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Collisionless Damping of Zonal Flows in Helical Systems

H. Sugama and T.-H. Watanabe
National Institute for Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Japan

(Dated: September 12, 2005)

Collisionless time evolution of zonal flows in helical systems are investigated. An analytical ex-
pression describing the collisionless response of the zonal-flow potential to the initial potential and
a given turbulence source is derived from the gyrokinetic equations combined with the quasineu-
trality condition. The dispersion relation for the geodesic acoustic mode (GAM) in helical systems
is derived from the short-time response kernel for the zonal-flow potential. It is found that heli-
cal ripples in the magnetic field strength as well as finite orbit widths of passing ions enhance the
GAM damping. The radial drift motions of particles trapped in helical ripples cause the residual
zonal-flow level in the collisionless long-time limit to be lower for longer radial wave lengths and
deeper helical ripples. On the other hand, a high-level zonal-flow response, which is not affected by
helical-ripple-trapped particles, can be maintained for a longer time by reducing their radial drift
velocity. This implies a possibility that helical configurations optimized for reducing neoclassical
ripple transport can simultaneously enhance zonal flows which lower anomalous transport. The
validity of our analytical results is verified by gyrokinetic Vlasov simulation.

PACS numbers:

I. INTRODUCTION

Zonal flows are intensively investigated in the fusion
research as an attractive mechanism for realizing a good
plasma confinement [1]. A collisionless long-time behav-
ior of zonal flows in tokamaks was theoretically inves-
tigated by Rosenbluth and Hinton [2] and their theory
was extended to helical systems in our previous work [3].
In these theories, the ion temperature gradient (ITG)
turbulence [4] is treated as a known source and the re-
sponse kernel, which relates the zonal-flow potential to
the source as well as represents dependence on an initially
given zonal flow, is analytically derived. They showed
that the initial zonal flow is not fully damped by collision-
less processes but it approaches a finite value. It was veri-
fied by collisionless gyrokinetic simulations [5, 6] that the
zonal flow, which is added initially as an impulse, shows
the convergence to the theoretically predicted value after
oscillations of the geodesic acoustic mode (GAM) [7] are
damped.

In the present paper, we extend our previous theory
to give a complete description of collisionless time de-
pendence of the zonal-flow potential by combining the
long-time evolution with short-time behaviors such as
the GAM oscillations. The GAM was first predicted by
Winsor et al. [7] based on the fluid model and it was
also observed experimentally [8]. Drift kinetic evalua-
tions of frequencies and damping rates of the GAM in
tokamaks were done by Lebedev et al. [9] and by No-
vakovskii et al. [10] Recently, Watari et al. [11] derived
the dispersion relation for the GAM in helical systems
based on the drift kinetic equation although they ne-
glected a part of the electrostatic potential which de-
pends on the poloidal and toroidal angles so that their
dispersion relation shows a slight difference from that
of Lebedev et al. [9] in the collisionless tokamak limit.
Also, all the above-mentioned drift kinetic studies as-

sume the radial widths of ion drift orbits to be negligi-
bly smaller than the radial wave length of the potential
and their local drift kinetic models do not include the
magnetic drift term of the perturbed distribution func-
tion that the gyrokinetic equation does. Just recently,
based on the gyrokinetic theory and simulation, Sugama
and Watanabe showed that the collisionless damping of
the GAM in tokamaks is considerably strengthened by
the finite-orbit-width (FOW) effect of passing ions [12].
This rapid damping of the GAM was also observed in the
global drift kinetic simulation done by Satake et al. [13]
Here, we also take account of the FOW effect as well as
the helical geometry to derive the GAM dispersion re-
lation from the analytically-derived short-time response
kernel for the zonal-flow potential in helical systems. In
the tokamak case, our GAM dispersion relation coincides
with the collisionless result of Lebedev et al. [9]

In helical configurations, the radial drift motions of
particles trapped in helical ripples yield neoclassical rip-
ple transport in the weak collisionality regime [14, 15].
Here, we argue that this radial drift of the helical-ripple-
trapped particles also causes a significant influence on
the long-time zonal-flow behavior and accordingly on the
anomalous transport in helical systems. Our study sug-
gests that helical configurations optimized for reduction
of the neoclassical ripple transport may simultaneously
lower the anomalous transport through enhancing the
zonal-flow level. In fact, it is observed in the Large He-
lical Device (LHD) [16] that not only neoclassical but
also anomalous transport is reduced by the inward shift
of the magnetic axis which decreases the radial drift of
helical-ripple-trapped particles but increases the unfavor-
able magnetic curvature to destabilize pressure-gradient-
driven instabilities such as the ITG mode [17–19].

In this work, we also verify the validity of our theo-
retical predictions by a recently-developed gyrokinetic-
Vlasov-simulation (GKV) code [6] that can resolve de-
tailed structures of the gyrocenter distribution function
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on the phase space. Here, we do not treat collisional
decay of zonal flows, which occurs in the long course of
time [20] although the residual zonal flows in a collision-
less time scale are still regarded as a critical factor to
regulate the turbulent transport.

The rest of this paper is organized as follows. In Sec.
II, basic equations for describing zonal flows in helical
systems are given. We use the gyrokinetic equations and
the quasineutrality condition to determine the zonal-flow
electrostatic potential. In Secs. III and IV, we describe
the short- and long-time collisionless behaviors of the
zonal-flow potential, respectively. It is shown in Sec. III
how the GAM frequency and damping rate depend on
the magnetic geometry and the FOW effect of passing
ions. We see in Sec. IV that the residual zonal-flow level
in the long-time limit is strongly influenced by the radial
drift of helical-ripple-trapped particles. Then, in Sec. V,
we combine the results from Secs. III and IV to obtain a
complete expression for the collisionless time evolution of
the zonal-flow potential. In Sec. VI, gyrokinetic-Vlasov-
simulation results on the zonal-flow evolution and on the
velocity-space gyrocenter distribution are compared with
our theoretical predictions. Finally, conclusions are given
in Sec. VII. Appendix A shows detailedly how the short-
time zonal-flow behaviors such as the GAM oscillations
are formulated by using the Fourier and Laplace trans-
forms of the basic equations.

II. BASIC EQUATIONS

We use the toroidal coordinates (r, θ, ζ), where r, θ,
and ζ denote the flux surface label, the poloidal angle,
and the toroidal angle, respectively. The magnetic field
is written as B = ∇ψ(r)×∇(θ−ζ/q(r)), where 2πψ(r) is
equal to the toroidal flux within the flux surface labeled
r and q(r) represents the safety factor. Following Shaing
and Hokin [15], we here consider helical systems with the
magnetic field strength written by a function of poloidal
and toroidal angles (its r-dependence is not shown here
for simplicity) as

B = B0 [1− ε10 cos θ − εL0 cos(Lθ)

−
∑

|n|≤nmax

ε
(n)
h cos{(L + n)θ −Mζ}




= B0[1− εT (θ)− εH(θ) cos{Lθ −Mζ + χH(θ)}],
(1)

where

εT (θ) = ε10 cos θ + εL0 cos(Lθ),

εH(θ) =
√

C2(θ) + D2(θ),
χH(θ) = arctan[D(θ)/C(θ)],

C(θ) =
∑

|n|≤nmax

ε
(n)
h cos(nθ),

D(θ) =
∑

|n|≤nmax

ε
(n)
h sin(nθ), (2)

and M (L) is the toroidal (main poloidal) period number
of the helical field. For the LHD, L = 2 and M = 10.
Here, we assume that L/(qM) ¿ 1. Multiple-helicity
effects can be included in the function εH(θ).

