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Abstract

Formulation of a method for the systematic computation of the growth rate of the
weakly unstable RWM in 3D configurations by using results from ideal stability codes
is presented. It is shown that the growth rate of the RWM is approximately given by
the rate at which the available free energy for the ideal external kink mode can be
dissipated by the resistive wall. The eigenfunction is also approximated by that of the
external kink mode. This formulation is demonstrated by coupling to the ideal MHD
code KSTEP with computation of the dissipation on the resistive wall. Results of the
stability of the RWM in LHD plasmas and discussion on the validity and improvement
to the computation are also included.
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1 Introduction

The external kink mode has long been recognized as being one of the most serious instabilities
that affect the plasma confinement, sometimes even to the extent of destroying the plasma.
Therefore control of the external kink mode is one of the most important topics in confinement
physics. The growth rate of the external kink mode is usually a fraction of the inverse of
Alfven transit time (74) !, up to 10°/sec. This fast rate is outside the range of being feasible
for plasma control. The external kink mode can be stabilized by the presence of a near-by
perfect conducting wall. When the resistivity of the wall is taken into account, the external
kink mode is changed into the resistive wall mode (RWM) [1]. It’s growth rate then reduces
to the inverse of the flux diffusion time through the resistive wall (7,)"!, usually slower
than 10°/sec. With its growth rate slowed down, the RWM has been demonstrated[2] to
be stabilized either by plasma rotation [3] or magnetic feedback[4, 5]. In configurations
without toroidal symmetry, plasma rotation is relatively small and is not expected to be
able to stabilize the RWM. Therefore, it is expected that we would have to rely on magnetic
feedback to stabilize the RWM in these configurations. Before undertaking the task of design
for feedback control of the RWM, we need to study the growth rate of the RWM in these
configurations. The growth rate of the resistive wall mode in these 3D configurations is one
of the main focus of the present work.

In experiments on DIII-D, the structure of the RWM has been found to be well represented
by the eigenfunction obtained from ideal external kink computations with the resistive wall
at infinity. [6, 7]. It has also long been conjectured that the structure of the resistive wall
mode should be the same as that of the external kink. In this work, we present a systematic
justification of this conjecture and show that a sufficient condition for the RWM to share the
same eigenfunction as the ideal external kink is when the RWM is weak, or the plasma is
close to the unstable no wall limit and far from the stable ideal wall limit. This is the second
purpose of the present work.

The formulation for determining the growth rate of the RWM in general plasma con-
figuration has been given by Chu et al[8]. For toroidally symmetric configurations, this
formulation has been implemented by coupling the DCONI[9] ideal MHD stability code with
the extended VACUUM code[10, 11] and other software packages. This provided a general
tool for determining the growth rate of the RWM in axi-symmetric confinement devices.

Conventional stellarators[12, 13] are non-axisymmetirc, usually have negligible toroidal
current and have been known to be free of external kink modes. However, advanced compact
stellarators[14, 15] at reactor density and temperature conditions do produce non-negligible
toroidal bootstrap current and are not immune to the external kink mode. In practice,
the external kink mode can only be controlled when they are weakened by the presence
of nearby external resistive conductors. Therefore, it is natural to ask: is there a reliable
method to study the effect of the nearby resistive wall on the growth rates of the RWM for
weakly unstable 3D configurations? At present, there are well-established computer codes
that can study the stability of the external kink mode in 3D geometry. Three of these are
the Terpsichore[16] ,the CAS3D[17] and the KSTEP code|[18, 19, 20]. These codes have been
routinely employed to study the stability of the external kink mode in 3D configurations.
We note further that Merkel et al. has recently generalized the CAS3D code to calculations
include the RWM][21] regime. This work represents a first systematic treatment for the RWM
in fully 3D configuration. This work shares much similarity to the original work proposed in
Ref. [8] to connect with the usual MHD codes. The advantage of this is to bring us back to
the basic concepts of free energy and dissipation and also as a complement to the work of
Merkel et al.[21] In the present work, on the other hand, we adopt yet another alternative



route. We look for an intermediate approximate solution which can be easily obtained by
extending existing 3D ideal MHD codes. It is natural to seek coupling with these codes in
determining the growth rate of the RWM.

In this work, we make progress in this direction by making a connection between the
existing ideal MHD stability codes with the diffusion of flux on the external resistive wall.
This enables us to provide an approximate yet systematic answer to the change in growth rate
of the unstable mode from the external kink mode to that of the RWM. The formulation of
this approach is given in section II. In this section, we have also proved that the structure of
the RWM should indeed be given by that of the ideal external kink. As a first demonstration,
we apply this method to the study of the stability of the RWM in LHD on results of the
stability of the external kink mode obtained from the KSTEP code [18, 19, 20]. Results
of this application is shown in section III. A brief discussion is given in Section IV. Three
appendices are also included. In Appendix A, we discuss the dissipation functional in the
resistive wall. In Appendix B, we use known analytic solvable cases of RWM in equilibria
with one dimensional symmetry to clarify the nature of the approximation proposed in the
present method. We showed that the method is valid if the plasma is close to the unstable
no wall limit but far from the stable ideal wall limit. We also make suggestions on reasonable
corrections to the approximation. In Appendix C, we give the expression employed in KSTEP
code to compute, including toroidal correction effects, the perturbed magnetic field in the
plasma.

