LHD Type Proton-Boron Reactor and the Control of its Peripheral Potential Structure

Y. Matsumoto, T. Nagaura, Y. Itoh, S-J. Okawa and T. Watanabe

(Received - Dec. 11, 2000)

NIFS-690

This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. This document is intended for information only and for future publication in a journal after some rearrangements of its contents.

Inquiries about copyright and reproduction should be addressed to the Research Information Center, National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-02 Japan.
LHD type Proton-Boron Reactor and the Control of its Peripheral Potential Structure

MATSUMOTO Yutaka, NAGAURA Tatsuhiko, ITOH Yasuyoshi, OIKAWA Shun-ichi
Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
WATANABE Tszuhiro
National Institute for Fusion Science, Otoshibara, Toki 509-5292, Japan
E-mail: knp-nfusison@eng.husko-da.ac.jp

Keywords: LHD, p-11B reactor, ICRF, potential control, 4He ash exhaust

Abstract

An advanced Large Helical Device (LHD) type proton-boron reactor, in which the minority protons are heated by ICRF, is proposed. The ratio of the fusion power to the RF input power is evaluated. Numerical computation of particle orbits shows that the ICRF of LHD can accelerate protons in the p-11B fusion relevant energy. Numerical results also show that the LHD magnetic configuration can confine the high energy 4He well. An active peripheral potential control method and an active 4He ash exhaust scheme are discussed.

I Introduction

The drastically improved performance for the plasma heating by the ion cyclotron range of frequency (ICRF) is shown in the third campaign of the Large Helical Device (LHD) experiments in 1999 [1][2]. It is observed that the high energy ion-tail extends to 300keV and that the electron temperature is raised with the electron-dragn relaxation process of the directly heated protons [1][2]. It is also found that protons are heated to the order of 1MeV and that they are well confined, through the numerical computations of particle orbits under the ICRF heating of LHD. Stimulated by these results, we propose an advanced LHD type fusion reactor which has the same magnetic configuration to LHD and is sustained by ICRF.

Six has studied the radio frequency (RF) heated tokamak plasma and the D-T reactor based on the analysis of RF heated two-component plasma [3]. It has been found that the ratio of the fusion power to the RF power input can significantly exceed unity. Only D-T fusion reaction, however, has been discussed. In the present paper, we analyze the LHD type proton-boron reactor (p-11B reactor) that is sustained by ICRF. The p-11B reaction,

\[p + ^{11}\text{B} \rightarrow 3 \, ^4\text{He} + Q_E \quad (Q_E \approx 8.7\text{MeV}) \quad (1) \]

has the advantages as follows [4][5]:

- A large amount of hydrogen and boron are ubiquitous on the earth.

The possibility of the p-11B fusion reactor has been investigated [4][6]. It is pointed out that the economical p-11B reactor would be unlikely since the bremsstrahlung power loss exceeds the fusion output power. In such investigations, protons are injected as the neutral beam into the reactor in which the boron plasma is sustained in a steady state. We will argue, however, that the p-11B reactor sustained by ICRF may be possible.

In §2, the possibility of the ICRF sustained p-11B reactor is discussed based on the simplest energy flow model. The particle orbits of the protons under the ICRF heating and the high energy 4He are described in §3. The peripheral potential control and the 4He ash removal method by ECH and ICRF heating in the chaotic field line region are presented in §4. Section 5 is devoted summary and discussion.

II Possibility of the ICRF sustained p-11B reactor

We consider a p-11B reactor consists of the thermal electrons, the thermal borons and the minority protons that are heated by ICRF. We show in Fig. 1 the simplest model of the energy flow in the ICRF sustained p-11B fusion reactor plant. The ICRF power (= P_{RF}) is primarily absorbed into the minority protons and heat them until a fusion reaction occurs. The output power from the fusion plasma (= P_{RF} + P_{E}, where P_{E} denotes the fusion power) is converted into the electric power with an efficiency \eta_{ef}. Since a part of the electric power (= P_{RF}/\eta_{ef}) is needed for the RF oscillator, we can get the net...
RF OSCILLATOR

FUSION PLASMA

POWER PLANT

P_{ICRF} / \eta_{ICRF}

P_{ICRF} / \eta_{ICRF} + P_{FUSION}

P_{NET}

\eta_{IP}

Figure 1: Simplest model of energy flow in the ICRF sustained p-^{11}B fusion reactor plant.

![Diagram](image)

Figure 2: Relationship between Q, P_{RF}, τ_E, and T_e. n_p/n_e is set to the optimal value for the maximum Q. The line of $Q = 1$ is shown for reference.

![Diagram](image)

Figure 3: Relationship between Q, n_p/n_e, and T_e for the case of optimal $\tau_E P_{RF}/n_p$ values.

