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Collisionless Damping of Zonal Flows in Helical Systems

H. Sugama and T.-H. Watanabe

National Institute for Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Japan

(Dated: September 12, 2005)

Collisionless time evolution of zonal flows in helical systems are investigated. An analytical ex-
pression describing the collisionless response of the zonal-flow potential to the initial potential and
a given turbulence source is derived from the gyrokinetic equations combined with the quasineu-
trality condition. The dispersion relation for the geodesic acoustic mode (GAM) in helical systems
is derived from the short-time response kernel for the zonal-flow potential. It is found that heli-
cal ripples in the magnetic field strength as well as finite orbit widths of passing ions enhance the
GAM damping. The radial drift motions of particles trapped in helical ripples cause the residual
zonal-flow level in the collisionless long-time limit to be lower for longer radial wave lengths and
deeper helical ripples. On the other hand, a high-level zonal-flow response, which is not affected by
helical-ripple-trapped particles, can be maintained for a longer time by reducing their radial drift
velocity. This implies a possibility that helical configurations optimized for reducing neoclassical

ripple transport can simultaneously enhance zonal flows which lower anomalous transport. The
validity of our analytical results is verified by gyrokinetic Vlasov simulation.

PACS numbers:

I. INTRODUCTION

Zonal flows are intensively investigated in the fusion
research as an attractive mechanism for realizing a good
plasma confinement [1]. A collisionless long-time behav-
ior of zonal flows in tokamaks was theoretically inves-
tigated by Rosenbluth and Hinton [2] and their theory
was extended to helical systems in our previous work [3].
In these theories, the ion temperature gradient (ITG)
turbulence [4] is treated as a known source and the re-
sponse kernel, which relates the zonal-flow potential to
the source as well as represents dependence on an initially
given zonal flow, is analytically derived. They showed
that the initial zonal flow is not fully damped by collision-
less processes but it approaches a finite value. It was veri-
fied by collisionless gyrokinetic simulations [5, 6] that the
zonal flow, which is added initially as an impulse, shows
the convergence to the theoretically predicted value after
oscillations of the geodesic acoustic mode (GAM) [7] are
damped.

In the present paper, we extend our previous theory
to give a complete description of collisionless time de-
pendence of the zonal-flow potential by combining the
long-time evolution with short-time behaviors such as
the GAM oscillations. The GAM was first predicted by
Winsor et al. [7] based on the fluid model and it was
also observed experimentally [8]. Drift kinetic evalua-
tions of frequencies and damping rates of the GAM in
tokamaks were done by Lebedev et al. [9] and by No-
vakovskii et al. [10] Recently, Watari et al. [11] derived
the dispersion relation for the GAM in helical systems
based on the drift kinetic equation although they ne-
glected a part of the electrostatic potential which de-
pends on the poloidal and toroidal angles so that their
dispersion relation shows a slight difference from that
of Lebedev et al. [9] in the collisionless tokamak limit.
Also, all the above-mentioned drift kinetic studies as-

sume the radial widths of ion drift orbits to be negligi-
bly smaller than the radial wave length of the potential
and their local drift kinetic models do not include the
magnetic drift term of the perturbed distribution func-
tion that the gyrokinetic equation does. Just recently,
based on the gyrokinetic theory and simulation, Sugama
and Watanabe showed that the collisionless damping of
the GAM in tokamaks is considerably strengthened by
the finite-orbit-width (FOW) effect of passing ions [12].
This rapid damping of the GAM was also observed in the
global drift kinetic simulation done by Satake et al. [13]
Here, we also take account of the FOW effect as well as
the helical geometry to derive the GAM dispersion re-
lation from the analytically-derived short-time response
kernel for the zonal-flow potential in helical systems. In
the tokamak case, our GAM dispersion relation coincides
with the collisionless result of Lebedev et al. [9]

In helical configurations, the radial drift motions of
particles trapped in helical ripples yield neoclassical rip-
ple transport in the weak collisionality regime [14, 15].
Here, we argue that this radial drift of the helical-ripple-
trapped particles also causes a significant influence on
the long-time zonal-flow behavior and accordingly on the
anomalous transport in helical systems. Our study sug-
gests that helical configurations optimized for reduction
of the neoclassical ripple transport may simultaneously
lower the anomalous transport through enhancing the
zonal-flow level. In fact, it is observed in the Large He-
lical Device (LHD) [16] that not only neoclassical but
also anomalous transport is reduced by the inward shift
of the magnetic axis which decreases the radial drift of
helical-ripple-trapped particles but increases the unfavor-
able magnetic curvature to destabilize pressure-gradient-
driven instabilities such as the ITG mode [17-19].

In this work, we also verify the validity of our theo-
retical predictions by a recently-developed gyrokinetic-
Vlasov-simulation (GKV) code [6] that can resolve de-
tailed structures of the gyrocenter distribution function



on the phase space. Here, we do not treat collisional
decay of zonal flows, which occurs in the long course of
time [20] although the residual zonal flows in a collision-
less time scale are still regarded as a critical factor to
regulate the turbulent transport.

The rest of this paper is organized as follows. In Sec.
II, basic equations for describing zonal flows in helical
systems are given. We use the gyrokinetic equations and
the quasineutrality condition to determine the zonal-flow
electrostatic potential. In Secs. III and IV, we describe
the short- and long-time collisionless behaviors of the
zonal-flow potential, respectively. It is shown in Sec. IIT
how the GAM frequency and damping rate depend on
the magnetic geometry and the FOW effect of passing
ions. We see in Sec. IV that the residual zonal-flow level
in the long-time limit is strongly influenced by the radial
drift of helical-ripple-trapped particles. Then, in Sec. V,
we combine the results from Secs. III and IV to obtain a
complete expression for the collisionless time evolution of
the zonal-flow potential. In Sec. VI, gyrokinetic-Vlasov-
simulation results on the zonal-flow evolution and on the
velocity-space gyrocenter distribution are compared with
our theoretical predictions. Finally, conclusions are given
in Sec. VII. Appendix A shows detailedly how the short-
time zonal-flow behaviors such as the GAM oscillations
are formulated by using the Fourier and Laplace trans-
forms of the basic equations.

II. BASIC EQUATIONS

We use the toroidal coordinates (r,,¢), where r, 6,
and ¢ denote the flux surface label, the poloidal angle,
and the toroidal angle, respectively. The magnetic field
is written as B = V() x V(0 —(/q(r)), where 2mi)(r) is
equal to the toroidal flux within the flux surface labeled
r and ¢(r) represents the safety factor. Following Shaing
and Hokin [15], we here consider helical systems with the
magnetic field strength written by a function of poloidal
and toroidal angles (its r-dependence is not shown here
for simplicity) as

B = By[l —e€19cos — epgcos(Lh)

ST e cos{(L+n)d — MC}

[n]<nmax
B[l — er(0) — e (6) cos{LO — M + xu(0)}],
(1)

where
er(0) = epcosf + ergcos(Lb),
en(0) = VC*(0) + D2(0),
xm(0) = arctan[D(0)/C(0)],
cO) = > e cos(nd),

|n‘Sn7naa)

D) = Y e sin(nd), (2)

In|<nmaa

and M (L) is the toroidal (main poloidal) period number
of the helical field. For the LHD, L = 2 and M = 10.
Here, we assume that L/(¢M) < 1. Multiple-helicity
effects can be included in the function e (9).