2 Formulation for the Computation of the Growth
Rates of the RWM in 3D Configurations by Coupling
with Existent Ideal MHD Codes

In this section, we provide the formulation for the systematic study of the effect of the
resistive wall on the growth rate of the RWM in weakly unstable 3D configurations. Starting
from the general formulation of Ref. [8], we show that a good approximate answer can be
obtained by the balance of two quantities. The first quantity is the total amount of free
energy available to drive the external kink mode. This quantity is obtained by ideal MHD
codes with the external wall at infinity. We represent it as —(6W,, + Wy ). Here 6W,, is
the potential energy of the plasma, and W, is the perturbed vacuum energy with the wall
at inifinity. The second quantity is D,,, the energy dissipated by the resistive wall. D,, is in
turn the product of two factors. The first factor is the growth rate v of the RWM in units of
the resistive wall time 7, i.e. y7,. The second factor is the energy dissipation form factor
D,,. This form factor depends on the perturbed magnetic field at the resistive wall. Thus
our result is given as
oW, ;_ IWooo 1)
w

It is the purpose of this section to provide a derivation of Eq. (1). We start from the
exact formulation given by the general expression stated in Ref. [8] and consider the situation
without feedback. It is shown that the general energy conservation relationship (61, = 0)
for perturbation in plasma surrounded by a resistive wall is

VTw =

SW, = 6W, + 0K + 6W, + Dy, = 0 (2)

In Eq. (2), dK is the perturbed plasma kinetic energy. All of the energy expressions in here
are well known|[22] excerpt D,,, which is the Ohmic dissipation by the resistive wall. For
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completeness, we provide in Appendix A a brief description of the expression for D,,. dW,
is a bilinear functional of the perturbed plasma displacement {;? in the plasma and 6B in
the vacuum region. In the vacuum region, the perturbed magnetic field is related to the
perturbed magnetostatic potential y by

B =V (3)

W, has been shown to be self-adjoint with respect to the perturbed quantities (5, (5%) We
indicate this property of 6W, explicitly as

SW, (€1, 6B €,6B) = dW,(E,0B; €1, 6 BY) (4)

In Eq. (4), the adjoint quantities are indicated by the superscript . Eq. (2) is also variational
with respect to £ and x, with the Euler equations

Latip€ =0 (5)
in the plasma region. In Eq. (5), Ly p is the usual linear ideal MHD operator[?]. and
Vix =0 (6)

in the vacuum region. The boundary conditions are that the perturbed magnetic field per-
pendicular to the boundary surfaces (both between the plasma and vacuum, and between
the vacuum and the resistive wall) should be continuous across the boundary. An important
consequence is that any (£, x) that satisfies Eqs. (5) and (6) and with 6B, continuous across
the appropriated boundaries will satisfy

SW,(€,6B';€,6B) = 0 (7)

for any (5’, X') and is not limited to the adjoint of (5, X)-

The equilibrium properties of the plasma enter into Eq. (2) parametrically. This set of
parameters we denote by {a}. In here {a} can include such quantities as the total plasma
current, pressure and profile parameters etc. We note that Eq. (2) has two major reduced
situations. The first is the case of the absence of the external resistive wall. W, is reduced
to W7 of the usual ideal MHD.

SW; = W, + 0K + 6W, =0 (8)

In this case, the dissipation of the resistive wall plays no role in determining the growth rate
of the instability. The second reduced situation is the case of the RWM with a finite but
small resistivity on the external wall. In this case, the growth rate is so slow, that the plasma
kinetic energy is negligible. dW, is reduced to W, for studying the RWM.

W, =0W,+ W, +D, =0 9)

Eqgs. (8) and (9) reveal the important fact that the ideal external kink and the RWM share the
same free energy source. In these two equations, all terms except 6, are positive definite.
So both of these modes are driven by the free energy from the plasma that is not counter-
balanced by an infinite external vacuum region. For the ideal external kink, this free energy
is transformed into the kinetic energy of the plasma; whereas for the RWM this energy is
transformed into the joule heat on the resistive wall. A small imbalance between 61, and
0W, would result in small 6 K or small D,,. Because the growth rate enters K quadratically,
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and also because it is in units of the inverse Alfven transit time, the resultant ideal growth
rate could still be physically un-tolerable. The growth rate enters into D,, linearly, with its
basic time scale determined by 7,. A small net free energy resultant from the imbalance
between 6W, and 0W, will result in a slow growth rate of the RWM (so long as it is stable
to the ideal mode with the resistivity of the wall set to zero).