The gyrokinetic equation [21] for the zonal flow com-
ponent with the perpendicular wave number vector k⊥ =
kr∇r is given by
(

∂

∂t
+ v‖b · ∇+ iωD

)
gk⊥ =

e

T
F0J0(k⊥ρ)

∂φk⊥

∂t
+Sk⊥F0,

(3)
where F0 is the local equilibrium distribution function
that takes the Maxwellian form, J0(k⊥ρ) is the zeroth-
order Bessel function, ρ = v⊥/Ω is the gyroradius, and
Ω = eB/(mc) is the gyrofrequency. Here, subscripts to
represent particle species are dropped for simplicity. In
Eq. (3), gk⊥ is regarded as a function of independent vari-
ables (r, θ, ζ, w, µ), where w ≡ 1

2mv2 and µ ≡ mv2
⊥/(2B)

represent the kinetic energy and the magnetic moment,
respectively. The equilibrium distribution function F0 is
assumed to be given by the local Maxwellian and the
perturbed particle distribution function δfk⊥ is written
in terms of the electrostatic potential φk⊥ and the solu-
tion gk⊥ of Eq. (3) as

δfk⊥ = −eφk⊥

T
F0 + gk⊥e−ik⊥·ρ, (4)

where ρ = b × v/Ω. The drift frequency ωD is de-
fined by ωD ≡ k⊥ · vd ≡ krvdr, where vdr = vd · ∇r
is the radial component of the gyrocenter-drift velocity.
In the present work, we define the radial coordinate r
by ψ = B0r

2/2. The source term Sk⊥F0 on the right-
hand side of Eq. (3) represents the E × B nonlinearity
and is written as Sk⊥F0 = (c/B)

∑
k′⊥+k′′⊥=k⊥ [b · (k′⊥ ×

k′′⊥)]J0(k′⊥ρ)φk′⊥gk′′⊥ .

The perturbed gyrocenter distribution function δf
(g)
k⊥ is

given by

δf
(g)
k⊥ = −J0(k⊥ρ)

eφk⊥

T
F0 + gk⊥ . (5)

The perturbed gyrocenter distribution function δf
(g)
k⊥

and the nonadiabatic part gk⊥ are independent of the
gyrophase although the perturbed particle distribution
function δfk⊥ depends on it as seen from the factor
e−ik⊥·ρ on the right-hand side of Eq. (4). Using Eqs.
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(4) and (5), we obtain

δfk⊥ = δf
(g)
k⊥ e−ik⊥·ρ − eφk⊥

T
F0

[
1− J0(k⊥ρ)e−ik⊥·ρ]

.

(6)
On the right-hand side of Eq. (6), the factor e−ik⊥·ρ in
the first term results from the difference between the par-
ticle and gyrocenter positions while the second group of
terms represent the polarization, that is the variation of
the particle distribution due to the potential perturba-
tion. The gyrokinetic equation is rewritten in terms of
δf

(g)
k⊥ as

(
∂

∂t
+ v‖b · ∇+ iωD

)
δf

(g)
k⊥

= − (
v‖b · ∇+ iωD

) (
F0J0(k⊥ρ)

eφk⊥

T

)
+ Sk⊥F0.

(7)

Finite-orbit-width (FOW) effects are included in
iωDδf

(g)
k⊥ on the left-hand side of Eq. (7), which repre-

sents the rate of change of the perturbed gyrocenter dis-
tribution function δf

(g)
k⊥ due to the radial gyrocenter drift.

This term is neglected in the conventional linearized drift
kinetic equation, where the small-orbit-width limit is con-
sidered.

The electrostatic potential φk⊥ is determined by the
quasineutrality condition,

−n0
eφk⊥

Ti
+

∫
d3v J0gik⊥ = n0

eφk⊥

Te
+

∫
d3v gek⊥ , (8)

where the subscripts representing to ions (i) and elec-
trons (e) are explicitly shown and the small-electron-
gyroradius limit k⊥ρe → 0 is considered. Equation (8) is
also rewritten as
∫

d3v J0f
(g)
ik⊥ − n0

eφk⊥

Ti
[1− Γ0(b)] =

∫
d3v δfek⊥ , (9)

where b ≡ k2
⊥Ti/(miΩi) and Γ0(b) ≡ I0(b)e−b are used

and I0 denotes the zeroth-order modified Bessel func-
tion. In the following two sections, short- and long-time
behaviors of the zonal-flow potential are investigated by
analytically solving the basic equations presented in this
section.

When the initial gyrocenter distribution functions
δf

(g)
ak⊥(t = 0) and the past history of the source terms

Sak⊥(t′) (a = i, e) are given, the gyrocenter distribution
functions δf

(g)
ak⊥(t) at an arbitrary time t > 0 are deter-

mined by solving Eqs. (7) and (9) [note that the initial
potential φk⊥(t = 0) is immediately given in terms of
δf

(g)
ak⊥(t = 0) by using Eq. (9)]. Examining properties of

these equations, we find that, in the static magnetic field,
the response of δf

(g)
ak⊥(t) to δf

(g)
a′k⊥(t = 0) and Sa′k⊥(t′)

(a, a′ = i, e ; 0 ≤ t′ ≤ t) should take the form,

δf
(g)
ak⊥(t) =

∑

a′=i,e

[
Uaa′(t)δf

(g)
a′k⊥(0)

+
∫ t

0

dt′ Uaa′(t− t′)Fa′0Sa′k⊥(t′)
]

.(10)

Here, it should be noted that, once the linear opera-
tors (or propagators) Uaa′(t) (a, a′ = i, e), which relate
δf

(g)
ak⊥(t) to δf

(g)
a′k⊥(0), are known, we can immediately

obtain the kernels in the time integration representing
the response to Fa′0Sa′k⊥(t′) by replacing the time argu-
ment t with t − t′. In other words, the solution of the
linear initial-value problem is equivalent to the linear re-
sponses to the source terms. Substituting Eq. (10) into
Eq. (9), we have

eφk⊥(t)
Ti

=
1

n0 [1− Γ0(b)]

∑

a=i,e

[
Na(t)δf (g)

ak⊥(0)

+
∫ t

0

dt′ Na(t− t′)Fa0Sak⊥(t′)
]

,

(11)

where Na(t) ≡ ∫
d3v Uia(t)− ∫

d3v Uea(t).