The gyrokinetic equation [21] for the zonal flow com-
ponent with the perpendicular wave number vector k| =
k.Vr is given by

Oy,
ot

+5k, Fo,
(3)

where Fy is the local equilibrium distribution function
that takes the Maxwellian form, Jo(kyp) is the zeroth-
order Bessel function, p = v, /Q is the gyroradius, and
) = eB/(mc) is the gyrofrequency. Here, subscripts to
represent particle species are dropped for simplicity. In
Eq. (3), gk, is regarded as a function of independent vari-
ables (r,0, ¢, w, ), where w = $mv? and 1 = mv? /(2B)
represent the kinetic energy and the magnetic moment,
respectively. The equilibrium distribution function Fjy is
assumed to be given by the local Maxwellian and the
perturbed particle distribution function ¢ fx, is written
in terms of the electrostatic potential ¢x, and the solu-

tion gk, of Eq. (3) as

0 , e
(81& +’U”b . V—l—zwp) gk, = TF()JQ(/@_[))

e .
5ka_ - = d)ki- Fy+ 9k, eilkl.pa (4)

where p = b x v/Q. The drift frequency wp is de-
fined by wp = k| - vq = k,vg,, where vg. = vgq - Vr
is the radial component of the gyrocenter-drift velocity.
In the present work, we define the radial coordinate r
by ¢ = Byr?/2. The source term Sy, Fy on the right-
hand side of Eq. (3) represents the E x B nonlinearity
and is written as Sk, Fy = (¢/B) Zki‘f’kl:kL b (k| x
k') Jo(K' p)dw, gx; -

The perturbed gyrocenter distribution function § fl(i) is
given by

edi,

5f1£g3 = —Jo(kLp) o+ gx, - (5)

The perturbed gyrocenter distribution function § fl(fi)
and the nonadiabatic part gk, are independent of the
gyrophase although the perturbed particle distribution
function dfx, depends on it as seen from the factor
e~%+'P on the right-hand side of Eq. (4). Using Egs.



(4) and (5), we obtain

i, = S SO [ (k)P

®
On the right-hand side of Eq. (6), the factor e=k+'P in
the first term results from the difference between the par-
ticle and gyrocenter positions while the second group of
terms represent the polarization, that is the variation of
the particle distribution due to the potential perturba-
tion. The gyrokinetic equation is rewritten in terms of

1) fﬁ) as

)
<8t +ub- V+zwp> 31

= — (’U”b -V + iwD) (FOJO(kJ_p) e(bjl_% ) + Sk, Fo.
(7)

Finite-orbit-width (FOW) effects are included in
iwpd f¥ on the left-hand side of Eq. (7), which repre-
sents the rate of change of the perturbed gyrocenter dis-
tribution function § fl(cgi) due to the radial gyrocenter drift.
This term is neglected in the conventional linearized drift
kinetic equation, where the small-orbit-width limit is con-
sidered.

The electrostatic potential ¢y, is determined by the
quasineutrality condition,

e &
_no%-i-/d% Jogik, =no ?kL "r/dg'U gex ., (8)

where the subscripts representing to ions (i) and elec-
trons (e) are explicitly shown and the small-electron-
gyroradius limit &, p. — 0 is considered. Equation (8) is
also rewritten as

/dg’v Jof e ~ G?L [1—To(b)] = /dSU dfercs (9)

where b = k3 T;/(m;€;) and To(b) = In(b)e " are used
and Iy denotes the zeroth-order modified Bessel func-
tion. In the following two sections, short- and long-time
behaviors of the zonal-flow potential are investigated by
analytically solving the basic equations presented in this
section.
When the initial gyrocenter distribution functions
f(g) (t = 0) and the past history of the source terms
Sak, (t’ ) (a = i,e) are given, the gyrocenter distribution
functions ¢ félg{l (t) at an arbitrary time ¢ > 0 are deter-
mined by solving Egs. (7) and (9) [note that the initial
potential ¢y, (t = 0) is immediately given in terms of
thgse equations, we find that, in the static magnetic field,
the response of cifélg()i (t) to (5]”(55?3(L (t =0) and Sgx, (t))

(5f(i)L (t = 0) by using Eq. (9)]. Examining properties of

(a,a’ =1i,e; 0 <t <t) should take the form,

618 1) = Y [V 615, (0)

a’'=i,e

t
+ / dt' Uger (t — 1)
0

Here, it should be noted that, once the linear opera-
tors (or propagators) Uuq (t) (a,a’ = i,€), which relate
5f(§i1 (t) to 5fz5/gl)u (0), are known, we can immediately
obtain the kernels in the time integration representing
the response to Fy0S,k, (t') by replacing the time argu-
ment ¢ with ¢ — #/. In other words, the solution of the
linear initial-value problem is equivalent to the linear re-
sponses to the source terms. Substituting Eq. (10) into
Eq. (9), we have

edr, () 1 ©
l}i T ng [1—To(b)] Z { Odfalq( )

a=i,e

t
+ / dt’ Na(t—t’)FaoSakL(t’)],
0

(11)

where N fd v Uza fd3U Uea( )

III. GAM OSCILLATIONS

In the present section, we are concerned with rapidly-
varying fluctuations in the GAM frequency range. Since
the characteristic parallel phase velocity of the GAM is
on the order of the ion thermal velocity, particles reso-
nant with the GAM are passing ions and thus effects of
trapped ions are neglected here. We also use Fourier and
Laplace transforms with respect to (8, ¢) and ¢, respec-
tively, as

[5720.6,0), 0nc. (0.C.1)]
= / o€ TS f i (@), G, ()] (12)
l,m

where (v, 1) is used instead of (w,u) as the indepen-

dent velocity-space variables of § f(g) The initial per-
turbed ion gyrocenter distribution function is assumed
to take the Maxwellian form, 5f(g) (t=0)= ((Srzglg()L (t =

0)/no)F;o. Using the quasmeutrahty condition, the ini-
tial perturbed ion gyrocenter density is determined by
on$) (t = 0) = no(k2a?)(edr,00(t = 0)/T;) with a; =
(T;/m;)'/? /. Here, ¢, 1m(t = 0) =0 for (I,m) # (0,0)

and kZa? ~ (k% a?) < 1 are assumed. Then, as shown in

Appendlx A, ¢r,00(w) is determined by

7e¢k’$(w) = Kgam(w) {WTOOT(;:O)

[ dPvFiSik,00(w)
no (krai)2 ’

(13)



Here, Kgan(w) is defined by

1 N ,q2
= —iw—i—

/CGAM(M) 2

r

(Roe1o>2 {J(&) + Jrow (@)}

W
”<|L+n—qM|)]’

(14)
with & = Roqw/vr; (vri = /2T;/m;),
J(@) = 20° + 30 + (20" + 20° +1)Z(@)
- % {20 + (20% + 1) Z(@)}
T, -
X {qf +1+@Z(d))} , (15)
and
2
N . rUT;
Trow (&) = \f( T(J> —o?/4
d;if d);‘f 3@? 6
61 " 4 o2
( 3 = {20, + (207 + 1Z, (@)}
T, -
X { +1+wrZr(c:zr)} )} (16)
T,
where @, = Re(®). On the right-hand side of
Eq. (15), the plasma dispersion function O Z (&) =
T2 [ do e /(a — &) is used. As explained in

Appendix A, Jrow given in Eq. (16) is derived from re-
taining the FOW effect on the (I,m) = (£1,0) Fourier
components of the gyrocenter distribution function. The
dispersion relation, which determines the real frequency
and the damping rate of the GAM oscillations, is given by
1/Kgam(w) = 0 with Eq. (14). It is shown from Eq. (14)
that, when €79 = 6;:1) =0 (In|] < Nmaz) and Jrow = 0,
our GAM dispersion relation coincides with the result of
Lebedev et al. for the collisionless tokamak case.
The inverse Laplace transform of Eq. (13) gives

edr00(t) edr,00(0) 1
T, Kean () )
t
></ dt//CGAM(t—t/)/dSUFiOSikTOO(t/)
0

(17)

where Kgan(t) = 2m)7! [dw e ™ Kgam(w) is the
inverse Laplace transform of Kgan(w). Noting that

4

Sfic, (t = 0) = (k2a?)(edr,00(t = 0)/T;) Fyo with k2a? <
1 is used and that electron contributions to the nntlal
conditions and the source terms are neglected, we can
verify that Eq. (17) takes the form of Eq. (11) with the
replacement of the operator N(t) — Kgan(t) [ d®v
If we obtain the pair of solutions w = Fwg + iy to
1/K(w) = 0 which correspond to the minimum damp-
ing rate —y(> 0), Kganm(t) is approximately written as
Kagau (t) = cos(wat) exp(t). (18)

For the case, in which L < &g = Roqweg/vri < |L —
gM| and wg > ||, approximate expressions for wg and
~ are obtained as

7+ 41, o [ Uy 2
= [ — 1+ L
( n ) q (Roq) (1+L%c%,)

[1 2(23 + 167, + 472)(1 + L4cLO)}
Q2 (7 +47.)2 (1 + L3¢} )2

2
qx TTTe
1 =14+ —-—-
[ M ( +2<1+Te>>

&
Qo

L—I—n 2 C(n) 2
s EL+n)—(q§\4;2 ’ 19)

"I’Ll <Nmazx

VT o (VT
AL 1
5 Rog +

2
q* ﬂ-Te
Ix 14 "¢
T ( +2(1+Te)) >

[n|<nmaa

2(23 + 167, + 472)(1 + Lc2,)

G (7T+471.)2(1 + L2c3)
-1

’)/:

(L+n)%(c}”)?
(L+n—qM)?