There is one situation in which the ideal external kink and the RWM share the same
eigenfunction. That is when the plasma is marginally stable to the ideal external kink mode
with the wall at infinity, or for the RWM with the resistive wall at any location. We denote
this equilibrium as given by the parameters {ag} , or

W) = 6Wp(§$, 50; ap) + 737;216]((55, 50; ap) + 5WU(5BE;, 530; ap) =0 (10)

In Eq. (10), we indicated that the equilibrium parameters are given by {ay}. We have also
taken out the explicit frequency dependence of d K and note that vy = 0. Next we consider
a different (unstable) plasma equilibrium specified by

{a} = {ao} +{on} (11)

with {a;} denoting the small change in equilibrium parameters. Then the ideal stability
functional is given by

W) = oW, (€, Enr ) + 12720K (€L, Ex @) + OW, (0BL, Bas 0) = 0 (12)

We assume that the perturbation to the equilibrium is small. (In particular, it does not give
rise to a large perturbation to the displacement of the unstable mode at the plasma edge.)
Then the perturbation to the mode structure is also small, i.e.

€ =8 +06 + .. (13)

§Bo = 6By + 6By + ... (14)

In Egs. (13) and (14), 6, and § B, are first order quantities in {a; }. We note that in Eq. (12)
7?73 is a first order quantity. We may substitute Eqs. (13) and (14) into Eq. (12). Each of the
energy expressions can be expanded to include zeroth, first, second, and ... order quantities
in {a;}. We express this as

SWi(a) = W7 (a) + oW (a) + ... (15)

By assumption, to the lowest (zeroth) order,

SWP () = dWi(ao) (16)
To the first order,
SWH@) = 6W(EL & 0) + 730K (&), & 00) + WL (6BL, 6Baia) =0 (17)
where
SWHEL s @) = OW, (0], 083 00) + OW, (08, 0815 00) + W, (€ &5 0)  (18)
, and

SW (OB, 0Ba; ) = 6W,(8B1, 6Bo; ao) + W, (6Bo ', 6Br; o) + 6W, (0B}, 6By; n) (1)
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. We notice that because §W; in Eq. (8) and therefore Eq. (10) is self-adjoint, we know from
the orthogonality property Eq. (7) that

SW, (€8, 681; ) + 6W,(6BL, 6 By; ag) = 0 (20)

In Eq. (20) we used explicitly the fact that 7y = 0. By use of Eq. (20) and its adjoint
expression, we obtain

SWE () = 6W, (&, €03 o) + V230K (€}, &; ) + 0W, (8BS, 6By; 1) = 0 (21)

The importance of this relationship is that in the total eigenfunction {E, 5@}, we need only
the portion {&y,dBy} from the unperturbed equilibrium . Therefore, we may evaluate the
ideal growth rate by

L2 o, Wplan) + Wy () = W&, i @) + SW,(5BF, 5 Bo; ) (22
4 5K (cv)

Up to now, in Eq. (22) only the eigenfunction of the unperturbed equilibrium is used. This
expression is correct up to first order in {ay}. In practice, because of the marginal stability
condition of Eq. (10), and because of the relationship Eq. (13), we can also evaluate the

growth rate as
727_3 ~ _5Wp(a) —i_ 5WU(a) (23)
0K ()
We know that this is actually an exact expression. We followed a complicated route to prove
that it is correct at least up to first order in {c;}. Our purpose is to relate it to the situation
of the RWM.

Next we consider the situation when a resistive wall is present. (We implicitly assume
that if the resistive wall were ideally conducting, the plasma would be stable to the ideal
external kink.) We may first examine the expression W, given in Eq. (9) for the RWM for
the equilibrium which is marginally stable. This is written as

5Wr(a0) = 5Wp(§g,§); ao) + %rTwﬁw((SBg; 530; ao) + 6Wv(6337 550; ao) =0 (24)

In Eq. (24), we again took out the explicit frequency dependence of D,,. From the assumption
of marginal stability, we know that vy, = 0. We also note that because of the assumption of
marginal stability, we have used the same eigenfunctions in Eq. (24) as in Eq. (10). Next,
for the equilibrium specified by the parameter set in Eq. (11), the functional 6, satisfies

SW,(a) = SW,(EL €0 ) + 70 D (6B, 6 B @) + 6W, (6Blw, 6Baza) =0 (25)

In Eq. (25), we emphasize that the eigenfunction given by {f;r, (5§ar} is now different from
that of the ideal MHD eigenfunctions {&,,0B,} in Eq. (12). However, {£,., 0 Bar} can still
be related to the set {£y, By} by the relationships

Eor = Eo + &1, + .. (26)

§B., = 6By + 6By, + ... (27)

In Egs. (26) and (27), 6&,, and 6By, are also of first order in {a1}. We may now follow
exactly the same development presented above from Eq. (15) to Eq. (23) to show that to first

order in {ay}




In Eq. (28), the eigenfunction computed by the ideal MHD code for the external kink mode
with the equilibrium parameter {a} is used. An important point to note is that contrary to
Eq. (23), which is exact, Eq. (28) is only approximate.

The present derivation shows that we may utilize the results from general ideal MHD
computations to compute an approximate growth rate of the RWM so long as the kinetic
energy of the ideal MHD mode is small compared with the potential energy of the plasma
and that of the vacuum region. What is needed is the deviation of the potential energy
OW, +0W, from the marginally stable plasma and the additional computation of the value of
the dissipation functional D, («) due to the perturbed magnetic field in the vacuum region.
Intuitively, the result given in Eq. (28) is very appealing. It just states that the growth rate
is determined by the rate at which the free energy can be dissipated by the resistive wall. We
would like to emphasize that the present formula is only approximate. The approximation
is in two parts: first the plasma eigenfunctions are expected to be (slightly) different for the
ideal instability and the RWM; second, the vacuum energy is also modified by the change
in the plasma eigenfunction and also the presence of the eddy currents on the resistive wall.
The present derivation shows that these modifications give rise to higher order corrections to
the value of the computed growth rate of the RWM given in Eq. (28). A more complete and
accurate solution would have to follow the procedure given in the work of Chu et al[8].