The output power ($=P_{NET}$) reduced to

$$P_{NET} = \eta_{FP}(P_{RF} + P_F) - \frac{P_{RF}}{\eta_{RF}} > 0.$$

From this relation, it is found that the ICRF sustained p-^{11}B reactor needs

$$Q(= P_F/P_{RF}) > \frac{1 - \eta_{FP} \eta_{RF}}{\eta_{FP} P_{RF}}.$$

When we substitute reasonable values for $\eta_{FP}(\approx 0.5)$ and $\eta_{RF}(\approx 0.9)$, the above relation reduces to $Q > 1.22\ldots$

We use the simplest one proton model to evaluate Q of the ICRF sustained p-^{11}B reactor. Protons are heated by ICRF under the electron-drag with the electron density ($= n_e$) and temperature ($= T_e$) as:

$$\frac{dE}{dt} = \frac{P_{RF}}{n_p} - \frac{E - T_e}{\tau_E},$$

where $Q = \frac{n_R Q_F}{P_{RF} \min(\tau_B, \tau_T)} \int_0^{\min(\tau_B, \tau_T)} \sigma_{PB}(E) \frac{2E}{M_p} dt$,

$$E = E_0 + \left(\frac{\tau_E P_{RF}}{n_p} + T_e - E_0\right) \left(1 - e^{-t/\tau_e}\right),$$

(5)

where E and η_p are the energy and density of the proton, and τ_e is the electron-drift time. E_0 denotes the initial energy of proton and is assumed to be 0 in the following. The value Q becomes

![Diagram](image)

III High Energy Particle Orbit in LHD

There is the transition region in phase space of particles in helical systems. The particle orbits become chaotic in this region[8]. It is essential whether passing particles can transit to the reflected particles without being lost under the ICRF heating process.

Then, we trace the orbits of the protons under the ICRF heating in LHD, numerically by the following
Figure 4: Maximum energy of ICRF heated proton in LHD. $E_0 = 20kV/m$, $m = 0$, $kr = 0$, and $B_{ax} = 2.52T$. The starting points are set on $Z = 0$ plane in the horizontally elongated poloidal crosssection and starting energies are set to 1keV. Heating times to arrive at the maximum energy are also shown.

The equation,

$$M \frac{dV}{dt} = \epsilon \left[\begin{array}{c}
0 \\
0 \\
E_0
\end{array} \right] \sin(m \phi + kr - \omega t) + V \times B$$

with conditions

$$E_0 = 5.10 \times 20 \, kV/m$$
$$m = 0.1, 0.40$$
$$kr = 0, 38.95m^{-1}$$
$$\omega = 38.47MHz$$
$$B_{ax} = 2.52, 2.75T$$

The orbits of a proton are calculated until a proton is lost to the vacuum vessel wall, with being changed the starting point and the initial energy of a proton. We also change the magnetic field intensity, the wave number and the electric field intensity of ICRF. The magnetic axis is fixed at $R_{ax} = 3.6m$. Protons are started as passing particles. As shown in Fig. 4, it is found that the average maximum energy of protons becomes order of 1MeV except of the peripheral region of the last closed magnetic surface (LCMS). These computation shows that the ICRF of LHD can accelerate protons in the p-11B fusion relevant energy range.

In order to realize the economical p-11B reactor, 4He produced by p-11B reaction is needed to be confined for a long time to heat the plasma. We also trace the guiding-center of $2.9MeV$ 4He in LHD during 1000 toroidal turns and analyze the confinement capability of LHD. Numerical results show that the LHD magnetic configuration can confine the high energy 4He well (Fig. 5).

Figure 5: Loss ratio of 4He in the LHD magnetic configuration. Horizontal axis shows the starting points of tracing 4He in vertically elongated poloidal crosssection. R_{ax} denotes the major radius of the magnetic axis. B_{ax} represents the magnetic field intensity on the magnetic axis. The loss ratio is averaged in the initial pitch angle and in the vertical position which are distributed equal between bottom and top of the LCMS.

IV Peripheral Potential Control and 4He ash removal in LHD configuration

In order to realize the p-11B reactor, the good plasma confinement in the core region and the high efficiency exhaust of the 4He ash are important. Therefore, we propose a peripheral potential control method by ECH and ICRF heating in the chaotic field line region just outside the LCMS.

The guiding-center equations show that the deeply trapped particles move along the cross-lines of $|\mathbf{B}| = \text{const. plane and } \mathbf{B} \cdot \mathbf{V}B = 0$ plane. By the numerical analysis of the magnetic structure of LHD, we find the existence of the cross-lines connecting the chaotic field line region and the vacuum vessel wall, as shown in Fig. 6. We call these cross-lines the loss canals. If the resonance position of ECH is placed at loss canals, the peripheral potential will increase due to the rapid loss of the deeply trapped electrons. If the resonance position of ICRF is placed at loss canals, the peripheral potential will decrease due to the rapid loss of the deeply trapped ions. These active potential control methods may be expected as the active control scheme of the core plasma confinement.

The peripheral potential control should be useful for the 4He ash removal. Furthermore, if the ICRF frequency is set equal to the 4He cyclotron frequency, $\omega_{\text{CH}, \omega}$, we can directly exhaust them from the chaotic field line region.
V Summary and Discussion

We have proposed an ICRF sustained LHD type p-\(^{11}\)B reactor and have been able to show some possibilities of the reactor. Furthermore, we have proposed an active peripheral potential control method and an active \(^4\)He ash exhaust scheme.

