 and C are Fresnel integrals,

S(z) : Azsm(g )dt
C{x) ::./;cos(2 )dt

For sufficiently large x, they are asymptotically eval-
uated as follows:

S(z), Clz) ~ % +0 (%) .

Substituting Eq.(87} into Eq.(85), one obtains

1 . 37
%{\/p_gsm (Qﬂ'pgf‘ -— T)

o ()l

1 1
4fr'r% T[ po

« sin (Qﬂ'por— %—) 40 (w%)} (38)

which leads to the following approximation:

(86)

(87)

I(po) =

f (hi(k)), exp (2rik - x) dk
R3

L (_%p_v, G) cosa £ 8(z) si.na)

[\/ﬁ

1 X 1
po¥oo | 4/2rrs * 2mr

« sin (er - %{) +0 (7;_;;)} } (89)

_ G) cosa + §(2) sin a) (90)

in Eq.(89) does not depend on pg. Thus we can draw
a conclusion that the Fourier transform of (hi{k)),
is a function asymptotically behaves like (2% +y*)~!
when z ~ 0 and |z| > 1.

Appendix B: some estimations a
priori

In Appendix A we showed the corroboration of the
existence of algebraic tail whose exponent is - 2. The
tail is shown to distribute rather two-dimensionally
around z ~ 0. In this appendix we will show that
the same conclusion is obtained by a simple scaling
argument and by the requirement of convergence of
wavelet function under the periodification operation.

Assuming that singularitics of the helical vectors
caunse algebraic fail of helical wavelet at sufficiently
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large r = |@|. exponent of the tail is determined by a
simple scaling argument. When wavelet function in
W; is assumed to be divided into two parts, rapidly
decreasing part and algebraic tail, as
nlz) = fle) + Ar®, (91)

for sufficiently large r, the wavelet in W;;; must be
given by

VPy,(22) = V2B f(22) + 25 %Ar . (92)
The domain of Fourier integral is enlarged by two in
each direction so that the contribution of the singu-
larities of helical vectors to class W, wavelet be-
come twice of those in class W,. (Remember that
functional form of ks around the singular points
does not depend on |k{ and the points are aligned
with a one-dimensional manifold). The amplitude of
the Fourier transform of ¥(2z) is one-eighth of that
of ¥(x). Thus the factor of algebraic term should be
2-%, one-fourth of the factor of f, and the exponent
o =2.

Scaling argument leads to a conclusion that the
exponent of algebraic tail 1s —2. Is such behaviour
of r isotropically distributed, 1.e. found in all the
directions of three—dlmensmnal space? The answer
is no. They distributes two-dimensionally because of
the following two reasons. Omne is that the singular-
ity distributes one-dirmnensionally so that the Fourier
transform in the directions perpendicular to the sin-
gularity suffers from it. The other is that helical
wavelet on R®, say v (), should not diverge under
the periodification operation to obtain the wavelet
on T3. This requirement leads to an estimation of
the contribution of algebraic tails from far field to
the periodification sum:

A
(93)

where rp is a sufficiently large number and I is the
(fractal) dimension of region where the algebraic tails
spread over. Though the estimation is qguite rough,
this result claims that the tail must not spread over
to all the directions of three-dimensional space, but
should be confined in the region which is at most
two-dimensional.

=P ldr< oo = D <2,

> ¥zt

{>ra
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