A consequence of the present derivation is that when the RWM is weak, we expect its
mode structure, including the magnetic field in the vacuum region, to be given by that of the
ideal external kink mode with the wall at infinite. We give in Appendix B a more quantitative
discussion on this notion of the weakness of the RWM. We show that a RWM is weak when
the plasma is close to the unstable no wall limit and far from the stable ideal wall limit.

3 Numerical Implementation and Application to LHD

The formulation presented in Section II is implemented by coupling a computation of D,
to results from the KSTEP code[18, 19, 20]. For a given 3D equilibrium computed by the
VMEC code[23], the KSTEP code computes its free-boundary stability for given position of
the ideal wall. The KSTEP code is an ideal stability code based on the stellarator expansion
method. Originally, Anania and Johnson developed the STEP code by strictly employing
the stellarator ordering of a/Ry ~ (Bs/By)? << 1[18]. Nakamura et al. included the higher
order terms in the formalism of the stellarator expansion to apply the method to medium
aspect ratio stellarators such as LHD, and developed the KSTEP code as an extension of
the STEP code[19, 20]. The RWM is expected to be present in equilibria that are unstable
to the external kink mode with the wall at infinity and stable with the wall being ideal. We
first obtain the unstable eigenvalues 4?75 and the perturbed magnetic fields at the plasma
edge 0B, with the external wall at infinity. In here the subscript p denotes the component
perpendicular to the plasma boundary. 6B, is used to compute the perturbed perpendicular
magnetic fields B, at the resistive wall. This is best accomplished by using the Green’s
function method. This method is generally used for the vacuum region and is also the method
used in KSTEP; except that the original KSTEP did not compute 6B, and also 65,. In
this work, we added this additional computation a posteriori after the KSTEP computation
for §B,. 0B, is then used in turn to compute the dissipation functional in Eq. (1). We
note that if 6B, and the dissipation were computed together in KSTEP, then the validity
is not restricted only to weakly unstable RWM and would be valid for RWM with arbitrary
strength.

We used this method to study the effect of resistive wall on the stability of the external



kink in LHD. The LHD is an [ = 2 heliotron with 10 toroidal field periods. It has a pair of
helical windings with the major radius of 3.9m. It can be heated by neutral beam injection
(NBI), electron cyclotron resonance heating (ECRH), and ion cyclotron resonance heating
(ICRF). In its normal operation, with net zero toroidal current, it has achieved high 3 value
of up to 4% without the observation of any external kink instability [24]. We have to choose
special parameter ranges for the VMEC|23] equilibrium code , which are different from those
employed normally in LHD, to generate equilibria that are suitable for the study of stability
of external kink modes. The applicability of the KSTEP code for the modes with n < 3 in
the LHD configuration was confirmed by the benchmark test with the full 3D codes of the
CAS3D and the TERPSICHORE|25].

We concentrate on low [ plasmas in the configuration with R,, = 3.75m to isolate the
source of instability to be due to the toroidal plasma current. In this case, the relevant
equilibria that are unstable to the external kink mode with the wall at infinity, but stable
with an ideal wall close to the plasma have a very limited range of toroidal plasma current.
For toroidal field B; = 17T, it is from 130kA to 135kA. For currents smaller than 130kA,
the plasma is stable to the external kink mode; whereas for current higher than 137k A, the
plasma is unstable even with the wall right on the plasma surface. The overview of this
behavior of the stability of the external kink mode is shown in Fig.1

LHD R,,=3.75m : B=0% : n=1 Kink Stability
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Figure 1: Stability diagram of the n=1 ideal external kink mode in LHD with major radius
at 3.75m, 8 = 0% and toroidal field of 17". The horizontal axis is the total plasma current.
The vertical axis is the average wall radius b relative to the average plasma radius a. Stable
equilibria are marked by blue cross and unstable ones are marked by red dot. The blue cross
are cases in which RWMs are expected.

In Fig.1, the n = 1 stability of the § = 0% LHD equilibria with major radius R,, = 3.75m
and different amount of total plasma current [ are indicated with different external wall
positions given by the parameter b/a. In these equilibria, a parabolic current density profile
is used. Here, n is the toroidal mode number. a is the average plasma radius which is obtained
from the stellarator expansion method. In this configuration, a is approximately .6meter.
The external wall has been approximated to be a torus with a circular cross section with minor
radius b (See Fig.2.) We note that the actual plasma cross-section is non-circular and maintain
its relative shape and location with respect to the helical winding. The actual external
chamber is also not a torus with circular cross-section but maintain a definite relationship
with the plasma and the external coils. Near the helical midplane at the vertically elongated
poloidal cross-section, the inboard-side resistive external chamber is quite close to the plasma,
with an approximate ratio of the radii b/a of around 1.1. However, in the direction at 90
degrees relative to the helical midplane, the chamber dimension is quite far away from the



vacuum

wall

Figure 2: Schematic view of the positions of the plasma and the wall

plasma. It can have a ratio of the radii b/a beyond 2.0. Here we have chosen to have the
ratio of b/a range from 1.0 to 2.2. In Fig.1, all plasmas with current settings with current
larger than 130kA is unstable to the external kink with the wall at infinity. The ideal wall
location at which the external kink can be stabilized is given by the blue cross, and indicated
by a red dot otherwise. Only the external kinks in discharges indicated by the blue cross can
have their growth rates reduced by the presence of the resistive wall.