1 (krvrig ?
2\
@8 3 oY 302
4 1+ at ANl €4
x exp(— wG/>{64 (+8Te><8+ 4>}

+exp(—@g/L?) (cio/L%) {@& + (1 +27.) L% }

(L +n)*(cV)?
4 Z n)?(cy”)?
inl % 2|L+n—qM|

) {1 * (L + nwf qM)? (1 - 2(172:676)2) H (20)

where 7, = T,/T; and q. = q(Rpe10/r). The depen-
dence of the GAM frequency and damping rate on the

Fourier spectrum of the magnetic field strength in Eq.

(1) is expressed in terms of crg = €ro/€1p and cgl R

X [exp &) {0 + (142108} +

eg )/610 in Egs. (19) and (20). The terms proportional
to (krvriq/Sh)? exp(—@?2/4) on the right-hand side of Eq.
(20) are derived from Jrow in Eq. (16) and represent the
GAM damping due to the FOW effect. As explained in
Ref. 12, since the FOW grows the fluctuation component
with the poloidal wave number doubled, the parallel ion
velocity required to resonate with the GAM is lowered
and the increased population of resonant ions enhance
the GAM damping.



We should recall that Kgan(w) given by Eq. (14)
and its inverse Laplace transform Kgapn(t) describe the
short-time behavior of the zonal-flow potential, in which
slow components with lower frequencies than the GAM
frequency are dropped. The long-time behavior of the
zonal-flow potential is investigated in the next section,
where we find that an essential role is played by trapped
particles which are ignored for investigating the GAM
dynamics.

IV. COLLISIONLESS LONG-TIME BEHAVIOR
OF ZONAL FLOWS

We here consider the long-time behavior of zonal flows,
for which trapped particles need to be taken into account.
The trapping parameter k is defined by

,‘i2 _ 1-— /\BO {1 — GT(G) — SH(G)}
2X\Boer (0) ’

(21)

where A = u/w. Then, particles trapped in helical ripples
are characterized by x? < 1. Using I/(¢gM) < 1, we
approximate the field line element dl by Ryd(, where Ry
denotes the major radius of the toroid. Then, the orbital
average within a helical ripple is defined by

3 Dol (RodC/|U\|| A/ [ Rod(/\UuD

i §o+7r/M cg+7r/M for k2 < 1
fo /M (RodC/vy]) A/f0 /M (Rod¢/lvy|)
for k2 > 1,

(22)

where o = v)/|v)| is the sign of the parallel velocity,
((1, C2) represents the toroidal-angle interval for a particle
trapped within a helical ripple, and ({y —7/M, (o+7/M)
corresponds to a whole helical ripple around the local
minimum of B at ( = (p.

Using the longitudinal adiabatic invariant J [15] given
by

;o 2f§2 Rod( lvy|  fork? <1
fiﬁ://]y Rod( |vy| for k? > 1
16(Ro/M)(uBoer /m)'*[E(k) — (1 - K*) K (k)]
= for k2 < 1
8(Ro/M)(uBoer /m) ?kE(k~Y)  for k2 > 1,
(23)
and the time period 7, by
for k2 < 1

Th —

a7 { 2 22 Rod/ )|
J

ma— = T
ow i"tr//]\ﬂf Rod¢/|vy| for k? > 1

4(Ro/M)(uBoer /m) ™'/ K (r)
_ for K2 < 1 (24)
2(Ro/M)(pBoer /m) 2 K (k1)

for k2 > 1,

with the complete elliptic integrals K (k) and E(k), the
orbital average of the radial drift velocity within a helical
ripple is given by

__ mc 9J
Vdr = ey’ 00
cuBy | Oenr 2E(/§)_1 +(9€7T
ey’ | 00 | K(k) 00
for k2 <1
cuBy [Oen 9 E(Kj_l)_ Oer
v {39 {2“ (K(K—l) R T
for k% > 1,
(25)

where ¢’ = di/dr. The drift frequency wp is expressed
as

wp = ky(Vgr + ’UHb -Vé,.), (26)
where §, = fl(dl/v”)(vdr — Tgy) represents the radial

displacement of the gyrocenter from the helical-ripple-
averaged radial position. Then, Eq. (3) is rewritten as

0 A
(81& + UHb -V + ikzrvdr> (ng_ elk"é")

0w,

o + ezk O SkLFO’

= ZFe gy (27)

where we use (w,p) [not (v, ) as in Sec. II] as the in-
dependent velocity-space variables.

Since the long-time behavior of zonal flows is consid-
ered, we regard Eq. (27) as already averaged in time over
the time scale of the GAM oscillation period. Then,
in Eq. (27), the time-derivative terms, the radial gy-
rocenter drift term, and the source term are smaller
than the parallel streaming term such that they are
treated as of the higher—order The parallel derivative
is rewritten as b -V ~ Ry (0/9¢ + ¢~19/00). Here, we
also use [D(gi., e+) /061 /10(gu, e07) /0] ~ /Ry <
1. Based on these orderings, we expand g e*% as
Ik, ethrdr = ho + hy + --- and obtain the lowest-order
equation (v)|/Ro)(0ho/9¢) = 0 from Eq. (27). Thus, we
can write hg = ho(t,r,0,w, u, o), where the dependence
on o = vy /|vy| disappears for k* < 1. The first-order
equation is written as

v O _ _<3 v 9

9 L9 ik ) b
Ry 0C ot " Togo0 ”d> 0
[

5t + ethror Gy Fy.(28)

e .
—F 'Lk:,,.&,.J
+ T o€

As mentioned in Egs. (10) and (11), the response of the
zonal-flow potential to the nonlinear source terms can
immediately be derived from the solution of the linear
initial-value problem. Therefore, we hereafter ignore Sy |
until the response to the initial gyrocenter distribution is
obtained.



For particles trapped in a helical ripple (k2 < 1), the
orbital average of Eq. (28) and its time integration yield

ho(t)

t
h0(0>e—ikrﬁd,,,t_~_%/ dt’ e~ krTar(t=t)
0

% (eikr5r Jo I, (¢') )

ot’

(ezkméfl(i)(o))e krvart | T Eo(eror Joge, (1))

t
ik T / at’ e~ =) et Joge ().
0

(29)

where integration by parts and the lowest-order relation
resulting from Eq. (5),

(] -

are used. We find from Eq. (29) that effects of T4, on the
distribution of helical-ripple-trapped particles strongly
depend on time t. Here, we define a characteristic time
Te by 7. ~ 1/|k;Tgy| where Tq, is evaluated by con-
sidering typical helical-ripple-trapped particles. On the
right-hand side of Eq. (29), for ¢ < 7, the third time-
integral term can be neglected compared with the third
term while, for ¢ > 7., the 0 < t/ < t — 7, part of the
time-integral term makes a small contribution to the per-
turbed particle density because the phase mixing occurs
in the velocity integration due to the factor e~ thrUar(t=t')
Then, since we consider the long-time behavior of the
zonal-flow potential, we replace ¢i, (¢') with ¢y, (¢) in
the time-integral term on the right-hand side of Eq. (29)
and approximately obtain

ho(t)
ik, 5 £(8) € o T T (| ik Tant
~ |:(6 T ’“(ska (0)) + TFQ(@ ror Jodk | (t)) e ,
(31)

e - 7 c = .
—fF()(eZk”"s"' J0¢kL) + ho (30)

which is shown to be valid for both short- and long-time
limits.

