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Dynamics of Zonal Flows in Helical Systems

H. Sugama and T.-H. Watanabe
National Institute for Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Japan

(Dated: January 5, 2005)

Theory for describing collisionless long-time behavior of zonal flows in helical systems is presented
and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of
particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for
longer radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which
is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing
their bounce-averaged radial drift velocity. This implies a possibility that helical configurations
optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which
lower anomalous transport.
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In order to search for conditions for efficient zonal-flow
generation [1] leading to a good plasma confinement, it is
critically important to study the relation of zonal-flow dy-
namics to toroidal magnetic configurations. Rosenbluth
and Hinton [2] showed that initial E×B rotation in toka-
maks is not fully damped by collisionless processes but it
approaches a finite value. Collisional decay of zonal flows
occurs in the long course of time [3] although the residual
zonal flows in a collisionless time scale still influence the
turbulent transport. Since zonal flows are a key issue for
improved confinement in helical systems as well [4, 5],
it is necessary to examine how helical geometries affect
zonal-flow damping. In the present work, collisionless
zonal-flow dynamics in helical systems is investigated. In
the same manner as in Rosenbluth and Hinton [2], we
here treat the ITG turbulence [6] as a known source and
analytically derive the response kernel which relates the
zonal-flow potential to the source and also represents de-
pendence on an initially given zonal flow. We also verify
the validity of the derived response kernel by a recently-
developed gyrokinetic-Vlasov-simulation code [7].

In helical configurations, the radial drift motion of par-
ticles trapped in helical ripples yields neoclassical ripple
transport in the weak collisionality regime [8, 9]. We
show that this radial drift also causes a significant dif-
ference between long-time zonal-flow behavior in helical
systems and that in tokamaks. It is observed in the Large
Helical Device (LHD) [10] that not only neoclassical but
also anomalous transport are reduced by the inward shift
of the magnetic axis which decreases the radial drift of
helical-ripple-trapped particles but increases the unfavor-
able magnetic curvature to destabilize pressure-gradient-
driven instabilities such as the ITG mode [11–13]. Our
study suggests that helical configurations optimized for
reduction of the neoclassical ripple transport may si-
multaneously lower the anomalous transport through en-
hancing the zonal-flow level.

We use the toroidal coordinates (r, θ, ζ), where r, θ,
and ζ denote the flux surface label, the poloidal an-
gle, and the toroidal angle, respectively. The mag-
netic field is written as B = ∇ψ(r) × ∇(θ − ζ/q(r)),
where 2πψ(r) is equal to the toroidal flux within the

flux surface labeled r and q(r) represents the safety fac-
tor. Following Shaing and Hokin [9], we here consider
helical systems with the magnetic field strength writ-
ten by a function of poloidal and toroidal angles (its
r-dependence is not shown here for simplicity) as B =
B0[1− ε10 cos θ − εL0 cos(Lθ)−∑

n=0,±1,··· ε
(n)
h cos{(L +

n)θ − Mζ}] = B0[1 − εT (θ) − εH(θ) cos{Lθ − Mζ +
χH(θ)}], where εT (θ) = ε10 cos θ + εL0 cos(Lθ), εH(θ) =√

C2(θ) + D2(θ), χH(θ) = arctan[D(θ)/C(θ)], C(θ) =∑
n=0,±1,··· ε

(n)
h cos(nθ), D(θ) =

∑
n=±1,··· ε

(n)
h sin(nθ),

and M (L) is the toroidal (main poloidal) period number
of the helical field. For the LHD, L = 2 and M = 10.
Here, we assume that l/(qM) ¿ 1. Multiple-helicity ef-
fects can be included in the function εH(θ).

The gyrokinetic equation [14] for the zonal flow com-
ponent with the perpendicular wave number vector k⊥ =
kr∇r is given by

(
∂

∂t
+ v‖b · ∇+ iωD

)
gk⊥ =

e

T
F0J0(k⊥ρ)

∂φk⊥

∂t
+Sk⊥F0,

(1)
where J0(k⊥ρ) is the zeroth-order Bessel function, ρ =
v⊥/Ω is the gyroradius, and Ω = eB/(mc) is the gyrofre-
quency. Here, subscripts to represent particle species
are dropped for simplicity. The equilibrium distribu-
tion function F0 is assumed to be given by the local
Maxwellian and the perturbed particle distribution func-
tion δf ≡ f − F0 is written in terms of the electro-
static potential φ and the solution g of Eq. (1) as δf =
−(eφ/T )F0 + g exp(−ik⊥ · ρ), where ρ = b× v/Ω. The
drift frequency ωD is defined by ωD ≡ k⊥ · vd ≡ krvdr,
where vdr = vd · ∇r is the radial component of the guid-
ing center drift velocity. The source term Sk⊥F0 on the
right-hand side of Eq. (1) represents the E × B nonlin-
earity and is written as Sk⊥F0 = (c/B)