LHD R,,=3.75m : B=0% : j=jo(1-s)

T

0.15 T
t n=1

r —# b=infinity
[ —&— bla=2.1
01 ; —{1+ b/a=1.5
| —~V— b/a=1.3
I —O— bla=1.2
r —O— bla=1.1

I —e— bla=1.0
0.05- (?ixed b.c.)

YA

130 40 150
I (KA) (for B = 1T)

Figure 3: Growth rate v of the n=1 ideal external kink in LHD in units of inverse Alfven
transit time 7, for different discharge currents. Different symbols are used for lines with
different locations b/a of the external wall. The range of current that can be affected by the
presence of the external wall is between the intersects of the b/a = oo line and that of the
corresponding b/a = constant line.

The growth rates of the unstable ideal external kink in units of Alfven transit time 74
of the above set of equilibria are given in Fig.2. It is interesting to note that the range of
growth rates in which the resistive wall would have an effect is very small indeed. In Fig.2,
for current of 135kA and with the wall at infinity, the growth rate is given by y74 = 3%.
At this value, v273 ~ 1073. But this equilibrium can not be stabilized by the ideal wall.
Equilibria that can be stabilized by the ideal wall has maximum 272 ~ 104

For completeness, we show the profiles of the rotational transform as a function of the
normalized poloidal flux ¥ in Fig.3 and the profiles of the plasma displacement in Fig.4. It
is seen that with increase of the plasma current, the profiles of the rotational transform is
lifted. At 150k A, the whole profile is lifted above 1.. There is also a corresponding change in



LHD R,,=3.75m : B=0% : j=j(1-s)

T

—— 130kA /
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—_— —_—
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RN
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Figure 4: Variation of the rotational transform across the flux surface. It is seen that the
RWM relevant equilibria studied here ( 130kA < I < 135kA) has a very limited variation in
the rotational transform profile. They are also characterized by the presence the crossing of
the « = 1 line. At I > 150kA, the rotational transform is larger than 1 across the plasma
cross-section.

LHD R,,=3.75m : B=0% : j=js(1-S)

T

0.1 b 130kAA

Figure 5: Variation of the plasma displacement of the unstable ideal kink mode across the flux
surface. It is seen that for the RWM relevant equilibria studied here the displacements are
characterized by the sharped peak around the singular surface of the « =1 . At I > 150k A,
this sharp peak is rounded out.

the profiles of the plasma displacement. The characteristic sharp peak of the displacement at
location near the internal resonant surface of © = 1 is broadened. The plasma displacement
is dominated by the component with poloidal mode number m = 1.

We show in Fig.5 the computed growth rate of the RWM for those cases where the
external kink is stabilized if the external wall were ideal. The blue curve is for current of
130k A, green for 133kA and red for 135kA. The resistivity of the external wall has been
taken to be 87 x 1078Q - m and thickness of 15mm. For b/a = 2 or with wall radius at 1.2m,
the diffusion time constant of the resistive wall is approximately

Ty = po-b-db 31.5msec (29)
n
We see that as the wall radius increases, the growth rate of the RWM increases. This is due
to the decrease in dissipation at the resistive wall, despite the increase in the resistive wall
time constant given by Eq. (29). When the external kink is stronger, the growth rate of the
RWM is also larger.
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Figure 6: Computed growth rate of the RWM as a function of the location of the resistive
wall. It is seen that this growth rate increases with the radius of the external wall and are
also larger for equilibria that are more unstable to the external kink mode.

LHD Rz,=3.75m : B=0% : j=jo(1-s)
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Figure 7: Computed growth rates of the RWM as a function of the location of the resistive
wall shown together with the computed growth rates of the ideal external kink from KSTEP
with the wall at inifinity. It is seen that the growth rates of the RWM are indeed much lower
than that of the ideal external kink

We show in Fig.6 the comparison of the computed growth rates of the RWM for the cases
shown in Fig.5 together with the growth rates of the ideal external kink with the wall at
inifinity. The vertical axis is in logarithmic scale. We see that the growth rates of the RWM
is indeed much lower than that of the ideal external kink.

In the calculation of the KSTEP code of the present analysis, we employed the 22 poloidal
modes in the range of —7 < m < 14. This choice is sufficient for the present case because
the amplitude of the mode except m = 1 of the kink mode is negligible compared with that
with m = 1. We also examined the stability for the external kink mode with n = 2 and 3
with the wall at infinity. The growth rates of the both modes are less than that of the n =1
mode.