When 2 > 1, using the periodic condition hy(¢ +
27 /M) = hi1(¢) and taking the orbital average of Eq.
(28) within a helical ripple give

A ¢ ann s o O
((’)t +WQ89> (6 kTArho) = Te kr A Fo (6 kréTJ0L>,

ot
where

(32)

wp = 2mo [ (gMTy) (33)

is the helical-ripple-averaged poloidal angular velocity
and

A, = o(gM/2m)(me/ed)(J — Jp) (34)

with J; defined later represents the radial displacement
of the helical-ripple-averaged gyrocenter position. For
k2 > 1, particles are classified into two types, parti-
cles trapped by the toroidicity and passing particles. For
these particles, we regard wgd (eikTAT ho) /00 as a dom-
inant term in Eq. (32) based on the long-time ordering
and expand e?*r2rhg as e?*rArhg = ng+n, 4 - - where 19
is independent of 6 because it satisfies the lowest-order
equation wydng/00 = 0. The solubility condition for 7,
is derived from Eq. (32) and integrated in time to give

nolt) = mo(0) + 2 Fo (A e 5 Ty {ne, () — e, (0)}])
_ < ikr A e’k‘s 5f(g( ))>
+ =By < oA Ty, (D))
where

<6ikTAr (eikrér(gflifi)) >
po

& ; — 0
= 2R <ezkrAr(ezkr6TJO¢kL)> Y (36)
po

is used and the poloidal-orbit average (A),, is defined by

1Y s [0, (d0] o)A/ [ (6 |wol)
for toroidally trapped particles
o (d0/)wsl)A/ [ (d6/)ws])
for passing particles.
(37)
Here, 6; is given by the condition k(6 = 6;) = 1 which
is equivalent to wy(d = 6;) = 0. Now, J; is defined by
Jy = J(0 = 6;) for toroidally trapped particles and by
Ji = J(6 = 7) for passing particles. It is noted that eg,
K, wy, and J are all even functions of 6 for the magnetic
field given by Eq. (1).

On the lowest order of the long-time ordering, we sub-
stitute Eq. (31) into gi, = e "% hy for k2 < 1 and
Eq. (35) into gi, = e~ #rore=ikrBrpg for k2 > 1 in order
to evaluate the nonadiabatic parts of the density per-
turbations in Eq. (8). Consequently, the quasineutrality
condition is rewritten as

L), (1) = 1(D), (38)

where the operator £(t) is defined by
L({B)dr, (1)
e

1 )
d3 Fz J —iky O
e <T T, ) (bkL( ) TZ /f;2<1 v iosee

e
— d3v Fy
T; /rc2 >1

X Joe~krdr g =ike A <eikrmm>
po

<A>p0 =

X me—ikrﬁm t_

e

_ 7/ d3v F.o meﬂ'kﬂdmt
Te K2<1

e

T, K2>1

dPv Fu <m>po, (39)



and I(t) is written in terms of the initial gyrocenter dis-
tribution functions as

I(t) = / &3 Joe—ikme—ikmd,,.it(emmr(;fi(l%) (0))
K2<1 1

+/ d3'l) Joe—ikr(s,,we—ikrAr
K2>1

S )

_/ &3 e—ikmdret(sféﬁl (0)
K2<1

- [, (o)

Now, we assume k, p, k.A,, er, and ey to be small
and use them as expansion parameters. We neglect k.0,
because generally 4, is much smaller than p. In Eq. (40),
we have already taken the small-electron-mass limit, in
which k,p, k.0, k.A,. — 0 for electrons. The initial
source I(t) is considered to be of order k2 p%. Then, to
the lowest order, Eq. (38) is written as Lo¢y, (t) = 0.
Here and hereafter, we write the lowest-order potential
by ¢x, (t) for simplicity. Defining the Hermitian inner
product by

po

(40)

(u,v) =

where (-) denotes the flux-surface average, we obtain

(Px, (1), Loy, (1))

_ Z;‘l</d3vFao

a=e,i

(u*v), (41)

P (t) — (im(t)‘2> = 0. (42)

From Eq. (42), we find that ¢x, (t) = ¢k, (t) and
therefore ¢y (¢) is a flux-surface function, d¢x, /OC =
O¢x, /00 = 0, to the lowest order. From the next-order
expression of Eq. (38), we have (¢, (t), L1(t)dk, (t)) =

(¢x, (t),I(t)) which gives
edi, (t) _ (I(1))
= 4
T (43)
where the shielding effects are represented by
D(t) = Do +E(1), (44)
with
1 3
D< = 5 d v FZO k
< d311 FiO k? {<A2 p0}>45
K2>1
and

E(t) = < / d*v Fyo Jg (1 - eikr”wt)>
K2<1
T; 3 —ik, Vgret
+ — dvFeo(l—e ’d”) .(46)
Te K2<1

On the right-hand side of Eq. (45), the first integral term
represents the shielding effect of the classical ion polar-
ization while the second integral terms correspond to the
neoclassical polarization effect due to toroidally trapped
ions (k? > 1). We see from Eq. (46) that, for t < 7,
E(t) vanishes and thus D(t) — D while, for t > 7., £(t)
gives an additional shielding caused by the radial drift of
nonadiabatic particles (both ions and electrons) trapped
in helical ripples (k2 < 1). In the present work, as in the
case of the ITG turbulence [2], we neglect the electron
source of the zonal-flow generation. Then, we also drop
electron contributions to (I(t)) and write

ey = ([, evermenio)

I <A2>1 B e—ikrAr < ikp A, 5f(g) 0 )>po>.

(47)

Using Eqgs. (23)—(25), (33), (34), and (37), we rewrite
Egs. (45) and (46) as

De = no(kia7)(1+G) (48)

and
£t) = %no [<(2GH)1/2{1 —gﬂ(t,e)}>
S0 {(2em) {1 - gia(t,0)})
1 (a2 0= gao})|. @9

respectively. Here, the flux-surface average of functions
of the poloidal angle # is approximated by the poloidal-
angle average, (---) ~ (2m)"'§---df. In Eq. (49),
9aj(t,0) (a =1,e;5 =1,2) are defined by

[+ (e Varat)2] V272

gaj(t,G)Z/O () K
(50)

where V., denotes the bounce-averaged radial drift ve-
locity Ugrq of helical-ripple-trapped particles evaluated at
v =vre = (2T, /mg)"/? and is written as

CTa 86H E(li) aET

Vdm_ew’ {80 {2K(/1) 1}+ 89} (51)
The terms proportional to ((2ex)'/2g,;) in Eq. (49)
represent contributions from the nonadiabatic helical-
ripple-trapped particles. When ¢t < 7.(~ 1/|k-Viral),
Jaj = 1. Then, the density perturbations of the nonadi-
abatic helical-ripple-trapped particles cancel those of the
adiabatic helical-ripple-trapped particles and £(t) van-
ishes. On the other hand, when t > 7., we see that
gaj ~ 0. This implies that the density perturbations of
the nonadiabatic helical-ripple-trapped particles are sup-
pressed by the phase mixing associated with the helical-
ripple-bounce-averaged radial drift so that £(¢) becomes

coS [(] + %) tan_l(kTVdmtﬂ
K

)




finite and positive, which causes the additional shielding
of the zonal-flow potential. Since not only ions but also
electrons influence the quasineutrality condition through
their bounce-averaged radial drift motions, £(¢) in Eq.
(49) shows the T.-dependence which becomes significant
for t > 7.