III. GAM OSCILLATIONS

In the present section, we are concerned with rapidly-
varying fluctuations in the GAM frequency range. Since
the characteristic parallel phase velocity of the GAM is
on the order of the ion thermal velocity, particles reso-
nant with the GAM are passing ions and thus effects of
trapped ions are neglected here. We also use Fourier and
Laplace transforms with respect to (θ, ζ) and t, respec-
tively, as

[
δf

(g)
k⊥ (θ, ζ, t), φk⊥(θ, ζ, t)

]

=
∑

l,m

∫
dω

2π
eilθ−imζ−iωt [δfkrlm(ω), φkrlm(ω)] ,(12)

where (v‖, µ) is used instead of (w, µ) as the indepen-
dent velocity-space variables of δf

(g)
k⊥ . The initial per-

turbed ion gyrocenter distribution function is assumed
to take the Maxwellian form, δf

(g)
ik⊥(t = 0) = (δn(g)

ik⊥(t =
0)/n0)Fi0. Using the quasineutrality condition, the ini-
tial perturbed ion gyrocenter density is determined by
δn

(g)
ik⊥(t = 0) = n0(k2

ra2
i )(eφkr00(t = 0)/Ti) with ai ≡

(Ti/mi)1/2/Ωi. Here, φkrlm(t = 0) = 0 for (l,m) 6= (0, 0)
and k2

ra2
i ' 〈k2

⊥a2
i 〉 ¿ 1 are assumed. Then, as shown in

Appendix A, φkr00(ω) is determined by

eφkr00(ω)
Ti

= KGAM (ω)
[
eφkr00(t = 0)

Ti

+
∫

d3vFi0Sikr00(ω)
n0(krai)2

]
, (13)
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Here, KGAM (ω) is defined by

1
KGAM (ω)

≡ −iω̂ − i
q2

2

[(
R0ε10

r

)2

{J(ω̂) + JFOW(ω̂)}

+ L

(
R0εL0

r

)2

J

(
ω̂

L

)

+
∑

|n|≤nmax

(L + n)2

|L + n− qM |

(
R0ε

(n)
h

r

)2

× J

(
ω̂

|L + n− qM |
)]

,

(14)

with ω̂ ≡ R0qω/vTi (vTi ≡
√

2Ti/mi),

J(ω̂) ≡ 2ω̂3 + 3ω̂ + (2ω̂4 + 2ω̂2 + 1)Z(ω̂)

− ω̂

2
{
2ω̂ + (2ω̂2 + 1)Z(ω̂)

}2

×
{

Ti

Te
+ 1 + ω̂Z(ω̂)

}−1

, (15)

and

JFOW(ω̂) ≡ i

√
π

2

(
krvTiq

Ωi

)2

e−ω̂2
r/4

×
{

ω̂6
r

64
+

(
ω̂4

r

8
+

3ω̂2
r

4
+ 3 +

6
ω̂2

r

)

×
(

1− 3ω̂r

16
{
2ω̂r + (2ω̂2

r + 1)Zr(ω̂r)
}

×
{

Ti

Te
+ 1 + ω̂rZr(ω̂r)

}−1
)}

, (16)

where ω̂r = Re(ω̂). On the right-hand side of
Eq. (15), the plasma dispersion function 　 Z(ω̂) ≡
π−1/2

∫∞
−∞ dα e−α2

/(α − ω̂) is used. As explained in
Appendix A, JFOW given in Eq. (16) is derived from re-
taining the FOW effect on the (l, m) = (±1, 0) Fourier
components of the gyrocenter distribution function. The
dispersion relation, which determines the real frequency
and the damping rate of the GAM oscillations, is given by
1/KGAM (ω) = 0 with Eq. (14). It is shown from Eq. (14)
that, when εL0 = ε

(n)
h = 0 (|n| ≤ nmax) and JFOW = 0,

our GAM dispersion relation coincides with the result of
Lebedev et al. for the collisionless tokamak case.

The inverse Laplace transform of Eq. (13) gives

eφkr00(t)
Ti

= KGAM (t)
eφkr00(0)

Ti
+

1
n0(krai)2

×
∫ t

0

dt′KGAM (t− t′)
∫

d3vFi0Sikr00(t′)

(17)

where KGAM (t) = (2π)−1
∫

dω e−iωtKGAM (ω) is the
inverse Laplace transform of KGAM (ω). Noting that

δfik⊥(t = 0) = (k2
ra2

i )(eφkr00(t = 0)/Ti)Fi0 with k2
ra2

i ¿
1 is used and that electron contributions to the initial
conditions and the source terms are neglected, we can
verify that Eq. (17) takes the form of Eq. (11) with the
replacement of the operator N(t) → KGAM (t)

∫
d3v ·.

If we obtain the pair of solutions ω = ±ωG + iγ to
1/K(ω) = 0 which correspond to the minimum damp-
ing rate −γ(> 0), KGAM (t) is approximately written as

KGAM (t) = cos(ωGt) exp(γt). (18)

For the case, in which L ¿ ω̂G ≡ R0qωG/vTi ¿ |L −
qM | and ωG À |γ|, approximate expressions for ωG and
γ are obtained as

ω2
G =

(
7 + 4τe

4

)
q2
∗

(
vTi

R0q

)2 (
1 + L2c2

L0

)

×
[
1 +

2(23 + 16τe + 4τ2
e )(1 + L4c2

L0)
q2∗(7 + 4τe)2(1 + L2c2

L0)2

]

×
[
1 +

q2
∗
2

(
1 +

πτe

2(1 + τe)

)

×
∑

|n|≤nmax

(L + n)2(c(n)
h )2

(L + n− qM)2



−1

, (19)

γ = −
√

π

2
q2
∗

(
vTi

R0q

) [
1 +

2(23 + 16τe + 4τ2
e )(1 + L4c2

L0)
q2∗(7 + 4τe)2(1 + L2c2

L0)

+
q2
∗
2

(
1 +

πτe

2(1 + τe)

) ∑

|n|≤nmax

(L + n)2(c(n)
h )2

(L + n− qM)2



−1

×
[
exp(−ω̂2

G)
{
ω̂4

G + (1 + 2τe)ω̂2
G

}
+

1
4

(
krvTiq

Ωi

)2

× exp(−ω̂2
G/4)

{
ω̂6

G

64
+

(
1 +

3
8
τe

)(
ω̂4

G

8
+

3ω̂2
G

4

)}

+ exp(−ω̂2
G/L2)

(
c2
L0/L3

) {
ω̂4

G + (1 + 2τe)L2ω̂2
G

}

+
∑

|n|≤nmax

(L + n)2(c(n)
h )2

2|L + n− qM |

×
{

1 +
ω̂2

G

(L + n− qM)2

(
1− πτe

2(1 + τe)2

)}]
(20)

where τe ≡ Te/Ti and q∗ ≡ q(R0ε10/r). The depen-
dence of the GAM frequency and damping rate on the
Fourier spectrum of the magnetic field strength in Eq.
(1) is expressed in terms of cL0 ≡ εL0/ε10 and c

(n)
h ≡

ε
(n)
h /ε10 in Eqs. (19) and (20). The terms proportional

to (krvTiq/Ωi)2 exp(−ω̂2
r/4) on the right-hand side of Eq.