4 Conclusion
In this work, we presented the formulation of a method for the systematic computation of

the growth rate of the RWM in weakly unstable 3D configurations by using results from
ideal stability codes. This method is based on Eq. (1). It states that the growth rate of the
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RWM is proportional to the rate at which the free energy available ( for the ideal external
kink mode with the wall at infinity) can be dissipated by the resistive wall. We note that
this is an alternative method and complements the work by Merkel et al.[21]. By relying
on the concepts of energy and dissipation, the method is readily connected with other MHD
codes and provides an independent and useful method of studying the physics of RWM. In
Section II, we provided a derivation and justification of this expression. It is shown that this
expression is valid when the external kink has relatively small amount of free energy. In this
case, the eigenfunction of the resistive wall mode can also be approximated by that of the
ideal external kink. In this formulation the ideal MHD codes provide information about the
amount of free energy available in terms of —(0W), + 0W,) with the wall at infinity. The
corresponding perturbed magnetic field at the location of the resistive wall can then be used
to evaluate the rate of energy dissipation in the resistive wall to obtain the growth rate of the
RWM. In Appendix B, we further clarify the notion of the weakness of the RWM to mean the
plasma as being close to the unstable no wall limit and far from the stable ideal wall limit. In
section III, this formulation is demonstrated by coupling to the ideal MHD code KSTEP to
study the stability of the RWM in LHD plasmas. It is found that in terms of plasma current,
a very limited range of the plasma equilibria can have its external kink mode affected by
the presence of the resistive wall, i.e. the plasma quickly transits from being stable to the
external kink mode to being unstable even with the wall right on the plasma. Nevertheless,
we have demonstrated that the proposed method can be used to evaluate the growth rate of
the RWM in any 3D configurations readily. The growth rate in the advanced stellarators can
also be calculated by employing full 3D codes such as CAS3D and TERPSICHORE instead
of the KSTEP code.

We acknowledge discussion with Prof. T. Hayashi and other staffs at NIF'S. One of us
(MSC) acknowledges hospitality of NIFS where this research is performed. We also thank
Dr. J.L. Johnson and Dr. Y. Nakamura for the usage of the KSTEP code. We would also
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partially supported by U.S. DOE under Grant No. DE-FG03-95ER54309. This work is also
supported by the Grant-in-Aid for Scientific Research (C) 13680572 of the Japan Society for
the Promotion of Science.

A General Expression for the Dissipation Function in
the Resistive Wall D,

In this appendix, we give the general expression for the dissipation function D, and its
relation to the perpendicular magnetic field B, at the resistive wall. We use the thin wall
approximation in which 0 B, is assumed to be constant across the resistive wall. The resistive
wall is taken to be thin, but with variable resistivity 1 and thickness db over its surface. The
general expression of for D,, given in Ref. [8] is

D, = L/ dS(x} —x")oB,, (30)

2,U/0 w
In Eq. (30), dS is the surface area element of the resistive wall, subscript (4, —) represents
(outside,inside) edge of the resistive wall. In here, D,, mainly states that this is the amount
of energy input into the resistive wall region. The distribution of currents on the resistive wall
depends on the property such as n and d of the resistive wall. In the thin wall approximation,
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the current density on the resistive wall can be represented as
j=Vzx VK (31)

In Eq. (31), z is a coordinate across the resistive wall. For instance, we may take z = (0, 1)
to be at the (inside,outside) edge of the resistive wall. Here, K is the stream function for
the perturbed current density ; In the thin wall approximation, we may take the current
potential K to be varying only over the surface of the resistive wall and not depending on z.
In the resistive wall,

V x 6B = ppj = 1oVz x VK (32)

By use of the Stokes theorem and integrate Eq. (32) over a loop with two sides anchoring
on the inside and outside edge of the resistive wall, jumping across the thin wall to close the
loop and enclosing a surface area in the wall which current ;3 flows through, we may derive
that

] = [/ 5B - dit = uo/Kdz (33)

In Eq. (33), dl is line element along the loop at the surface edge of the resistive wall, []*
stands for jump of the quantity from the inside edge to the outside edge of the surface of the
resistive wall. By use of Eq. (3), we arrive at an equivalent expression for the D,

Dy = % / dSdzK 8B, (34)

By combining the Ohm’s law and the induction equation, the perturbed magnetic field in
the resistive wall may be related to K as
BB -

——- =Vx (nVz x VK) (35)

The component of Eq. (35) normal to the resistive wall then gives
V, n(V2)?V,K = —0B,, | Vz | (36)

In Eq. (36), the symbol V, denotes the component of V on the surface of the resistive
wall. The left hand side of equation is an operator which operates on K. It is self-adjoint
and is a property of the resistive wall. This operator defines a system of electromagnetic
normal modes on the resistive wall and has a complete set of eigenfunctions K; with distinct
eigenvalues w; that are orthogonal to each other.