In Eq. (48), the geometrical factor G represents the
ratio of the neoclassical polarization due to toroidally
trapped ions to the classical polarization and is given by

12 B? 1/ B
— BR3¢ (= / dA
w0l <|vw|2>[o

do
X 7{ o (2ABoer) 2R K () {(2)\BoeH)1/2

G:

§ 9K (k1) E(r) )
f%(2ABOGH) /251K (k1)

I/Bm de
+/ d)\/ — (2\Boeg) 2k K (k71)
/B (6)>1 <™

« {E(nl) _ % (6’{6(?)1/2}2 , (52)

where B); denotes the maximum field strength over the

flux surface and B], represents the minimum value of

local maximum field strengths within each helical ripple.
From Egs. (43)—(48), we obtain

e(bkl (t) _ 1
T; no(k? a7)

x kE(k™) —

N®)IfE (0), (53)
where the operator N (t) is defined by

[1+G+E@1)/ (nolk2a2))] ™

% </ d3v e_ikrgdrit Z
K2<1
+/ d3y e~ ke <eikTATZ> > . (54)
K2>1 pe

Here, G and &£(t) are given by Egs. (52) and (49), re-
spectively, and A is an arbitrary gyrophase-independent
phase-space function. Now that the response of the zonal
flow potential to the initial gyrocenter distribution is
given by Eq. (53), we can immediately include the re-
sponse to the E x B nonlinearity F;oS;x, by using Eq.
(11) and obtain the total zonal-flow potential as

egr, (1) 1 ()
T e (VOO

t
n / dt' N(t — ) FaoSuc, (t)|, (55)
0

Nt)A =

where the electron source term is neglected.
Let wus assume the initial perturbed ion gyro-
center distribution function to take the Maxwellian

form, 0f (0) = —Jo(edw, (0)/T)Fio + girc, (0) =

8

(5nl(.lg() (0)/no)Fip. The quasineutrality condition gives
5”1(51 (0) = O(lﬂa‘f)(e(bkL (0)/T;). Then, neglecting
O(k2A2) terms in e*rdr = 1 + ik, A, + O(k2A2%), E
(55) is rewritten as

e(bkL (t>
T;

e(?bkj_ (0) 1 /t ’ /
dt t—t
T no(k? az) Jo Kot =1)

9 —1
X {1 — ; <(26H)1/2 {1 — gu(t — t’,9)}>}
><</ d3v e~ hrvari(t= t)FOSsz( t')
K2<1

- <Ar>p0)}> )
(56)

= ]CL(t)

+ / d3’l) F‘iosikL (t/) {1 + ik, (A
K2>1

where

1@/ (2er) {1~ gu(t,0)))
M) = = G T () (o (k2 o))

(57)

In contrast to Kgan(t) given by Eq. (18), the response
kernel Cr,(t) describes the the long-time behavior of the
zonal-flow potential and takes the constant limiting val-
ues,

1
ko=, im ) =17 (58)
and
’C> = t/Tli—r>n+oo ICL(t)
= (Ka?) [1 - @/m)(2en)/?)]
x {2 )1 = (3/m)(2em) ) + G
@+ T/T)(2em) )}
(59)
Accordingly, we obtain
egbkl (t)
T;
. | €0 (0) Jo dt' {J d*v FioSuc (1))
N no (k7 a7)
_ fort < 7
. |€9e (0 Jo df(f 251 4°0 FioSixc, (')
” T; no(k%a?) {1 — (2/m){(2ex)"/?)}
for t > 7.,
(60)

where O(k,A,) terms are neglected.



Results shown in Eqgs. (60) are the same as those de-
rived in Ref. 3. The response kernel s for t > 7,
depends on T, because £(t) in Eq. (49) does. The de-
pendence of K< on T, and on the radial wave number
shown in Eq. (59) is not seen in the tokamak case. In
the axisymmetric limit ey — 40 with e = €;cosf
(et = r/Ry), we obtain G — 1.6 q2/et1/2 and Cp(t) re-
duces to to the Rosenbluth-Hinton [2] formula Kr_y =
1/(14+1.6 q2/62/2) for any time ¢.

In the single-helicity case where e;o = 0 and eén) =0
for n # 0 [see Eq. (1)], exg = 620) is independent
of § and ep = (r/Rp)cosf. Then, Egs. (25) and
(51) reduce to Ugrq = —(cu/eqRo)sinf and Vi, =
—(cTy/eaRoByp) sin 8, respectively. Accordingly, Eq. (50)
is simplified as

coS [(] + %) tan_l(krVdmt)}
1+ (kTVdTat)Q](j+1/2)/2 ’

gaj(tae) = (61)

and the characteristic time for the phase mixing due to
the bounce-averaged radial drift is estimated as 7, ~
(k,cT;/eBoRy) ™ = (Ro/vi)/ (kra;), where a; ~ vg;/Q0,
Qio = eBo/(myc), and vy = vpi/V2 = (T;/m;)'/? are
used.

V. COMPLETE COLLISIONLESS TIME
DEPENDENCE

Here, let us compare the expressions given by Egs. (17)
and (56) which represent the short- and long-time col-
lisionless evolutions of the zonal-flow potential, respec-
tively. These equations take similar forms to each other
except that Eq. (56) contains additional terms resulting
from radial drift motions of helical-ripple-trapped and
toroidally-trapped particles. Since only passing particles
are considered in deriving Eq. (17), the short-time re-
sponse kernel Kganr(t) vanishes in the long-time limit
and it lacks the part of the residual zonal flow which is
described by Eq. (56). We now present the complete col-
lisionless time dependence of the zonal-flow potential by
combining the short- and long-time expressions as

e(bki (t)
T,

epr, (0 1 ¢
= K(t) “Ti()+n kia2>/0 ' K(t

-1

X

1= 2 (e (1 gt~ ¢.0)

U
<L<1

+ /2 ) d*v FyoSic, (t') {1 + ik, (A, — <Ar>po)}> ;
(62)

7zk: Dgri (t—t)

X

FioSic, (t)

Edr =

where K(t) is defined in terms of Kgap(t) in Eq. (18)
and Kp(t) in Eq. (57) as

K(t) =Kaam(t)[1 — Kr(t)] + Kr(t). (63)

The necessary conditions, K(t = 0) = 1 and K(t) —
Kr(t) as Kgan(t) — 0, are satisfied by Eq. (63). Equa-
tion (63) represents that the GAM oscillations are su-
perimposed around the averaged zonal-flow evolution ex-
pressed by Kr(t).

VI. NUMERICAL RESULTS

In order to examine the analytical results shown in the
previous sections, a linearized ion gyrokinetic equation
combined with the quasineutrality condition is numer-
ically solved by a toroidal flux-tube gyrokinetic-Vlasov
code [6]. The perturbed electron density is simply cal-
culated by using nex, = (noe/Te)(dx, — (¢Px,)) with
T, = T; in the present simulations and accordingly the ra-
dial drift motions of nonadiabatic helical-ripple-trapped
electrons are not treated here. Thus, the terms propor-
tional to T;/T, in Egs. (49) and (59) should be dropped
when comparing these formulas with the simulation re-
sults in this section. Here, we consider the L = 2/M = 10

single-helicity case, in which e(") = 0 for n # 0 and there-

foreeyg = ( ) = = ¢y, is independent of §. We also put €19 =
e = 1r/Ro and ero = 0 so that e = ¢; cosf. The initial
perturbed ion gyrocenter distribution function is given

by the Maxwellian form 5f(g)( 0) = (5n£§l( )/m0)Fio

with onff), (0) = no(k?a?)(cw, (0)/T)):
—(cu/eRo)sinb, k3a? ~ k?a?, and 1, ~
(erTi/BBoRo)il = (Ro/’l)ti)/(k'rai), where a; ~ Uti/Qim
QiO = BBO/(T)’L,'C)7 and Vg = UTi/\@ = (E/mz)l/Q