(20) are derived from JFOW in Eq. (16) and represent the
GAM damping due to the FOW effect. As explained in
Ref. 12, since the FOW grows the fluctuation component
with the poloidal wave number doubled, the parallel ion
velocity required to resonate with the GAM is lowered
and the increased population of resonant ions enhance
the GAM damping.
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We should recall that KGAM (ω) given by Eq. (14)
and its inverse Laplace transform KGAM (t) describe the
short-time behavior of the zonal-flow potential, in which
slow components with lower frequencies than the GAM
frequency are dropped. The long-time behavior of the
zonal-flow potential is investigated in the next section,
where we find that an essential role is played by trapped
particles which are ignored for investigating the GAM
dynamics.

IV. COLLISIONLESS LONG-TIME BEHAVIOR
OF ZONAL FLOWS

We here consider the long-time behavior of zonal flows,
for which trapped particles need to be taken into account.
The trapping parameter κ is defined by

κ2 =
1− λB0 {1− εT (θ)− εH(θ)}

2λB0εH(θ)
, (21)

where λ ≡ µ/w. Then, particles trapped in helical ripples
are characterized by κ2 < 1. Using l/(qM) ¿ 1, we
approximate the field line element dl by R0dζ, where R0

denotes the major radius of the toroid. Then, the orbital
average within a helical ripple is defined by

A =





1
2

∑
σ=±1

∫ ζ2

ζ1
(R0dζ/|v‖|)A/

∫ ζ2

ζ1
(R0dζ/|v‖|)

for κ2 < 1∫ ζ0+π/M

ζ0−π/M
(R0dζ/|v‖|)A/

∫ ζ0+π/M

ζ0−π/M
(R0dζ/|v‖|)
for κ2 > 1,

(22)
where σ = v‖/|v‖| is the sign of the parallel velocity,
(ζ1, ζ2) represents the toroidal-angle interval for a particle
trapped within a helical ripple, and (ζ0−π/M, ζ0+π/M)
corresponds to a whole helical ripple around the local
minimum of B at ζ = ζ0.

Using the longitudinal adiabatic invariant J [15] given
by

J =

{
2

∫ ζ2

ζ1
R0dζ |v‖| for κ2 < 1∫ ζ0+π/M

ζ0−π/M
R0dζ |v‖| for κ2 > 1

=





16(R0/M)(µB0εH/m)1/2[E(κ)− (1− κ2)K(κ)]
for κ2 < 1

8(R0/M)(µB0εH/m)1/2κE(κ−1) for κ2 > 1,

(23)

and the time period τh by

τh = m
∂J

∂w
=

{
2

∫ ζ2

ζ1
R0dζ/|v‖| for κ2 < 1∫ ζ0+π/M

ζ0−π/M
R0dζ/|v‖| for κ2 > 1

=





4(R0/M)(µB0εH/m)−1/2K(κ)
for κ2 < 1

2(R0/M)(µB0εH/m)−1/2κ−1K(κ−1)
for κ2 > 1,

(24)

with the complete elliptic integrals K(κ) and E(κ), the
orbital average of the radial drift velocity within a helical
ripple is given by

vdr =
mc

eψ′τh

∂J

∂θ

=





cµB0

eψ′

[
∂εH

∂θ

{
2E(κ)
K(κ)

− 1
}

+
∂εT

∂θ

]

for κ2 < 1
cµB0

eψ′

[
∂εH

∂θ

{
2κ2

(
E(κ−1)
K(κ−1)

− 1
)

+ 1
}

+
∂εT

∂θ

]

for κ2 > 1,

(25)

where ψ′ = dψ/dr. The drift frequency ωD is expressed
as

ωD = kr(vdr + v‖b · ∇δr), (26)

where δr =
∫ l(dl/v‖)(vdr − vdr) represents the radial

displacement of the gyrocenter from the helical-ripple-
averaged radial position. Then, Eq. (3) is rewritten as

(
∂

∂t
+ v‖b · ∇+ ikrvdr

)
(gk⊥eikrδr )

=
e

T
F0e

ikrδrJ0
∂φk⊥

∂t
+ eikrδrSk⊥F0, (27)

where we use (w, µ) [not (v‖, µ) as in Sec. II] as the in-
dependent velocity-space variables.

Since the long-time behavior of zonal flows is consid-
ered, we regard Eq. (27) as already averaged in time over
the time scale of the GAM oscillation period. Then,
in Eq. (27), the time-derivative terms, the radial gy-
rocenter drift term, and the source term are smaller
than the parallel streaming term such that they are
treated as of the higher-order. The parallel derivative
is rewritten as b · ∇ ' R−1

0 (∂/∂ζ + q−1∂/∂θ). Here, we
also use [∂(gk⊥eikrδr )/∂θ]/[∂(gk⊥eikrδr )/∂ζ] ∼ r/R0 ¿
1. Based on these orderings, we expand gk⊥eikrδr as
gk⊥eikrδr = h0 + h1 + · · · and obtain the lowest-order
equation (v‖/R0)(∂h0/∂ζ) = 0 from Eq. (27). Thus, we
can write h0 = h0(t, r, θ, w, µ, σ), where the dependence
on σ = v‖/|v‖| disappears for κ2 < 1. The first-order
equation is written as

v‖
R0

∂h1

∂ζ
= −

(
∂

∂t
+

v‖
R0q

∂

∂θ
+ ikrvdr

)
h0

+
e

T
F0e

ikrδrJ0
∂φk⊥

∂t
+ eikrδrSk⊥F0.(28)

As mentioned in Eqs. (10) and (11), the response of the
zonal-flow potential to the nonlinear source terms can
immediately be derived from the solution of the linear
initial-value problem. Therefore, we hereafter ignore Sk⊥
until the response to the initial gyrocenter distribution is
obtained.
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For particles trapped in a helical ripple (κ2 < 1), the
orbital average of Eq. (28) and its time integration yield

h0(t)

= h0(0)e−ikrvdrt +
e

T

∫ t

0

dt′ e−ikrvdr(t−t′)F0

×
(

eikrδrJ0
∂φk⊥(t′)

∂t′

)

=
(
eikrδrδf

(g)
k⊥ (0)

)
e−ikrvdrt +

e

T
F0(eikrδrJ0φk⊥(t))

− ikrvdr
e

T

∫ t

0

dt′ e−ikrvdr(t−t′)F0(eikrδrJ0φk⊥(t′)).

(29)

where integration by parts and the lowest-order relation
resulting from Eq. (5),

(
eikrδrδf

(g)
k⊥

)
= − e

T
F0(eikrδrJ0φk⊥) + h0 (30)

are used. We find from Eq. (29) that effects of vdr on the
distribution of helical-ripple-trapped particles strongly
depend on time t. Here, we define a characteristic time
τc by τc ∼ 1/|krvdr| where vdr is evaluated by con-
sidering typical helical-ripple-trapped particles. On the
right-hand side of Eq. (29), for t ¿ τc, the third time-
integral term can be neglected compared with the third
term while, for t À τc, the 0 < t′ < t − τc part of the
time-integral term makes a small contribution to the per-
turbed particle density because the phase mixing occurs
in the velocity integration due to the factor e−ikrvdr(t−t′).
Then, since we consider the long-time behavior of the
zonal-flow potential, we replace φk⊥(t′) with φk⊥(t) in
the time-integral term on the right-hand side of Eq. (29)
and approximately obtain

h0(t)

'
[(

eikrδrδf
(g)
k⊥ (0)

)
+

e

T
F0(eikrδrJ0φk⊥(t))

]
e−ikrvdrt,

(31)

which is shown to be valid for both short- and long-time
limits.