=

V, - n(V2)?V,K; = —w;K; | Vz | (37)

The K; thus defined are the electromagnetic dissipation eigenfunction of the resistive wall
with w; being the dissipation rate. Thus the meaning of Eq. (36) is that these dissipation
eigenfunction are excited by the changing magnetic field v0B,, that is penetrating through
the resistive wall. The K;’s satisfies

AVn(V2)VE; - VKT = ;0 / VKK | V| (38)

w

Thus we may expand the current potential K in terms of these dissipation eigenfunctions
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The coefficients «; is related to the perturbed normal magnetic field 6 B,, by using Eq. (36)

J, dViB, | Vz | K]
w; [, dV | Vz | K;K]

(40)

From Egs. (39) and (40), we observe that the perturbed current on the resistive wall is
actually proportional to the growth rate of the RWM. The substitution of Eq. (40) into
Eq. (34) then gives

. | H ;
Dw:%Z(fde|Vz|6BwKZ)(fde|Vz|5BwKz) )

; wi [, dV' | V2 | KiKZ-T

In the usual implementation for the computation of D,,, Eq. (37) is solved to obtain the set
of eigenvalues w; and eigenfunctions K; on the resistive wall. Then the form of D,, in Eq. (41)
is evaluated to obtain the value of dissipation in terms of the perturbed magnetic field 6 B,,
on the resistive wall.

There are several equivalent forms for D,, that are useful for one way or the other. First,
we may use the definition of «; in Eq. (40) to obtain an expression explicitly in terms of «;

1 —
Dy =53 :wia?/ AV | V2 | KK (42)
Y i w

Next we may also express D, in terms of the derivatives of K; instead of K;’s by using the
integral relations of K; or Eq. (38) with i = j. We obtain the another expression

1 N = -
Du =55 0f [ VK VKL 9= v (43)

A further application of the Eq. (38) allow us to change the single sum on «; into a double
sum, or

Dy = / VZaZKT vzaj )(| V2 |)2dV (44)
Now by using the definition of K in Eq. (39), we obtain
1 L .
Dy = 2—/ IV VK| V2 |)2dV (45)
Y Jw
From Eq. (31), we can rewrite Eq. (45) as
Dy =~ / it jav (46)
w = 2 w77] J

Or the obvious result that D, is the total amount of energy dissipated in the resistive wall.

B Examination of the Proposed Method by Applica-
tion to One Dimensional Equilibria

In this appendix, we apply the proposed method given in Section II to the case of one
dimensional equilibria and compare the results with known exact solutions to clarify the

nature of the approximation. The exact one dimensional case we have in mind is the screw
pinch [1] and/or the large aspect ratio cylindrical tokamak[26]. In this case the equilibrium
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is only a function of r in the cylindrical coordinate (r, 6, z). All perturbed quantities can be
assumed to be given by a single harmonic component with the phase factor exp(imf + ikz),
with m being the poloidal mode number and £ the wave number in the z direction. The
adjoint of the perturbed quantity would carry the complex conjugate phase factor. For
simplicity, except where needed, we will drop the phase factor dependence of the perturbed
quantities. For external kink modes, the potential energy of the plasma W), can be written

as
wlL,

Ho

oW, = —=L,0BléB,a (47)
In Eq. (47), L, is the length of the equilibrium in the z direction, and a is the radius of the
plasma. 6W,, is obtained from ideal MHD codes and Eq. (47) may be regarded as a definition
for L,. For the region between the plasma edge r = a to the location of the resistive wall
at 7 = b, the magnetostatic potential x can be expressed as linear combinations of 6B, and
0B, with spatially dependent coefficients. In particular, at the plasma surface , we have

Xp = Lpp0 By + L0 By, (48)
At the inner edge of the resistive wall, we have
Xw = LuwpdBy + Ly, 0B, (49)

In Eqgs. (48) and (49) the L coefficients are the reluctances. These reluctances depend on the
geometry and mode numbers a, b, m, k. Their physical meaning can be obtained from the
following considerations. For instance, for a perfect conducting wall, 0B,, = 0, L,, is the x,
per unit 0B,. At the outer edge of the resistive wall, we have

X& =Lt 0By (50)

We note that if there are no current on the resistive wall, then x,, = X+, we may use
Eqs. (49) and (50) to express 0B, in terms of 0 B,. Substitution of it into Eq. (48) then gives

us the relationship
pr pr

LzJ;w - Lsz
This situation is the same as if the external wall were infinitely far away b = oo, we denote
this as

Xp = (Lyp + )0 B, (51)

Xy = Lyy0B, (52)

Note that with a resistive wall present, if x,; = x, , then the resistive wall does not carry
any current, the distribution of the magnetic field is the same as if there were no wall or if
the wall were at co. Comparison of Eqs. (51) with (52) gives the important identity that

Lipw Luyp

R A v

(53)

With the expressions (48), (49), and (50), it is easy to evaluate the perturbed vacuum energy
as

nl,
Ho

Wy = —=[=Lppad B}0 B, — Ly,ad BLOB, + Luybd BI0B,,
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Equation (36) may be solved for K in terms of 6B,, as

- VTw0 By

= (55)
,uob(’?—2 + k?)