∑
k′⊥+k′′⊥=k⊥ [b ·

(k′⊥ × k′′⊥)]J0(k′⊥ρ)φk′⊥gk′′⊥ .
The trapping parameter κ is defined by κ2 =

[1− λB0 {1− εT (θ)− εH(θ)}] / [2λB0εH(θ)] with λ ≡
µ/w where w ≡ 1

2mv2 and µ ≡ mv2
⊥/(2B) represent

the kinetic energy and the magnetic moment, respec-
tively. Then, particles trapped in helical ripples are



2

characterized by κ2 < 1. Using l/(qM) ¿ 1, we
approximate the field line element dl by R0dζ, where
R0 denotes the major radius of the toroid. Then,
the orbital average within a helical ripple is defined
by A =

∫
(R0dζ/|v‖|)A/τh, where τh =

∫
(R0dζ/|v‖|);

for κ2 < 1, the integral
∫

dζ goes over a closed orbit
while, for κ2 > 1, it goes a whole helical ripple. Using
the longitudinal adiabatic invariant J [9] given by J =
16(R0/M)(µB0εH/m)1/2[E(κ)−(1−κ2)K(κ)] for κ2 < 1
and J = 8(R0/M)(µB0εH/m)1/2κE(κ−1) for κ2 > 1
with the complete elliptic integrals K(κ) and E(κ), the
orbital average of the radial drift velocity within a heli-
cal ripple is given by vdr = (mc/eψ′τh)(∂J/∂θ), where
ψ′ = dψ/dr and τh = m(∂J/∂w). The drift frequency
ωD is expressed as ωD ≡ kr(vdr + v‖b · ∇δr), where δr =∫ l(dl/v‖)(vdr−vdr) represents the radial displacement of
the guiding center from the helical-ripple-averaged radial
position. Then, Eq. (1) is rewritten as

(
∂

∂t
+ v‖b · ∇+ ikrvdr

)
(gk⊥eikrδr )

=
e

T
F0e

ikrδrJ0
∂φk⊥

∂t
+ eikrδrSk⊥F0. (2)

We here consider long-time behavior of zonal flows.
Then, in Eq. (2), the time-derivative terms, the radial
guiding-center drift term, and the source term are smaller
than the parallel streaming term such that they are re-
garded as of the higher-order. The parallel derivative is
rewritten as b · ∇ ' R−1

0 (∂/∂ζ + q−1∂/∂θ). Here, we
treat the poloidal field as a higher-order quantity than
the toroidal field. Based on these orderings, we expand
gk⊥eikrδr as gk⊥eikrδr = h0 + h1 + · · · and obtain the
lowest-order equation (v‖/R0)(∂h0/∂ζ) = 0 from Eq. (2).
Thus, we can write h0 = h0(t, r, θ, w, µ, σ), where the de-
pendence on σ = v‖/|v‖| disappears for κ2 < 1. The
first-order equation is written as

v‖
R0

∂h1

∂ζ
= −

(
∂

∂t
+

v‖
R0q

∂

∂θ
+ ikrvdr

)
h0

+
e

T
F0e

ikrδrJ0
∂φk⊥

∂t
+ eikrδrSk⊥F0. (3)

For particles trapped in a helical ripple (κ2 < 1), the
orbital average of Eq. (3) and its time integral yield

h0(t) = h0(0)e−ikrvdrt +
∫ t

0

dt′ e−ikrvdr(t−t′)

×F0

[
e

T

(
eikrδrJ0

∂φk⊥(t′)
∂t′

)
+ (eikrδrSk⊥(t′))

]
.(4)

When κ2 > 1, using the periodic condition h1(ζ +
2π/M) = h1(ζ) and taking the orbital average of Eq.
(3) within a helical ripple give

(
∂

∂t
+ ωθ

∂

∂θ

) (
eikr∆rh0

)

= eikr∆rF0

[
e

T

(
eikrδrJ0

∂φk⊥

∂t

)
+ (eikrδrSk⊥)

