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Abstract:The GIOTA code is introduced with the emphasis on its logics and characteristics for 
the purpose of the evaluation of the ripple transport in helical systems. It is rather easy-to-use 
code with taking into account rigorously the effect of the finite rotational transform and the 
magnetic field topography. To demonstrate its capability, the effective helical ripple is calculated 
for LHD (Large Helical Device) configurations with a wide range scan of magnetic axis 

position, (Rax) and plasma beta value (β).  
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1. Introduction  
In the helical systems, there exists the modulation of the magnetic field strength, B, along a 

magnetic field line due to the helical coil currents in addition to the toroidicity. This modulation 
of B gives the trapping of particles depending on the pitch angle. Since trapped particles move 
with the drift motion in addition to the bounce motion, large deviation from a flux surface 

occurs for the condition, peffb ωνω >>>> . Here, bω denotes the bounce frequency within a 

ripple of B, effν the effective collision frequency, and pω the characteristic frequency of the 

poloidal drift motion. The diffusion coefficient for this range of collisionality, as a result, 
becomes inverse proportional to collisionality, which leads to the enhancement of diffusion 
coefficient for lower collisionality (e.g. higher temperature and/or lower density). This is so 

called ripple diffusion and the corresponding collisionality regime is called 1/ν regime, which is 
of vital important to investigate in non-axisymmetric magnetic configurations.  

In this report, GIOTA code, which is one of the numerical codes for evaluating ripple 
diffusion, is introduced with emphasis on the based-formulation and logics. It is noted that the 
GIOTA code has already been used as a part of the three dimensional equilibrium/one 
dimensional transport simulation code [1] for designing LHD device and analyzing LHD/CHS 
experimental data to estimate ripple transport. Although the applicable range of collisionality is 

limited to 1/ν regime due to the employed ordering of the drift kinetic equation, GIOTA code 



can take into account rigorously the effect of the finite rotational transform, complicated three 
dimensionality of the magnetic field. The contribution to the diffusion from locally trapped 
particles is summed up for each toroidal field period as you will recognize in the following 
description. This is different methodology from that utilized in the NEO code [2], in which all 
magnetic field ripples even beyond the toroidal field period are taken into account. It is also 
rather light and easy-to-use code, which is especially appropriate to grasp the comprehensive 
dependence of ripple diffusion property on a wide range of magnetic configurations.  

2. Description of the GIOTA code 

The ripple diffusion in 1/ν regime can be formulated based on the steady state drift kinetic 

equation considering the condition, peff ων >> ,  
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where and are the parallel velocity and the drift velocity of a particle, respectively. The 

following expression is obtained,  
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with m and q being the mass and charge of a particle. The f0 and f1 are the zero-th and first order 
distribution function in the ordering of Larmor radius, and f0 is assumed to be the local 

Maxwellian. The ψ denotes a flux function and C(f1) is the linearlized collision term. It is noted 
that the stationality is assumed in Eq. (1) and the induced electric field is neglected. 

Furthermore, according to the condition that ωb»νeff , the first order distribution function f1 is 
expanded with the parameter νeff /ωb«1 as follows,  
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Substituting Eq. (3) into Eq. (1) yields  
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from the lowest order, where dl is the line element along the magnetic field line. The next order 
gives  
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By applying the bounce averaging operator  
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to Eq. (5) leads to  
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Once f1
(-1)

 is obtained from Eq. (7) utilizing Eq. (4), the particle and heat fluxes across a flux 
surface and also their diffusion coefficients can be evaluated through  
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where  L is the flux surface average.  

In the following, the Boozer coordinates (ψ, χ, ζ) is employed for the concrete evaluation. The 
magnetic field can be described in the Boozer coordinates as 
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where ψ is the toroidal flux divided by 2π, χ and ζ is poloidal and toroidal angle, respectively. 
The (ι/2π) is the rotational transform. Defining   

ζπιχα  )2/(−=             (11) 

as the alternative angle variable to form coordinates (ψ, α, ζ), leads to the fact that a magnetic 
field line can be described by ψ=const. and α=const. Only the pitch angle scattering is 
considered as the linearized collision operator as follows,  
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where λ≡K/μ with being K and μ the kinetic energy and magnetic momentum of a particle, 
respectively. Moreover,  
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The distribution function, f1
(-1), for particles trapped in a helical ripple is now evaluated utilizing 

ζdgBdl = with 2/1 Bg ∝ being the Jacobian of the Boozer coordinates. The M helical 

ripple exists in the full range of πζ 20 <≤  for a magnetic configuration with the toroidal 

field period of M.  When one specifies a number of the helical ripple with i (=1, … , M), the 
left hand side of Eq. (7) is described by  
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where ),,( iA αλζ  and ),,( iB αλζ  describe the turning points for particles trapped in a i-th 

helical ripple, both depending on λ and α. Likewise, the right hand side of Eq. (7) becomes  
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It is recognized that ),,(1 iH αλ [ ),,(2 iH αλ ] indicates the dependence of the 

bounce-averaged drift velocity across a magnetic surface [the bounce-averaged effective 
collision frequency] on the magnetic field. From Eqs. (7), (14) and (16), the f1