Time evolution of the zonal-flow potential obtained by
the simulation is plotted by solid circular symbols in Fig.
1 (a) for the tokamak case (e, = 0) and in Fig. 1 (b)
for the helical system (e, = 0.1), respectively, where the
unit of time is given by Rg/vy;. In both cases, ¢ = 1.5,
and kra; = 0.131 are used. In Figs. 1 (a) and (b),
thick solid curves represent the response kernel K(t) ob-
tained by Eq. (63) with the use of Egs. (18), (57) and
the complex-valued GAM frequency w = wg + iy cal-
culated by numerically solving 1/Kgan(w) = 0 where
Kganm(w) is defined by Eq. (14). The numerical so-
lution of 1/Kgap(w) = 0 gives (Rowg/vti, Roy/vei) =
(2.774,—-0.131) and (2.711,—0.304) for the cases of Figs.
1 (a) and (b), respectively, while Egs. (19) and (20)
give good approximations as (Rowg/vti, Roy/ve:) =
(2.690,—0.139) and (2.641, —0.362) for the same cases.
Thus, the theoretical curves for K(t) in Figs. 1 (a) and
(b) do not change much when using these approximate
values of (wg, ). Thin solid curves in Figs. 1 (a) and (b)
represent the response kernel K(t) obtained by neglect-
ing the FOW term Jpow in Eq. (14) when calculating
(wa,7). Figure 1 (a) shows a good agreement between

We use
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FIG. 1: Time evolution of the zonal-flow potential obtained
by the simulations for the tokamak case (e, = 0) (a) and for
for the helical system (¢ = 0.1) (b). In both case, ¢ = 1.5
and kra; = 0.131 are used. The simulation results are plotted
by solid circular symbols. Thick solid curves represent the
response kernel KC(t) obtained by Eq. (63) with the use of
Egs. (18), (57) and the complex-valued GAM frequency w =
wa + iy calculated by numerically solving 1/Kgam(w) = 0
where Kganm(w) is defined by Eq. (14). Thin solid curves
represent the response kernel K(t) obtained by neglecting the
FOW effect when calculating (wa,y). The response kernel
Kr(t) given by Eq. (57) is also plotted by dashed lines.

10

K @ Simulation (krai=0.131)
0.12 > B Simulation (krai=0.196)
) " |=—Theory (ka=0.131)
0.1L .“.‘ ---- Theory (kral_=0.196)
0.08
0.06 |
0.04 ¢
0.02 -
O 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
En

FIG. 2: The long-time limit of the response kernel K- as a
function of ¢, for kra; = 0.131, 0.196, and ¢, = 0.1. The
simulation results and the theoretical formula in Eq. (59) are
represented by symbols with error bars and curves, respec-
tively.

the simulation result and the theoretical prediction with
the FOW effect taken into account. For this case, without
the FOW effect, the GAM damping rate is significantly
underestimated. We see from Fig. 1 (b) that, as theo-
retically predicted, the presence of helical ripples cause
a significant enhancement of the GAM damping and a
weak reduction of the GAM frequency. Compared with
the case of Fig. 1 (a), the theoretical curves for K(t) in
Fig. 1 (b) deviates from the simulation result toward the
weaker damping of the GAM oscillations although the
inclusion of the FOW effect gives a better approximation
than in the no-FOW case. The deviation is anticipated to
occur when €5, which is used like ¢; as a small parameter
in our analytical treatment, increases.

The response kernel K, (t) given by Eq. (57), which
describes the long-time behavior of the zonal-flow poten-
tial with the GAM oscillations averaged out, is also plot-
ted by dashed lines in Figs. 1 (a) and (b). [Note that,
in Fig. 1 (a) for the tokamak case, Kr(t) = Kr_np =
1/(1+ 1.6q2/ei/2) is given by a horizontal straight line.]
For both cases, the simulation results show a convergence
to Kr(t) in the long-time limit as theoretically predicted.
At the early stage, the first undershooting of the simula-
tion curve is shallower in Fig. 1 (b) than in Fig. 1 (a) even
though the long-time limit K< = lim;_, 4 o, K () = 0.038
in the former case is smaller than Xg_g = 0.081 in the
latter. This can be explained by our formula in Eq. (63)
which predicts that the bottom of the early GAM os-



v_perp

v_pemp

v_parallel

-0.001
perturbed gyrocenter distribution

0.000 0.001

FIG. 3: Structures of the real part of the perturbed ion gy-
rocenter distribution function § fﬂfl on the (v, v1)-space ob-
tained by the simulation at ¢ = 12.5(Ro/v¢;) for the case of
the helical system in Fig. 1 (b). The parallel and perpen-
dicular velocities are both normalized by vy = (Ti/mi)*/2.
Here, (a) and (b) are plotted for (6,¢) = (0,0) and (6,¢) =
(8m/13,127/13), respectively, in which the former corre-
sponds to the the minimum of the magnetic field strength
within the flux surface and the latter locates the bottom of
the local helical ripple with helical-ripple-trapped particles
having relatively large radial drift velocities.

cillations is lifted with K« = lim;— o Kr(¢) = 0.39 for
the helical system in Fig. 1 (b). The theoretical estima-
tion of the characteristic time 7. ~ (k,.cT;/eBoRy)~! =
(Ro/vii)/(kra;) for K (t) to approach K in the single-
helicity system gives 7. ~ 7.6(Ro/v) for Fig. 1 (b). In
Fig. 1 (b), the GAM oscillations are not damped enough
at t < 7. to accurately identify Kp(t) from the simu-
lation although an averaged behavior of the simulation
curve over the oscillation period suggests a smaller value
of 7, than the theoretical prediction.

Figure 2 shows the long-time limit of the response
kernel K< as a function of ¢, for k.a; = 0.131, 0.196,
and ¢, = 0.1. The simulation results and the theo-
retical formula in Eq. (59) are represented by symbols
with error bars and curves, respectively. The error bars
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FIG. 4: Structures of the real part of the perturbed ion gy-
rocenter distribution function § fi(lf)l on the (v, v1)-space ob-
tained from the analytical solution given by Egs. (64) and
(65) at t = 12.5(Ro/ve) for the case of the helical system in
Fig. 1 (b). Here, (a) and (b) correspond to the cases of Figs.

3 (a) and (b), respectively.

occur due to the GAM oscillations which remain un-
damped in the final stage of the simulations. As seen
from Eq. (20), the GAM damping becomes stronger with
increasing €, and k... Also, 7. is inversely proportional
to k.. Therefore, the evaluation of K5 for lower k, re-
quires longer-time collisionless gyrokinetic Vlasov simu-
lations using a larger number of grid points in the ve-
locity space. In the present simulations, the velocity-
space domain is bounded by —bv; < v < Svy and
0 < vy = (2uB/m;)'/? < 5v(B/By)'/?. The maxi-
mum numbers of grids used in the v)- and v -directions
are N = 2048 and N|| = 128, respectively. We find from
Fig. 2 that the dependence of K< on (e, kra;) obtained
by the simulations is well predicted by the theoretical
formula in Eq. (59). Since the parameters €, and k,a;
are assumed to be small in our theory, an excellent agree-
ment between the simulation and the theory is confirmed
in Fig. 2 for ¢, = 0.05 and k,.a; = 0.131 which are both
the smallest values used in the simulations here.



Figures 3 (a) and (b) show the structures of the real
part of the perturbed ion gyrocenter distribution func-
tion 6fi(1%1 on the (v, vy )-space obtained by the simula-
tion at ¢t = 12.5(Ro/v;) for the case of the helical sys-
tem in Fig. 1 (b). Figures 3 (a) and (b) are plotted for
(0,¢) = (0,0) and (0,¢) = (8w/13,127/13), respectively,
in which the former corresponds to the the minimum of
the magnetic field strength within the flux surface and
the latter locates the bottom of the local helical rip-
ple with helical-ripple-trapped particles having relatively
large radial drift velocities. For comparison, theoretical
results corresponding to the simulation results in Figs. 3
(a) and (b) are shown in Figs. 4 (a) and (b), respectively,
where the perturbed gyrocenter distribution function is
analytically given from using Egs. (31) and (35) as

ot () = PO g [rzaze=terat iy (1)
. (1 _ ikff) (1- e—ikrvdrt)} for K < 1,
(64)
and
51 = e(b“T(O)Fo [k7af = Ko (t) {ikr (Ar = (Ar)po)

48, = A forw >,
(65)