When κ2 > 1, using the periodic condition h1(ζ +
2π/M) = h1(ζ) and taking the orbital average of Eq.
(28) within a helical ripple give
(

∂

∂t
+ ωθ

∂

∂θ

) (
eikr∆rh0

)
=

e

T
eikr∆rF0

(
eikrδrJ0

∂φk⊥

∂t

)
,

(32)
where

ωθ = 2πσ/(qMτh) (33)

is the helical-ripple-averaged poloidal angular velocity
and

∆r = σ(qM/2π)(mc/eψ′)(J − Jt) (34)

with Jt defined later represents the radial displacement
of the helical-ripple-averaged gyrocenter position. For
κ2 > 1, particles are classified into two types, parti-
cles trapped by the toroidicity and passing particles. For
these particles, we regard ωθ∂

(
eikr∆rh0

)
/∂θ as a dom-

inant term in Eq. (32) based on the long-time ordering
and expand eikr∆rh0 as eikr∆rh0 = η0+η1+ · · · where η0

is independent of θ because it satisfies the lowest-order
equation ωθ∂η0/∂θ = 0. The solubility condition for η1

is derived from Eq. (32) and integrated in time to give

η0(t) = η0(0) +
e

T
F0

〈
eikr∆r [eikrδrJ0 {φk⊥(t)− φk⊥(0)}]

〉
po

=
〈

eikr∆r

(
eikrδrδf

(g)
k⊥ (0)

)〉

po

+
e

T
F0

〈
eikr∆r (eikrδrJ0φk⊥(t))

〉
po

, (35)

where 〈
eikr∆r

(
eikrδrδf

(g)
k⊥

)〉

po

= − e

T
F0

〈
eikr∆r (eikrδrJ0φk⊥)

〉
po

+ η0 (36)

is used and the poloidal-orbit average 〈A〉po is defined by

〈A〉po =





1
2

∑
σ=±1

∫ θt

−θt
(dθ/|ωθ|)A/

∫ θt

−θt
(dθ/|ωθ|)

for toroidally trapped particles∫ 2π

0
(dθ/|ωθ|)A/

∫ 2π

0
(dθ/|ωθ|)

for passing particles.
(37)

Here, θt is given by the condition κ(θ = θt) = 1 which
is equivalent to ωθ(θ = θt) = 0. Now, Jt is defined by
Jt = J(θ = θt) for toroidally trapped particles and by
Jt = J(θ = π) for passing particles. It is noted that εH ,
κ, ωθ, and J are all even functions of θ for the magnetic
field given by Eq. (1).

On the lowest order of the long-time ordering, we sub-
stitute Eq. (31) into gk⊥ = e−ikrδrh0 for κ2 < 1 and
Eq. (35) into gk⊥ = e−ikrδre−ikr∆rη0 for κ2 > 1 in order
to evaluate the nonadiabatic parts of the density per-
turbations in Eq. (8). Consequently, the quasineutrality
condition is rewritten as

L(t)φk⊥(t) = I(t), (38)

where the operator L(t) is defined by

L(t)φk⊥(t)

≡ n0e

(
1
Ti

+
1
Te

)
φk⊥(t)− e

Ti

∫

κ2<1

d3v Fi0J0e
−ikrδr

×(eikrδrJ0φk⊥(t))e−ikrvdrit − e

Ti

∫

κ2>1

d3v Fi0

×J0e
−ikrδre−ikr∆r

〈
eikr∆r (eikrδrJ0φk⊥(t))

〉
po

− e

Te

∫

κ2<1

d3v Fe0 φk⊥(t)e−ikrvdret

− e

Te

∫

κ2>1

d3v Fe0

〈
φk⊥(t)

〉
po

, (39)
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and I(t) is written in terms of the initial gyrocenter dis-
tribution functions as

I(t) ≡
∫

κ2<1

d3v J0e
−ikrδre−ikrvdrit

(
eikrδrδf

(g)
ik⊥(0)

)

+
∫

κ2>1

d3v J0e
−ikrδre−ikr∆r

×
〈

eikr∆r

(
eikrδrδf

(g)
ik⊥(0)

)〉

po

−
∫

κ2<1

d3v e−ikrvdretδf
(g)
ek⊥(0)

−
∫

κ2>1

d3v
〈
δf

(g)
ek⊥(0)

〉
po

.

(40)

Now, we assume k⊥ρ, kr∆r, εT , and εH to be small
and use them as expansion parameters. We neglect krδr

because generally δr is much smaller than ρ. In Eq. (40),
we have already taken the small-electron-mass limit, in
which k⊥ρ, krδr, kr∆r → 0 for electrons. The initial
source I(t) is considered to be of order k2

⊥ρ2. Then, to
the lowest order, Eq. (38) is written as L0φk⊥(t) = 0.
Here and hereafter, we write the lowest-order potential
by φk⊥(t) for simplicity. Defining the Hermitian inner
product by

(u, v) ≡ 〈u∗v〉, (41)

where 〈·〉 denotes the flux-surface average, we obtain

(φk⊥(t),L0φk⊥(t))

=
∑

a=e,i

ea

Ta

〈∫
d3v Fa0

∣∣∣φk⊥(t)− φk⊥(t)
∣∣∣
2
〉

= 0. (42)

From Eq. (42), we find that φk⊥(t) = φk⊥(t) and
therefore φk⊥(t) is a flux-surface function, ∂φk⊥/∂ζ =
∂φk⊥/∂θ = 0, to the lowest order. From the next-order
expression of Eq. (38), we have (φk⊥(t),L1(t)φk⊥(t)) =
(φk⊥(t), I(t)) which gives

eφk⊥(t)
Ti

=
〈I(t)〉
D(t)

, (43)

where the shielding effects are represented by

D(t) = D< + E(t), (44)

with

D< =
1
2

〈∫
d3v Fi0 k2

⊥ρ2

〉

+
〈∫

κ2>1

d3v Fi0 k2
r

{〈∆2
r〉po − 〈∆r〉2po

}〉
(45)

and

E(t) =
〈∫

κ2<1

d3v Fi0 J2
0

(
1− e−ikrvdrit

)〉

+
Ti

Te

〈∫

κ2<1

d3v Fe0

(
1− e−ikrvdret

)〉
.(46)

On the right-hand side of Eq. (45), the first integral term
represents the shielding effect of the classical ion polar-
ization while the second integral terms correspond to the
neoclassical polarization effect due to toroidally trapped
ions (κ2 > 1). We see from Eq. (46) that, for t ¿ τc,
E(t) vanishes and thus D(t) → D< while, for t ≥ τc, E(t)
gives an additional shielding caused by the radial drift of
nonadiabatic particles (both ions and electrons) trapped
in helical ripples (κ2 < 1). In the present work, as in the
case of the ITG turbulence [2], we neglect the electron
source of the zonal-flow generation. Then, we also drop
electron contributions to 〈I(t)〉 and write

〈I(t)〉 =
〈∫

κ2<1

d3v e−ikrvdritδf
(g)
ik⊥(0)

〉

+
〈∫

κ2>1

d3v e−ikr∆r

〈
eikr∆rδf

(g)
ik⊥(0)

〉
po

〉
.