]
,(5)

where ωθ = 2πσ/(qMτh) is the helical-ripple-
averaged poloidal angular velocity and ∆r =
σ(qM/2π)(mc/eψ′)(J − Jt) with Jt defined later
represents the radial displacement of the helical-ripple-
averaged guiding-center position. For κ2 > 1, particles
are classified into two types, particles trapped by the
toroidicity and passing particles. For these particles,
we regard ωθ∂

(
eikr∆rh0

)
/∂θ as a dominant term in

Eq. (5) based on the long-time ordering and expand
eikr∆rh0 as eikr∆rh0 = η0 + η1 + · · · where η0 is
independent of θ because it satisfies the lowest-order
equation ωθ∂η0/∂θ = 0. The solubility condition for η1

is derived from Eq. (5) and integrated in time to give

η0(t) = η0(0)− e

T
F0

〈
eikr∆r (eikrδrJ0φk⊥(0))

〉
po

+ F0

〈
eikr∆r

[
eikrδr

{
J0

eφk⊥(t)
T

+ Rk⊥(t)
}]〉

po

,(6)

where Rk⊥(t) ≡ ∫ t

0
dt′ Sk⊥(t′) and the

poloidal-orbit average 〈A〉po is defined by
〈A〉po = 1

2

∑
σ=±1

∫ θt

−θt
(dθ/|ωθ|)A/

∫ θt

−θt
(dθ/|ωθ|)

for toroidally trapped particles and 〈A〉po =∫ 2π

0
(dθ/|ωθ|)A/

∫ 2π

0
(dθ/|ωθ|) for passing particles

with θt given by the condition κ(θ = θt) = 1 which is
equivalent to ωθ(θ = θt) = 0. Now, Jt is defined by
Jt = J(θ = θt) for toroidally trapped particles and by
Jt = J(θ = π) for passing particles.

The electrostatic potential φk⊥ is determined by the
quasineutrality condition, −n0eφk⊥/Ti +

∫
d3v J0gik⊥ =

n0eφk⊥/Te +
∫

d3v gek⊥ , where the small electron gy-
roradius limit k⊥ρe → 0 is considered. In the low-
est order of the long-time ordering, we substitute Eq.
(4) into gk⊥ = e−ikrδrh0 for κ2 < 1 and Eq. (6) into
gk⊥ = e−ikrδre−ikr∆rη0 for κ2 > 1 in order to evaluate
the nonadiabatic parts of the density perturbations. We
find from Eq. (4) that effects of vdr on the density of
helical-ripple-trapped particles strongly depend on time
t. Let us define a characteristic transition time τc by
τc ∼ 1/|krvdr| where vdr is evaluated by considering
helical-ripple-trapped thermal particles with µB0 ∼ T ,
κ ∼ 1, and θ ∼ π/2.

When t ¿ τc, effects of vdr are weak and the quasineu-
trality condition is written as

n0e

(
1
Ti

+
1
Te

)
φk⊥(t)− e

Ti

∫

κ2<1

d3v Fi0J0e
−ikrδr

×(eikrδrJ0φk⊥(t))− e

Ti

∫

κ2>1

d3v Fi0 e−ikr∆re−ikrδrJ0

×
〈
eikr∆r (eikrδrJ0φk⊥(t))

〉
po
− e

Te

∫

κ2<1

d3v Fe0 φk⊥(t)

− e

Te

∫

κ2>1

d3v Fe0

〈
φk⊥(t)

〉
po

= σ<, (7)

where σ< is given by the initial values φk⊥(0), h0(0)
and η0(0) as well as the time integral of the E × B



3

nonlinear source terms Rk⊥(t) =
∫ t

0
dt′Sk⊥(t′). Here,

the radial displacement of the electron guiding center
is neglected because of the small electron mass. Rep-
resenting Eq. (7) by Lφk⊥ = σ< and defining the Her-
mitian inner product by (u, v) ≡ 〈u∗v〉, where 〈·〉 de-
notes the flux-surface average, we find that the operator
L is self-adjoint, (u,Lv) = (Lu, v), and that (u,Lu) ≥ 0.
Then, the variational principle for Lφk⊥ = σ< is given
by δV = 0, where V ≡ (φk⊥ ,Lφk⊥)/|(φk⊥ , σ<φk⊥)|2.