Figures 3 and 4 plot the real part of § fi(lfi (t) normal-
ized by e¢y, (0)/T;. Due to the parallel streaming of
passing ions, stripes (or ballistic-mode structures) ap-
pear along the v -direction in the simulation results in
Figs. 3 (a) and (b) while these stripe patterns are not
seen in Figs. 4 (a) and (b) because the solutions in
Egs. (64) and (65) are derived from taking the average
along the rapid parallel motion. At 6 = 0, the radial
drift velocity Ug,- vanishes and Eq. (64) [or Fig. 4 (a)]

gives 5]‘1-(5)l (t) = (k2a?)(edx, (0)/T;)F;o for helical-ripple-

3

trapped ions [characterized by k? = (2¢,) 1 {1/(ABg) —
1+ ecosh + e} < 1 with A = (vy/v)?/B] which
remains unchanged from the initial distribution. On
the other hand, Fig. 4 (b) shows that, at (6,() =
(87/13,127/13), the ion gyrocenter distribution in the
helical-ripple-trapped region localized around v ~ 0 has
a distinctive hollow (a blue region) that is produced by
a modulation along the v, -direction due to the finite ra-
dial drift ©4,.. These characteristics predicted by the the-
oretical results in Figs. 4 (a) and (b) are in a reasonable
agreement with the average features of the corresponding
distribution functions in Fig. 3 (a) and (b) although some
oscillatory structures caused by the ion parallel motion,
which are averaged out in the former figures, are found
in the latter figures even in the helical-ripple-trapped re-
gion.
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VII. CONCLUSIONS

In the present paper, collisionless short- and long-time
behaviors of zonal flows in helical systems are theoreti-
cally investigated. A complete collisionless response of
the zonal-flow potential to the initial potential and a
given nonlinear source is derived in Eq. (62). The dis-
persion relation for the GAM oscillations, which occur in
a short-time scale, is analytically derived by taking ac-
count of the helical geometry and FOW orbits of passing
ions. It is theoretically shown that the GAM frequency
is slightly reduced by the helical ripples while the GAM
damping rate is strongly enhanced by the ripples and
the FOW effect. On the other hand, the collisionless
long-time behavior of zonal flows in helical systems is in-
fluenced by the bounce-averaged radial drift motions of
helical-ripple-trapped particles. It is predicted that, un-
der the influence of helical-ripple-trapped particles, for
the lower radial wave numbers, the long-time limit of the
zonal-flow potential amplitude (or the residual flow) be-
comes smaller although simultaneously the characteristic
transition time 7.(~ 1/k.|U4,|) becomes longer. The va-
lidity of our analytical results on the zonal-flow evolution
and on the velocity-space structures of the ion gyrocenter
distribution is verified by the gyrokinetic Vlasov simula-
tions for the helical geometries with the single-helicity.

In this work, collisional effects are neglected. Col-
lisional decay of zonal flows is anticipated to occur in
the long course of time although the residual zonal flows
in a collisionless time scale still influence the turbulent
transport. In some optimized helical configurations such
as quasi-poloidally-symmetric systems [22] which signifi-
cantly reduce neoclassical transport by suppressing both
[U4r| and G, we expect the response kernels K-, K.
and 7. to increase such that large zonal flows can be
maintained for a long-time period and contribute to a
reduction of anomalous transport as well. More detailed
simulation studies of the multi-helicity systems includ-
ing collisions remain as an interesting future problem to
investigate the control of the GAM oscillations and the
residual zonal flows.
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APPENDIX A: DERIVATION OF EQ. (13)

In this Appendix, we see how Eq. (13) is derived.
Here, we use (v, u) instead of (w, ) as the independent



velocity-space variables of the the gyrocenter distribution
function. Then, vyb-V in Egs. (3) and (7) should be re-
placed with v b-V —(u/m)(b-VB)d/dv||, where the last
term represents the effect of the mirror force. Since the
characteristic parallel phase velocity of the GAM is on
the order of the ion thermal velocity, particles resonant
with the GAM are not trapped but passing ions. Thus,
we now consider only passing ions, for which we neglect
the mirror force term and rewrite Eq. (7) as

9 v (o, 19 ikydy 5 7(8)
{815 "R <a< * q@@)] (o)

Yy (90 10 ikndy 7 €Pky ikyd,

~ "R (8C+q89 eI | e Sk
(A1)

where 6]‘2&? = 6fl(fi)/F0, wp = yb - V(ikd,) =

—iekrdry b Veltrdr and bV ~ RyM(8/9¢+q~10/00)
are used. Here, the radial displacement d,. of the passing
ion from the orbit-averaged radial position is given by

d, = d19cosh+ b0 cos(L0)
+ ) Ongmarcos{(L+n)0 — M(},(A2)

[n|<nmaa
where
o010 = (Rog/rQ)ero(v) +v7 /20,
oro = (Rog/rero(v + v /20)),
Simar = (Rog/rQ)e” (v) + v} /2v))

x (L+n)/[(L+n)—qM]. (A3)

Recall that (v)|, 1) are used as the independent velocity-
space variables in Eq. (A1) where the mirror-force term
is neglected. Using Fourier and Laplace transforms as
shown in Eq. (12), Eq. (A1) is solved with the aid of the
formula e ¥ = Y~ "], (x)e™¥ (J, : the nth-order
Bessel function) to yield

5fk"lm (w) - Z 7;”/10—"10 JnlO (krglo)‘]n’m (’%510)

nlo,n,w
.0/ o—n N N
X § 1" Lo O JnLo(kr(SLO)Jn’LO (kr5L0)
nLo,ng
% H E PP, M T, M
In|<Pmaz \"L4n, MM ar
X Jng s (BrOrin ) Jny (kr5L+n,M))

y ( (I —gm+ X —qu)(v/Roq) )
w— (I —gm+ X —qu)(v/Roq)

X %¢kr,l+>\—)\’,m+;t—u’ (w)

+ 5j-krlm(w)7 (A4)

for (I,m) # (0,0) Fourier components, where & fy, jm =
8 fi.1m/Fo. [We should note that, for (I,m) = (0,0), the
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parallel streaming term vanishes and the neglect of the
mirror force term in Eq. (Al) is not a good approxima-
tion.] On the right-hand side of Eq. (A4),

A = ny+ Lngy + Z (L +n)npin,m
[n]<nmax

N o= g+ Ino+ Y (L+nnl,,
[n|<nmaa

w =M Z NL4n,M

‘nlgnnzaa‘

I !/
I M Z Npgn,M-

‘nlgnm,az

(A5)

are used and the zero-gyroradius limit k.p — +0 [or
Jo(krp) — 1], which is uninfluential to the GAM damp-
ing, is taken. The initial conditions and the nonlinear
source are included on the right-hand side of Eq. (A4)
through

6fkrlm(w) = 4 Z

!
n10,M7¢

X Z in/LO_nLDJnLO (krgLO)Jn’LO (krSLO)

’
nLo,My,o

< 1

In|<nmas

Moo g

nio (krglo)‘]n’lo (krglo)

’
g Ltn, M ML+, M

>

NLtn, M4 0
X Inp (kréL-i-n,M)Jn’LJrn M (kraL-&-n,M))

X [w—(I—gm+X—qu)(v;/Roq)]
X [6fkr,l+)\7)\’,m+ﬂfﬂf(t =0)
St der-n b (@) (A6)

We find from Egs. (A4) and (A6) that, even for the single
(I,m) Fourier component, the multiple resonance condi-
tions w — (I — gm + A — qu)(v|/Roq) = 0 appear ac-
cording to various numbers of (A, u). Without finite or-
bit widths (FOWs), the resonance conditions, in which
A # 0 or p # 0, never appear. The FOW effects given
by the (A, p) # (0,0) terms may seem to be weak for
longer radial wavelengths than the orbit widths since
small non-zeroth-order Bessel function factors and cou-
plings to small potential components with higher Fourier-
mode numbers appear as seen in Eqs. (A4) and (A6).
However, as shown in Ref. 12, the FOW effect on the
GAM damping is significant for the (I,m) = (£1,0)
Fourier components which correspond to the longest par-
allel wavelength (= 2wRgq). This is because, without
the FOW, the population of ions with the highest res-
onant parallel velocity (Jv)| = Roqw) can be negligibly
small while, with the FOW, the lower resonant veloc-
ity (Jvy| = Roqw/2) and accordingly the larger popu-
lation of resonant ions are produced [see that the reso-
nance condition w = 2(v||/Roq) appears in Eq. (A4) for
l=A=npo==x1,m=p=0,and nrg = nr4nm =0
(In| € nmaz)]. Thus, we retain this FOW effect on the

1



(I,m) = (£1,0) components 5]%&10 in the following
analysis of the GAM. For other Fourier components with
(I,m) # (£1,0), the FOW effects are relatively small
and we neglect them by retaining only the terms with
nio =Nro = NL4+n,M = 0 (|’I’L| S ’I’Lmax) in Eqs. (A4) and
(A6), for which (A, u) = (0,0) [but (N, y') # (0,0) for
some of these terms].