In Eq. (55), we have assumed that the toroidal wave number £ is still much smaller than the
poloidal wave number m/b and defined the resistive wall time 7, as %‘ﬂ The dissipation
functional is then obtained from Eq. (34) as

L, y7,6 Bl B,
D, = =2 TTw0w (56)
po  E A+ kP
The expression for W, is then given by
(Lp — Lyp)aé BB, — Lywad BLdB, + Ly,bS Bi6 B,
_ Y Tw
H(Lpw — Libu)b + 6Bl 6B, =0 57
{ el 57
(L, — Lyp)adB, + Lyybd B,y = 0, (58)
and T
—Lpwad By + [(Lyy — Li,)0 + Fﬁ/@]ww =0, (59)
b2
We may solve Egs. (58) and (59) to obtain an expression for the growth rate
Wy + 0Wyeo 2
V7 = = 2 (L — L )by + K] (60)

oW, + oWy b2
This is an expression which is exact for cylindrical geometry and is of a very desirable form.
The quantity in the square bracket is positive definite. Eq. (60) states that the RWM would
have a positive growth rate if W, + W, is negative and 6W,+ W,y ( 0W,, is 6W,, with the
ideal wall at b. ) is positive, i.e. if the plasma is unstable to the external kink with the wall
at infinite and stable with the wall being ideal. However, to apply this formula with results
from the ideal stability codes, we also need results with dW, 4+ 6W,,. We note that with the
wall at b the plasma is supposed to be stable to the ideal external kink. It is usually difficult
for ideal MHD codes to compute this quantity when the plasma is stable. Therefore, we use
Eq. (53) to express Ly, in terms of L3¢ and obtain the expression

W, + 6Wyso (L, — Lt,)(m? + k2b?)
V7w =~ | - L.7adBYsBy LuyL I b (61)
OWp + OW g + L0000 _Lunlpe

When we are close to marginal stability, we may ignore the first factor (the total amount of
free energy available) in the denominator in the square bracket [] relative to the second one.
This is the regime of parameter space where the present suggested approximation is valid.
Since the total amount of free energy available is negative, this suggests that the proposed
approximation is an under-estimation of the growth rate. An improved approximation could
be obtained if we can evaluate the quantities separately and use the formula Eq.(61) directly.
Although the derivations presented in the present section makes assumption about cylindrical
geometry, much of the discussion is expected to remain valid for more general configurations
with proper definitions of the reluctance coefficients. It is however worthwhile to use the
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reluctance coefficients for the screw pinch to evaluate the quantities in Eqs. (60) and (61).
For the screw pinch, it is easy to show that

 Ln(ka) K0 (k) — Kon(ka) I (D)

L, = 2
bp k(D@t) ’ (6 )
Ly = —— (63)
PO k(Det)ka’
1
Lop =~ 64
» = T k(Det)kb (64)
_ K (kb)I! (ka) — I,,,(kb) K] (ka)
L — m m
In Egs. (62), (63), (64) and (65), k is the wavenumber in the z direction and
Det = I' (ka) K", (kb) — I (kb) K", (ka) (66)
and K., (kD)
LT =7V 67
v kK (kb)) (67)

I, and K,, are the modified Bessel functions. In the large aspect ratio circular tokamak
limit, we obtain the growth rate from Eq. (60) as

Wy + dWaso 2(m? + k2b?)

S 68
T TS, oWy mll — (2)%7] (68)
whereas the evaluation of Eq.(61) gives
oW, + oWy 2 k2b?
- p T+ 2(m+ /m) (69)

B 2L.7a2BoBy(a/b)>™ 1 — (a/b)2™

oW,y + W + 2eroBdBplaipP [1 = (a/b)*]
It is quite obvious from comparing the expressions of Eq.(69) with Eq.(68) that the approx-
imation proposed in Section II is valid when the factor W), 4+ 6W, is small compared with
the W, 4+ W, or when the plasma is close to the unstable no wall limit and far from the
stable ideal wall limit. We denote this as the situation when the RWM is weak.

C Calculation of §B - 7 in the KSTEP code

The KSTEP code was developed using on the stellarator expansion method and improved
to include higher order corrections of toroidicity. This code is formulated with the flux
surface based coordinates (¥.,,0,¢). Here ¥, denotes the equilibrium poloidal magnetic
flux, and # and ¢ are the toroidal and the poloidal angles, respectively. The poloidal angle
0 is determined so that the magnetic field lines are straight lines in the 8 — ¢ plane. In this
coordinate system, the effective equilibrium magnetic field geq in the stellarator expansion
method is written as

Beog = q(Uo)) VU X VO + Ve x VU, (70)

where ¢(¥,,) denotes the safety factor. Similarly, the perturbed magnetic field §B in the
plasma region is expressed as . . .
0B=V¢xVV. (71)
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The perturbed poloidal flux ¥ is given by
- R\%2 -
UV=[(—) B, -V, 72
(%) Ba (72
where @ denotes a stream function which is related to the displacement vector E as
2

£— (%) Vo x V. (73)

Since the normal vector 7 is given by @ = VU,,/|VW¥,,|, the normal component of the
perturbed magnetic field is given by

T 1 O[/R\*1/(0 o
(SB N = —m% [(R—0> ? (% +qa_¢> @] ) (74)

where J denotes the Jacobian of the flux coordinates. The KSTEP code solves the eigenvalue
equation for the stream function ®. By substituting the eigenfunction ® into Eq. (74) at the
plasma boundary, we obtain the magnetic field normal to the plasma boundary.
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