(47)

Using Eqs. (23)–(25), (33), (34), and (37), we rewrite
Eqs. (45) and (46) as

D< = n0〈k2
⊥a2

i 〉(1 + G) (48)

and

E(t) =
2
π

n0

[〈
(2εH)1/2 {1− gi1(t, θ)}

〉

− 3
2
〈k2
⊥a2

i 〉
〈
(2εH)1/2 {1− gi2(t, θ)}

〉

+
Ti

Te

〈
(2εH)1/2 {1− ge1(t, θ)}

〉]
, (49)

respectively. Here, the flux-surface average of functions
of the poloidal angle θ is approximated by the poloidal-
angle average, 〈· · · 〉 ' (2π)−1

∮ · · · dθ. In Eq. (49),
gaj(t, θ) (a = i, e; j = 1, 2) are defined by

gaj(t, θ) =
∫ 1

0

d(κ2)
1
2
K(κ)

cos
[(

j + 1
2

)
tan−1(krVdrat)

]

[1 + (krVdrat)2](j+1/2)/2
,

(50)
where Vdra denotes the bounce-averaged radial drift ve-
locity vdra of helical-ripple-trapped particles evaluated at
v = vTa ≡ (2Ta/ma)1/2 and is written as

Vdra =
cTa

eψ′

[
∂εH

∂θ

{
2

E(κ)
K(κ)

− 1
}

+
∂εT

∂θ

]
. (51)

The terms proportional to 〈(2εH)1/2gaj〉 in Eq. (49)
represent contributions from the nonadiabatic helical-
ripple-trapped particles. When t ¿ τc(∼ 1/|krVdra|),
gaj ' 1. Then, the density perturbations of the nonadi-
abatic helical-ripple-trapped particles cancel those of the
adiabatic helical-ripple-trapped particles and E(t) van-
ishes. On the other hand, when t À τc, we see that
gaj ' 0. This implies that the density perturbations of
the nonadiabatic helical-ripple-trapped particles are sup-
pressed by the phase mixing associated with the helical-
ripple-bounce-averaged radial drift so that E(t) becomes
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finite and positive, which causes the additional shielding
of the zonal-flow potential. Since not only ions but also
electrons influence the quasineutrality condition through
their bounce-averaged radial drift motions, E(t) in Eq.
(49) shows the Te-dependence which becomes significant
for t À τc.

In Eq. (48), the geometrical factor G represents the
ratio of the neoclassical polarization due to toroidally
trapped ions to the classical polarization and is given by

G =
12
π3

B0R
2
0q

2

〈
B2

|∇ψ|2
〉 [∫ 1/BM

0

dλ

×
∮

dθ

2π
(2λB0εH)−1/2κ−1K(κ−1)

{
(2λB0εH)1/2

× κE(κ−1)−
∮

dθ
2π K(κ−1)E(κ−1)∮

dθ
2π (2λB0εH)−1/2κ−1K(κ−1)

}2

+
∫ 1/B′m

1/BM

dλ

∫

κ2(θ)>1

dθ

2π
(2λB0εH)1/2κK(κ−1)

×
{

E(κ−1)− 1
κ

(
εH(θt)

εH

)1/2
}2


 , (52)

where BM denotes the maximum field strength over the
flux surface and B′

m represents the minimum value of
local maximum field strengths within each helical ripple.

From Eqs. (43)–(48), we obtain

eφk⊥(t)
Ti

=
1

n0〈k2
⊥a2

i 〉
N(t)δf (g)

ik⊥(0), (53)

where the operator N(t) is defined by

N(t)A ≡ [
1 + G + E(t)/

(
n0〈k2

⊥a2
i 〉

)]−1

×
〈∫

κ2<1

d3v e−ikrvdrit A

+
∫

κ2>1

d3v e−ikr∆r
〈
eikr∆rA

〉
po

〉
. (54)

Here, G and E(t) are given by Eqs. (52) and (49), re-
spectively, and A is an arbitrary gyrophase-independent
phase-space function. Now that the response of the zonal
flow potential to the initial gyrocenter distribution is
given by Eq. (53), we can immediately include the re-
sponse to the E × B nonlinearity Fi0Sik⊥ by using Eq.
(11) and obtain the total zonal-flow potential as

eφk⊥(t)
Ti

=
1

n0〈k2
⊥a2

i 〉
[
N(t)δf (g)

ik⊥(0)

+
∫ t

0

dt′ N(t− t′)Fa0Sik⊥(t′)
]

, (55)

where the electron source term is neglected.
Let us assume the initial perturbed ion gyro-

center distribution function to take the Maxwellian
form, δf

(g)
ik⊥(0) ≡ −J0(eφk⊥(0)/Ti)Fi0 + gik⊥(0) =

(δn(g)
ik⊥(0)/n0)Fi0. The quasineutrality condition gives

δn
(g)
ik⊥(0) = n0(k2

⊥a2
i )(eφk⊥(0)/Ti). Then, neglecting

O(k2
r∆2

r) terms in eikr∆r = 1 + ikr∆r + O(k2
r∆2

r), Eq.
(55) is rewritten as

eφk⊥(t)
Ti

= KL(t)
eφk⊥(0)

Ti
+

1
n0〈k2

⊥a2
i 〉

∫ t

0

dt′ KL(t− t′)

×
{

1− 2
π

〈
(2εH)1/2 {1− gi1(t− t′, θ)}

〉}−1

×
〈∫

κ2<1

d3v e−ikrvdri(t−t′) Fi0Sik⊥(t′)

+
∫

κ2>1

d3v Fi0Sik⊥(t′) {1 + ikr (∆r − 〈∆r〉po)}
〉

,

(56)

where

KL(t) ≡ 1− (2/π)〈(2εH)1/2{1− gi1(t, θ)}〉
1 + G + E(t)/ (n0〈k2

⊥a2
i 〉)

. (57)

In contrast to KGAM (t) given by Eq. (18), the response
kernel KL(t) describes the the long-time behavior of the
zonal-flow potential and takes the constant limiting val-
ues,

K< ≡ lim
t/τc→+0

KL(t) =
1

1 + G
, (58)

and

K> ≡ lim
t/τc→+∞

KL(t)

= 〈k2
⊥a2

i 〉
[
1− (2/π)〈(2εH)1/2〉

]

×
{
〈k2
⊥a2

i 〉[1− (3/π)〈(2εH)1/2〉+ G]

+ (2/π)(1 + Ti/Te)〈(2εH)1/2〉
}−1

.