Using Eq. (9), we obtain

€k, im

kriQ
(krai) T,

= 5nekrlma (A7)

/dngiO(sfikrlm —ng

where 1 — T'g(b) ~ b [for b =
(T;/mi)*/?/, and k; =~ k, are used and subscripts
referring to particle species are explicitly shown. The
second term on the left-hand side of Eq. (A7) represents
the ion polarization. For (I,m) # (0,0) modes, the per-
turbed electron density is approximately given by the
Boltzmann relation, neg.im = no€Pk.im/Te, because of
the fast parallel motions of electrons. Then, Eq. (A7) is
rewritten as

(kJ_ai)z < 1], a; =

%’”(“) for (1,m) # (0,0)

) (A8)
where k,.a; < 1 is used. Taking the time differentiation
and the flux-surface average of Eq. (9) and using Eq. (7),

we obtain

/d?’vFio(Sfik,,,lm(w) =TNo

o(k10:)? - [~ik,00(w) = br,00(t = 0)
ky B
= [ #orag (o 52)
[610 {5fzk ~10(w) + &bm%i@(w) — 6 fik,10(w)

— 7e¢kTT1? ) } + Lerg {5]Ez'ero(uJ) + 7e¢kr}j0 G
- olw) - Ly T pg

In|<nmax

f € —L—n,— w
X{(Sfikth,M(w)_’_ Ok —L—n,—M (W)

T;
A e M (w
5 fe (@) — WH
—l—/dngiosik,,,oo(w). (AQ)
where the flux-surface average is approximately

given by the poloidal- and toroidal-angle average,
$(d0/2m) §(d(/2m)---. Electron contributions do not
appear in Eq. (A9) because 5fekrlm = (ePk, im/Te)Feo is
used for (I,m) # (0,0).

Neglecting terms of the second and higher orders in the
radial wave number except for influential FOW terms, we
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obtain from Eq. (A4),

8 fik,10(w)
| u/Ren) 200 /R (ko)
w — (v)/Roq) w = 2(v)/Rogq) 2
e¢k;?(w) +ie¢krj(l?(w) (kr;510> +5fikrlo(w)7
(A10)
N L R,

Ofikro(w) = w—(z(£|/olgiq) [egﬁkrgj(m He%;j 5
x (krgm) + 61k, Lo(w), (A11)

and

(L+n—qM)(v/Roq)
w— (L+n—qM)(v/Roq)

8 fity Lanar(w) =

o e¢kr,L+n,M(W)+ie¢kr(]0(w) kb1 mnt
T; T; 2

+ (Sjikr,LJrn,M(w)'

On the right-hand side of Eq. (A10), we see two reso-
nance conditions w = v|/Roq and w = 2v|/Roq. The
latter is induced by the FOW and it can significantly af-
fect the damping of the GAM oscillations as remarked
after Eq. (A6). On the other hand, the FOW effect on
the real frequency of the GAM is weak because of the
small factor (k,010/2)% appearing together with the fac-
tor 1/[w — 2(v)/Roq)]. Then, in (A10), we retain the
resonant (or imaginary) part of 1/[w — 2(v)/Roq)] while
neglecting its non-resonant (or real) part. Thus, when
using (A10) for evaluations of velocity-space integrals,
we perform the replacement,

1/[w = 2(vy/Roq)] — —imd[wr — 2(v)/Roq)],

(A13)
where |w;/w,| << 1 with (w,,w;) = (Re(w),Im(w)) is
assumed.

Substituting Eqs. (A10), (All), and (A12) into Eq.
(A8), we obtain

edr,10(w)
T,

_ {2+1+w2(a)}1 K i 49 R;”)
x{[2w+(2a2+1) Z(w )}+zxf<k UT )2
e ““(;}i%“iwiz)}

e¢k 0o( /d3 —Mzk 10(w )} J

X €10

(A14)

)

(A12)



%io(w) = {£+1+§Z(§>}—1
(-6 ) 0))

o [ —iFrvri Rog\ ePr,.00(w)
40; 1 o

X

+ / d%?azmo(w)] , (A15)
0

and

6¢kr,L+n,M(w)
T;

—{E+1+ > Z< @ )}1
T IL+n—qM|" \|L+n—qM|

~ ~ 2
w w
2~ 42— ) +1
{ IL+n—qM]| < <|L+on|) )

X

w
" o _Fvri Rog (L +n)e™ x J(|L+n—qM|)]’
|L +n — qM] 40; 7 |L+mn—qM|

e w Fyo .~
XM +/d30 Oé[ikmL-&-n,M(w):| ,
Ti no

respectively, where the plasma dispersion function O
Z(@) = a7 Y2 [% da e~ /(o — @) and the normal-
ized frequency @ = Roqw/vr; (vry = +/2T;/m;) are
used. Other Fourier components 5]@'1%710, 6fikr,L0,

8 fikr—L—m,—s Phr—10s Oky—r0; and G, 1y _ar in Eq.
(A9) are given by using Eqs.(A10)—-(A16) and the follow-
ing relations,

8 fir,—10(v))

8 fikn—ro(v)) =

5fikm—L—n,—Jw(’UH) =

*5]?1'1%10(*””),
—6 fir, Lo(—v)),

~0 fitey L 4nar (=),

Dk, —10 — k.10,
Pk, —L0 = —Ok.L0>
Ok —L—n,— M — Pk, L4+n,M- (A17)

We now assume the initial perturbed ion gyrocen-
ter distribution function to take the Maxwellian form,
fac. (t = 0) = (6n (¢ = 0)/no)Fo. Using the
quasineutrality condition, the initial perturbed ion gy-

rocenter density is determined by 5n§ﬁl t =0 =

no(k2a?)(edr,00(t = 0)/T;) where ¢p im(t = 0) = 0 for
(I,m) # (0,0) and k2a? ~ (k? a?) < 1 are assumed. Sub-
stituting Eqs. (A10)—(A17) into Eq. (A9) and neglecting
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effects of 6fikrlm(w) as smaller than those of ¢y, oo(t = 0)
and Sik,.00 by the factor of k,a;, we can finally represent

®k,.00(w) by

etr00(w) _ ePr.00(t = 0)
7.~ Keam() { T
[ d*0FiSik, 00(w)
nO(krai)2 (A18)
where Cgan (w) is defined by
1 o 'q2 R0610 2 ) A
Ko@) = @iz |7 ) U@+ row(@)

R()ELO 2 uAJ
() ()

2
(L+n)> [ Roel™
+ Z |L +n—qM] r

‘nlgnm,am

(A19)

(AlGn

J(@) = 20° + 30+ (20* +20% +1)Z ()

- % {20+ (20° +1)Z(&)}

(A20)

e

T, -
x {T+1+w2(w)} ,

3wy
16

x {; +14 @T.z,.(a,.)}_l> } . (A21)

Here, Jpow and the terms proportional to
(kyvriq/Qi)? exp(—@2/4) on the right-hand side of
Eq. (Al4), where &, = Re(®), are derived from retaining
the FOW effect on the (I,m) = (£1,0) components of
the ion gyrocenter distribution function as noted after
Eq. (A6).
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