(-1) is obtained as  
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where ),(max iB α denotes the maximum reachable magnetic field strength for particles trapped 

in the i-th helical ripple. The domain for computing f1
(-1) is summarized with the notations in 

Fig.1.  
The two important relations are now explained before coming to the evaluation of the particle 

and heat fluxes. One is the flux surface average and the other is the variable transformation for 
the integral in the velocity space. The flux surface average is defined by  
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which can be written for the flux coordinates (ψ, α, ζ) as 
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Since the distribution function, f1
(-1) , is calculated only in a helical ripple, Eq. (20) can be more 

modified as 
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The integral in the velocity space is expressed by the variable transformation as 
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with ),(min iB α is the minimum of the magnetic field strength as a function of α in an i-th 

helical ripple and σ the sign of parallel velocity of a particle.  
 Based on these two relations, Eqs. (21) and (22), performing the same procedures to derive Eq. 
(14) leads to the expression for the particle and heat fluxes,  
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Here  is the geometrical factor, which does not depend on K. The  is expressed as DG DG
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Assuming that f0 is the local Maxwellian,  
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with E, φ and T are the energy, electrostatic potential and temperature, respectively. Substituting 
Eq. (26) into Eqs. (23) and (24) leads to the following expressions for particle and heat fluxes 
(a=ion, electron).   
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Here,  
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3. Application of the GIOTA code for LHD configurations 
 So called “effective ripple (εeff)”, has been frequently considered to estimate the level of the 
ripple transport in helical systems as the comparative parameter among different configurations 
[3]. This parameter reflects the effect of the multiple helicity of the magnetic configuration on 
the ripple transport. Here, the configuration dependence of the effective ripple in LHD is 
examined by applying the GIOTA code. The definition of the effective ripple [3] is  
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where ν, vd and D are the collision frequency, drift velocity and particle diffusion coefficient, 
respectively.  
 Figure 2 shows the contour of log(εeff

3/2) on the (Rax, β) plane for the radial position of (a) 
ρ=0.2, (b) ρ=0.5 and (c) ρ=0.8, respectively. Here, Rax denotes the magnetic axis position at 
vacuum configuration, β the volume averaged beta value. The MHD equilibria for these 
calculations are based on the fixed-boundary VMEC [4]. This condition corresponds to an 
operation with a feedback control of the vertical field to keep the plasma position same as that 



for the vacuum case. The pressure profile employed for these VMEC calculations is P(ρ)= 
P(0)(1-ρ2) (1-ρ8).  

This kind of parameter scan calculations in a wide range of configuration space can be 
relatively easily done by the GIOTA code. This is the significant advantage of the GIOTA code. 
The designated numbers denote the value of log(εeff

3/2) on each contour. The minimum of εeff
3/2 

appears around Rax of about 3.53-3.55 m regardless of radial position, ρ, for vacuum cases. This 
feature well reproduces the previous finding of the “neoclassical-optimized configuration in 
LHD” by the DCOM code [5]. The εeff

3/2 increases as β is increased for configurations with 
Rax≥3.53 m. It is not the case, however, for configurations with Rax less than that value. For 
those configurations, εeff

3/2 decreases as β is increased in this β range. It is also recognized that 
this property appears regardless of ρ from plasma core to edge region. Comprehensive 
understandings have not yet been reached on this characteristic, which will be examined in 
detail in the near future.  

 As for reference, the magnetic axis position of VMEC equilibria (from vacuum to finite β 
cases) are shown as the contour plot on (Rax, β) plane in Fig.3. The monotonous increase of 
magnetic axis position (outward shift) is seen as β is increased if one sees in the vertical 
direction starting from vacuum axis position, Rax. It is interesting to note here that the variation 
of εeff

3/2 on (Rax, β) plane is similar to that of the magnetic axis position. More concretely, the 
minimum region of εeff

3/2 is well aligned to the region with the magnetic axis position of around 
3.5 to 3.6 m. This fact implies that the magnetic topography in a wide range of magnetic 
configurations in LHD is strongly correlated to the position of plasma column. This feature will 
also be investigated elsewhere in detail.  

 

4. Conclusion 
 The GIOTA code is introduced as the light-to-use code for evaluating ripple transport property 
in helical systems. The magnetic topography can be rigorously treated by the code including the 
effect of the finite rotational transform. To demonstrate its capability, the effective helical ripple 
has been evaluated on a wide range of LHD equilibria, reproducing the reported fact [5] that its 
minimum value appears around a configuration with Rax=3.53m. The physical reasons of this 
fact will be investigated in detail in a separate paper by utilizing the rigorous treatment of the 
configuration properties capable with the GIOTA code.  
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Fig.2 Contour of log(εeff
3/2) on the 

(Rax, β) plane for the radial position 
of (a) ρ=0.2, (b) ρ=0.5 and (c)
ρ=0.8, respectively on a wide 
range of LHD fixed-boundary 
equilibria.
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Fig.3 Contour of the magnetic 
axis position of VMEC 
equilibria on (Rax, β) plane on a 
wide range of LHD fixed-
boundary equilibria.
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