Now, we assume k⊥ρ and kr∆r to be small and use
them as expansion parameters. We neglect krδr because
generally δr is much smaller than ρ. The source σ< is
considered to be of order k2

⊥ρ2. Then, from the lowest-
order equation (φk⊥ ,L0φk⊥) = 0, we can show that φk⊥
is a flux-surface function, ∂φk⊥/∂ζ = ∂φk⊥/∂θ = 0.
The next-order equation (φk⊥ ,L1φk⊥) = (φk⊥ , σ<)
gives eφk⊥/Ti = 〈σ<〉/D<, where D< =〈∫

d3v Fi0

[
1
2k2
⊥ρ2 + k2

r

{〈∆2
r〉po − 〈∆r〉2po

}
H(κ2 − 1)

]〉
and H(x) = 1 (for x > 0), 0 (for x < 0). Here, the
second group of terms in the integrand represent the
neoclassical polarization effect due to toroidally trapped
particles with κ2 > 1.

To the lowest order in k2
⊥ρ2, electron contributions to

σ< are neglected. The initial values hi0(0) and ηi0 in
Eq. (7) are given by hi0(0) = eikrδrgik⊥(0) and ηi0(0) =
〈eikr∆r (eikrδrgik⊥(0))〉po. We assume the initial per-
turbed ion gyrocenter distribution function to take the
Maxwellian form, δf

(gyro)
ik⊥ (0) ≡ −J0(eφk⊥(0)/Ti)Fi0 +

gik⊥(0) = (δn(gyro)
ik⊥ (0)/n0)Fi0. The quasineutrality

condition gives δn
(gyro)
ik⊥ (0) = n0(k2

⊥a2
i )(eφk⊥(0)/Ti)

with a2
i = Ti/(miΩ2

i ). Then, we obtain 〈σ<〉 =
n0〈k2

⊥a2
i 〉eφk⊥(0)/Ti +

〈∫
d3v Fi0Rik⊥(t)

〉
and the long-

time behavior of the zonal-flow potential for t ¿ τc,

eφk⊥(t)
Ti

= K<

[
eφk⊥(0)

Ti
+

∫ t

0
dt′

〈∫
d3v Fi0Sik⊥(t′)

〉

n0〈k2
⊥a2

i 〉

]
,

(8)
where the response kernel for t ¿ τc is represented by

K< = 1/(1 + G) (9)

and

G =
12
π3

B0R
2
0q

2

〈
B2

|∇ψ|2
〉 [∫ 1/BM

0

dλ

×
∮

dθ

2π
(2λB0εH)−1/2κ−1K(κ−1)

{
(2λB0εH)1/2

× κE(κ−1)−
∮

dθ
2π K(κ−1)E(κ−1)∮

dθ
2π (2λB0εH)−1/2κ−1K(κ−1)

}2

+
∫ 1/B′m

1/BM

dλ

∫

κ2(θ)>1

dθ

2π
(2λB0εH)1/2κK(κ−1)

×
{

E(κ−1)− 1
κ

(
εH(θt)

εH

)1/2
}2


 . (10)

Here BM denotes the maximum field strength over the
flux surface and B′

m represents the minimum value of
local maximum field strengths within each helical ripple.

Next, when t À τc, the density of nonadiabatic helical-
ripple-trapped particles is strongly damped because of
phase mixing caused by the bounce-averaged radial drift
motion [see Eq. (4)]. Then, the quasineutrality condi-
tion is given by Eq. (7) with the velocity-space integrals
over the κ2 < 1 region dropped. Employing the same
procedures used in deriving Eqs. (8)–(10), φk⊥ is shown
to be again a flux-surface function to the lowest order
in k2

⊥ρ2 and ε
1/2
H , and we obtain eφk⊥/Ti = 〈σ>〉/D>,

where D> ≡ D< + (2/π)(1 − 〈k2
⊥a2

i 〉 + Ti/Te)〈(2εH)1/2〉
and 〈σ>〉 ≡ 〈σ<〉−(2/π)〈(2εH)1/2〉〈k2

⊥a2
i 〉[n0eφk⊥(0)/Ti].

Finally, the long-time behavior of the zonal-flow potential
for t À τc is given by

eφk⊥(t)
Ti

= K>

[
eφk⊥(0)

Ti

+

∫ t

0
dt′〈∫

κ2>1
d3v Fi0Sik⊥(t′)〉

n0〈k2
⊥a2

i 〉
{
1− (2/π)〈(2εH)1/2〉}

]
(11)

and

K> = 〈k2
⊥a2

i 〉
[
1− (2/π)〈(2εH)1/2〉

]

×
{
〈k2
⊥a2

i 〉[1− (2/π)〈(2εH)1/2〉+ G]

+ (2/π)(1 + Ti/Te)〈(2εH)1/2〉
}−1

. (12)