(59)

Accordingly, we obtain

eφk⊥(t)
Ti

=





K<

[
eφk⊥(0)

Ti
+

∫ t

0
dt′

〈∫
d3v Fi0Sik⊥(t′)

〉

n0〈k2
⊥a2

i 〉

]

for t ¿ τc

K>

[
eφk⊥(0)

Ti
+

∫ t

0
dt′〈∫

κ2>1
d3v Fi0Sik⊥(t′)〉

n0〈k2
⊥a2

i 〉
{
1− (2/π)〈(2εH)1/2〉}

]

for t À τc,

(60)

where O(kr∆r) terms are neglected.
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Results shown in Eqs. (60) are the same as those de-
rived in Ref. 3. The response kernel K> for t À τc

depends on Te because E(t) in Eq. (49) does. The de-
pendence of K> on Te and on the radial wave number
shown in Eq. (59) is not seen in the tokamak case. In
the axisymmetric limit εH → +0 with εT = εt cos θ

(εt ≡ r/R0), we obtain G → 1.6 q2/ε
1/2
t and KL(t) re-

duces to to the Rosenbluth-Hinton [2] formula KR−H =
1/(1 + 1.6 q2/ε

1/2
t ) for any time t.

In the single-helicity case where εL0 = 0 and ε
(n)
h = 0

for n 6= 0 [see Eq. (1)], εH = ε
(0)
h is independent

of θ and εT = (r/R0) cos θ. Then, Eqs. (25) and
(51) reduce to vdra = −(cµ/eaR0) sin θ and Vdra =
−(cTa/eaR0B0) sin θ, respectively. Accordingly, Eq. (50)
is simplified as

gaj(t, θ) =
cos

[(
j + 1

2

)
tan−1(krVdrat)

]

[1 + (krVdrat)2](j+1/2)/2
, (61)

and the characteristic time for the phase mixing due to
the bounce-averaged radial drift is estimated as τc '
(krcTi/eB0R0)−1 = (R0/vti)/(krai), where ai ' vti/Ωi0,
Ωi0 ≡ eB0/(mic), and vti ≡ vTi/

√
2 ≡ (Ti/mi)1/2 are

used.

V. COMPLETE COLLISIONLESS TIME
DEPENDENCE

Here, let us compare the expressions given by Eqs. (17)
and (56) which represent the short- and long-time col-
lisionless evolutions of the zonal-flow potential, respec-
tively. These equations take similar forms to each other
except that Eq. (56) contains additional terms resulting
from radial drift motions of helical-ripple-trapped and
toroidally-trapped particles. Since only passing particles
are considered in deriving Eq. (17), the short-time re-
sponse kernel KGAM (t) vanishes in the long-time limit
and it lacks the part of the residual zonal flow which is
described by Eq. (56). We now present the complete col-
lisionless time dependence of the zonal-flow potential by
combining the short- and long-time expressions as

eφk⊥(t)
Ti

= K(t)
eφk⊥(0)

Ti
+

1
n0〈k2

⊥a2
i 〉

∫ t

0

dt′ K(t− t′)

×
{

1− 2
π

〈
(2εH)1/2 {1− gi1(t− t′, θ)}

〉}−1

×
〈∫

κ2<1

d3v e−ikrvdri(t−t′) Fi0Sik⊥(t′)

+
∫

κ2>1

d3v Fi0Sik⊥(t′) {1 + ikr (∆r − 〈∆r〉po)}
〉

,

(62)

where K(t) is defined in terms of KGAM (t) in Eq. (18)
and KL(t) in Eq. (57) as

K(t) = KGAM (t)[1−KL(t)] +KL(t). (63)

The necessary conditions, K(t = 0) = 1 and K(t) →
KL(t) as KGAM (t) → 0, are satisfied by Eq. (63). Equa-
tion (63) represents that the GAM oscillations are su-
perimposed around the averaged zonal-flow evolution ex-
pressed by KL(t).

VI. NUMERICAL RESULTS

In order to examine the analytical results shown in the
previous sections, a linearized ion gyrokinetic equation
combined with the quasineutrality condition is numer-
ically solved by a toroidal flux-tube gyrokinetic-Vlasov
code [6]. The perturbed electron density is simply cal-
culated by using nek⊥ = (n0e/Te)(φk⊥ − 〈φk⊥〉) with
Te = Ti in the present simulations and accordingly the ra-
dial drift motions of nonadiabatic helical-ripple-trapped
electrons are not treated here. Thus, the terms propor-
tional to Ti/Te in Eqs. (49) and (59) should be dropped
when comparing these formulas with the simulation re-
sults in this section. Here, we consider the L = 2/M = 10
single-helicity case, in which ε

(n)
h = 0 for n 6= 0 and there-

fore εH = ε
(0)
h ≡ εh is independent of θ. We also put ε10 =

εt = r/R0 and εL0 = 0 so that εT = εt cos θ. The initial
perturbed ion gyrocenter distribution function is given
by the Maxwellian form δf

(g)
ik⊥(0) = (δn(g)

ik⊥(0)/n0)Fi0

with δn
(g)
ik⊥(0) = n0(k2

⊥a2
i )(eφk⊥(0)/Ti). We use

vdr = −(cµ/eR0) sin θ, k2
⊥a2

i ' k2
ra2

i , and τc '
(krcTi/eB0R0)−1 = (R0/vti)/(krai), where ai ' vti/Ωi0,
Ωi0 = eB0/(mic), and vti ≡ vTi/

√
2 ≡ (Ti/mi)1/2.

Time evolution of the zonal-flow potential obtained by
the simulation is plotted by solid circular symbols in Fig.
1 (a) for the tokamak case (εh = 0) and in Fig. 1 (b)
for the helical system (εh = 0.1), respectively, where the
unit of time is given by R0/vti. In both cases, q = 1.5,
and krai = 0.131 are used. In Figs. 1 (a) and (b),
thick solid curves represent the response kernel K(t) ob-
tained by Eq. (63) with the use of Eqs. (18), (57) and
the complex-valued GAM frequency ω = ωG + iγ cal-
culated by numerically solving 1/KGAM (ω) = 0 where
KGAM (ω) is defined by Eq. (14). The numerical so-
lution of 1/KGAM (ω) = 0 gives (R0ωG/vti, R0γ/vti) =
(2.774,−0.131) and (2.711,−0.304) for the cases of Figs.
1 (a) and (b), respectively, while Eqs. (19) and (20)
give good approximations as (R0ωG/vti, R0γ/vti) =
(2.690,−0.139) and (2.641,−0.362) for the same cases.
Thus, the theoretical curves for K(t) in Figs. 1 (a) and
(b) do not change much when using these approximate
values of (ωG, γ). Thin solid curves in Figs. 1 (a) and (b)
represent the response kernel K(t) obtained by neglect-
ing the FOW term JFOW in Eq. (14) when calculating
(ωG, γ). Figure 1 (a) shows a good agreement between
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FIG. 1: Time evolution of the zonal-flow potential obtained
by the simulations for the tokamak case (εh = 0) (a) and for
for the helical system (ε = 0.1) (b). In both case, q = 1.5
and krai = 0.131 are used. The simulation results are plotted
by solid circular symbols. Thick solid curves represent the
response kernel K(t) obtained by Eq. (63) with the use of
Eqs. (18), (57) and the complex-valued GAM frequency ω =
ωG + iγ calculated by numerically solving 1/KGAM (ω) = 0
where KGAM (ω) is defined by Eq. (14). Thin solid curves
represent the response kernel K(t) obtained by neglecting the
FOW effect when calculating (ωG, γ). The response kernel
KL(t) given by Eq. (57) is also plotted by dashed lines.