In eq. (5), \(E_0 = 0\) have been assumed, however, this assumption will be giving an severe evaluation for \(Q\). An reasonable value for \(E_0\) will be the order of \(T_e\), but, the self-consistent distribution function of the proton should be calculated for a more convincing evaluation of \(Q\).

In the present paper, we have dealt with \(T_e\) as one of the free parameters in calculations. But, \(T_e\) should be evaluated by the energy balance in the reactor. Moreover, the synchrotron radiation power loss may become a serious problem in high \(T_e\) case. In the LHD type p-\(^{11}\)B reactor, however, the magnetic field intensity can be reduced, if we scale up the machine size. There are no limitations for the machine size from the neutron wall loading in p-\(^{11}\)B reactor. Detail energy transport estimation based on the confinement scaling law for LHD will be done in future.

In order to realize the economical and steady p-\(^{11}\)B reactor, it may be necessary to find another proton heating process. If we take into account the fact of the inverse population of the fusion product \(^4\)He and the fact of \(\omega_{\text{CH}} = 2\omega_{\text{CH}}\), we can expect the direct energy transfer from \(^4\)He to protons. These works will be carried out in elsewhere.

Acknowledgements

We are grateful to Prof. T. Yamashina (Sapporo International University) and Prof. M. Itagaki (Hokkaido University) for continuous encouragements. We are also indebted to Prof. Y. Tomita for providing the valuable data and information on advanced fusion reactors. One of the authors (T.W.) would like to thank to Dr. J. Miyazawa and Prof. H. Yamada for the motivation on the research for p-\(^{11}\)B reactor and also thank to Prof. K. Itoh, J. Todoroki and all members the Theory and Data Analysis Division (National Institute for Fusion Science) for many discussions.
References

Recent Issues of NIFS Series

NIFS-667, H Nakamura, S Fujiiwa, and T Sato
Regularity of Orientationally Ordered Domains of Short Chain Molecules. Nov 2000

Fast- and Slow-Wave Heating of Ion Cyclotron Range of Frequencies in the Large Helical Device. Nov 2000

NIFS-669, K Mima, M S Jovanovic Y Sento, K M Shang, C M Skone and T Sato

NIFS-670, L Hladzhevski, M M Skone, and T Sato

NIFS-672, C Das, S Kida and S Goto
Overall Self-Similar Decay of Two-Dimensional Turbulence Dec 2000

NIFS-673, L A Bureyev, T Kato, S Satsukia, and C Nambo
Quasiclassical Representation of Autoionization Decay Rates in Parabolic Coordinates. Dec 2000

NIFS-674, L A Bureyev, VS Lastaia, and C Nambo
Radiative Cascade Due to Dielectronic Recombination Dec 2000

Configurational Effects on Loss Collision Plasma Confinement in DHT Heliotron/Tokamak Jan 2001

NIFS-676, K Ishi
A Perspective at 11th International Toki Conference - Plasma Physics, quo vadis?, Jan 2001

NIFS-677, S Suzaki, H Sugawara, M Okamoto and M Watanabe
Classification of Particle Orbits near the Magnetic Axis in a Tokamak by Using Constants of Motion. Jan 2001

NIFS-678, M Tamada and A Y Grosberg
Giant Charge Inversion of a Macroion Due to Multi-valent Counterions and Monovalent Counterions. Molecular Dynamics Study. Jan 2001

Simulation by a Diffusion Model for the Variation of Hydrogen Pressure with Time between Hydrogen Discharge Shots in LHD, Feb. 2001

NIFS-680, A Yoshimura, N Yokoi, S Nishida, S-1 Ishi and K Ishi
Variational Approach to a Turbulent Swirling Pipe Flow with the Aid of Helicity, Feb. 2001

NIFS-681, A Ishibashi
Ensemble of Curl Resonances, Stochasticity and Control of Particle Motion in a Toroidal Magnetic Trap. Feb 2001

NIFS-682, H Moita and G H Miley
Virtual Cathode in a Spherical Internal Electrostatic Confinement Device. Feb 2001

NIFS-684, S Kida and S Goto
Line Statistics Stretching Rate of Passive Lines in Turbulence Mar 2001

NIFS-685, R Tanaka, T Kusumawati and T Yabe.
Exactly Conservative Semi-Lagrangian Scheme (CIP-CSL) in One-Dimensional Mar 2001

NIFS-686, S Toda and K Ishi
Analysis of Structure and Transition of Radial Electric Field in Helical Systems Mar 2001

NIFS-687, T Kuroda and H Sugama,
Effects of Multiple-Helicity Fields on Ion Temperature Gradient Modes Apr 2001

NIFS-688, M Tanaka,
The Origins of Electrical Resistivity in Magnetic Reconnection Studies by 2D and 3D Macro Particle Simulations Apr 2001

Statistical Properties of the Neoclassical Radial Diffusion in a Tokamak Equilibrium Apr 2001

NIFS-690, M Masumoto, T Nagauri, Y Itoh, S-1 Okawa and T Watanabe,
LHD-Type Proton-Boron Reactor and the Control of its Peripheral Potential Structure Apr 2001