Here, terms proportional to 〈(2εH)1/2〉 are derived from
suppressing the density perturbations of the nonadiabatic
helical-ripple-trapped particles. A term with Ti/Te ap-
pears in the response kernel K> for t À τc because not
only ions but also electrons influence the quasineutrality
condition through their helical-ripple-bounce-averaged
radial drift motion. The dependence on electrons and
on the radial wave number shown in Eq. (12) is not seen
in the tokamak case. In the axisymmetric limit εH → +0
with εT = εt cos θ, we obtain G → 1.6 q2/ε

1/2
t , which re-

duces both Eqs. (9) and (12) to the Rosenbluth-Hinton
formula KR−H = 1/(1 + 1.6 q2/ε

1/2
t ) [2].

In order to examine the analytical results shown above,
a linearized ion gyrokinetic equation combined with
the quasineutrality condition is numerically solved by a
toroidal flux-tube gyrokinetic-Vlasov code [7]. Since the
perturbed electron density is simply calculated by using
nek⊥ = (n0e/Te)(φk⊥ − 〈φk⊥〉) in our simulations, the
term proportional to Ti/Te in Eq. (12) should be dropped
when comparing that formula with the simulation results.
Here, we consider the L = 2/M = 10 single-helicity case,
in which ε

(n6=0)
h = 0 and therefore εH = ε

(0)
h ≡ εh is in-

dependent of θ. We also put εt ≡ ε10 and εL0 = 0 so
that εT = εt cos θ. The initial perturbed ion gyrocenter
distribution function is given by the Maxwellian form.
We define the radial coordinate r by ψ = B0r

2/2 and
use vdr = −(cµ/eR0) sin θ, 〈k2

⊥a2
i 〉 ' k2

ra2
i , and τc '
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FIG. 1: Time evolution of the zonal flow potential obtained
by the gyrokinetic-Vlasov simulation for a helical system with
L = 2, M = 10, q = 1.5, εt = εh = 0.1, and krai = 0.131. A
dashed horizontal line corresponds to K> given by Eq. (12)
for t > τc.

(krcTi/eB0R0)−1 = (R0/vti)/(krai), where ai ' vti/Ωi0,
Ωi0 = eB0/(mic), and vti = (Ti/mi)1/2.

Time evolution of the zonal-flow potential obtained by
the simulation is plotted by a solid curve in Fig. 1, where
εt = 0.1, εh = 0.1, q = 1.5, and krai = 0.131 are used.
Here, a dashed horizontal line represents the response
kernel K> given by Eq. (12) for t > τc(= 7.6R0vti). It
is seen that, after oscillations of the geodesic acoustic
mode (GAM) [15] are damped, the zonal-flow amplitude

approaches the predicted value K> = 0.038, which is
smaller than K< = 0.39 and KR−H = 0.081 for the used
parameters. Under the conditions used in our simulation,
the GAM oscillations dominate the zonal-flow evolution
for t < τc so that we cannot identify K< given by Eq.
(8) which describes the long-time behavior for t ¿ τc

with rapid phenomena such as the GAM neglected. It
is confirmed from other simulations for krai = 0.0654,
0.131, 0.196 and εh = 0.05, 0.1, 0.2 that Eq. (12) agrees
with the long-time limit of 〈φk⊥(t)〉/〈φk⊥(0)〉 obtained
by the simulations within an error of about 15 percent
at most. A better agreement between the simulation and
theoretical results is verified for lower krai and smaller
εh because these parameters are assumed to be small in
deriving the analytical results.

In conclusion, we have shown how collisionless long-
time behavior of zonal flows in helical systems is in-
fluenced by the bounce-averaged radial drift motion of
helical-ripple-trapped particles. It is predicted that, un-
der the influence of helical-ripple-trapped particles, for
the lower radial wave numbers, the long-time limit of
the zonal-flow potential amplitude becomes smaller al-
though simultaneously the characteristic transition time
τc(∼ 1/kr|vdr|) becomes longer. In some optimized he-
lical configurations such as quasi-poloidally-symmetric
systems [16, 17] which significantly reduce neoclassical
transport by suppressing both |vdr| and G, we expect
the response kernels K>, K< and τc to increase such that
large zonal flows can be maintained for a long-time pe-
riod, which contribute to reduction of anomalous trans-
port as well.

The authors thank Dr. M. Yokoyama and Dr. Y. Ido-
mura for helpful discussions. This work is supported in
part by the Japanese Ministry of Education, Culture,
Sports, Science, and Technology, Grant Nos. 16560727
and 14780387.
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