FIG. 2: The long-time limit of the response kernel K> as a
function of εh for krai = 0.131, 0.196, and εt = 0.1. The
simulation results and the theoretical formula in Eq. (59) are
represented by symbols with error bars and curves, respec-
tively.

the simulation result and the theoretical prediction with
the FOW effect taken into account. For this case, without
the FOW effect, the GAM damping rate is significantly
underestimated. We see from Fig. 1 (b) that, as theo-
retically predicted, the presence of helical ripples cause
a significant enhancement of the GAM damping and a
weak reduction of the GAM frequency. Compared with
the case of Fig. 1 (a), the theoretical curves for K(t) in
Fig. 1 (b) deviates from the simulation result toward the
weaker damping of the GAM oscillations although the
inclusion of the FOW effect gives a better approximation
than in the no-FOW case. The deviation is anticipated to
occur when εh, which is used like εt as a small parameter
in our analytical treatment, increases.

The response kernel KL(t) given by Eq. (57), which
describes the long-time behavior of the zonal-flow poten-
tial with the GAM oscillations averaged out, is also plot-
ted by dashed lines in Figs. 1 (a) and (b). [Note that,
in Fig. 1 (a) for the tokamak case, KL(t) = KR−H =
1/(1 + 1.6q2/ε

1/2
t ) is given by a horizontal straight line.]

For both cases, the simulation results show a convergence
to KL(t) in the long-time limit as theoretically predicted.
At the early stage, the first undershooting of the simula-
tion curve is shallower in Fig. 1 (b) than in Fig. 1 (a) even
though the long-time limit K> ≡ limt→+∞KL(t) = 0.038
in the former case is smaller than KR−H = 0.081 in the
latter. This can be explained by our formula in Eq. (63)
which predicts that the bottom of the early GAM os-
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FIG. 3: Structures of the real part of the perturbed ion gy-

rocenter distribution function δf
(g)
ik⊥ on the (v‖, v⊥)-space ob-

tained by the simulation at t = 12.5(R0/vti) for the case of
the helical system in Fig. 1 (b). The parallel and perpen-

dicular velocities are both normalized by vti ≡ (Ti/mi)
1/2.

Here, (a) and (b) are plotted for (θ, ζ) = (0, 0) and (θ, ζ) =
(8π/13, 12π/13), respectively, in which the former corre-
sponds to the the minimum of the magnetic field strength
within the flux surface and the latter locates the bottom of
the local helical ripple with helical-ripple-trapped particles
having relatively large radial drift velocities.

cillations is lifted with K< ≡ limt→+0KL(t) = 0.39 for
the helical system in Fig. 1 (b). The theoretical estima-
tion of the characteristic time τc ' (krcTi/eB0R0)−1 =
(R0/vti)/(krai) for KL(t) to approach K> in the single-
helicity system gives τc ' 7.6(R0/vti) for Fig. 1 (b). In
Fig. 1 (b), the GAM oscillations are not damped enough
at t < τc to accurately identify KL(t) from the simu-
lation although an averaged behavior of the simulation
curve over the oscillation period suggests a smaller value
of τc than the theoretical prediction.

Figure 2 shows the long-time limit of the response
kernel K> as a function of εh for krai = 0.131, 0.196,
and εt = 0.1. The simulation results and the theo-
retical formula in Eq. (59) are represented by symbols
with error bars and curves, respectively. The error bars

FIG. 4: Structures of the real part of the perturbed ion gy-

rocenter distribution function δf
(g)
ik⊥ on the (v‖, v⊥)-space ob-

tained from the analytical solution given by Eqs. (64) and
(65) at t = 12.5(R0/vti) for the case of the helical system in
Fig. 1 (b). Here, (a) and (b) correspond to the cases of Figs.
3 (a) and (b), respectively.

occur due to the GAM oscillations which remain un-
damped in the final stage of the simulations. As seen
from Eq. (20), the GAM damping becomes stronger with
increasing εh and kr. Also, τc is inversely proportional
to kr. Therefore, the evaluation of K> for lower kr re-
quires longer-time collisionless gyrokinetic Vlasov simu-
lations using a larger number of grid points in the ve-
locity space. In the present simulations, the velocity-
space domain is bounded by −5vti ≤ v‖ ≤ 5vti and
0 ≤ v⊥ ≡ (2µB/mi)1/2 ≤ 5vti(B/B0)1/2. The maxi-
mum numbers of grids used in the v‖- and v⊥-directions
are N‖ = 2048 and N‖ = 128, respectively. We find from
Fig. 2 that the dependence of K> on (εh, krai) obtained
by the simulations is well predicted by the theoretical
formula in Eq. (59). Since the parameters εh and krai

are assumed to be small in our theory, an excellent agree-
ment between the simulation and the theory is confirmed
in Fig. 2 for εh = 0.05 and krai = 0.131 which are both
the smallest values used in the simulations here.
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Figures 3 (a) and (b) show the structures of the real
part of the perturbed ion gyrocenter distribution func-
tion δf

(g)
ik⊥ on the (v‖, v⊥)-space obtained by the simula-

tion at t = 12.5(R0/vti) for the case of the helical sys-
tem in Fig. 1 (b). Figures 3 (a) and (b) are plotted for
(θ, ζ) = (0, 0) and (θ, ζ) = (8π/13, 12π/13), respectively,
in which the former corresponds to the the minimum of
the magnetic field strength within the flux surface and
the latter locates the bottom of the local helical rip-
ple with helical-ripple-trapped particles having relatively
large radial drift velocities. For comparison, theoretical
results corresponding to the simulation results in Figs. 3
(a) and (b) are shown in Figs. 4 (a) and (b), respectively,
where the perturbed gyrocenter distribution function is
analytically given from using Eqs. (31) and (35) as

δf
(g)
ik⊥(t) =

eφk⊥(0)
Ti

Fi0

[
k2

ra2
i e
−ikrvdrt −KL(t)

×
(

1− 1
4
k2

rρ2

) (
1− e−ikrvdrt

)]
for κ2 < 1,

(64)

and

δf
(g)
ik⊥(t) =

eφk⊥(0)
Ti

Fi0

[
k2

ra2
i −KL(t) {ikr (∆r − 〈∆r〉po)

+
1
2
k2

r (∆r − 〈∆r〉po)
2

}]
for κ2 > 1.

(65)

Figures 3 and 4 plot the real part of δf
(g)
ik⊥(t) normal-

ized by eφk⊥(0)/Ti. Due to the parallel streaming of
passing ions, stripes (or ballistic-mode structures) ap-
pear along the v⊥-direction in the simulation results in
Figs. 3 (a) and (b) while these stripe patterns are not
seen in Figs. 4 (a) and (b) because the solutions in
Eqs. (64) and (65) are derived from taking the average
along the rapid parallel motion. At θ = 0, the radial
drift velocity vdr vanishes and Eq. (64) [or Fig. 4 (a)]
gives δf

(g)
ik⊥(t) = (k2

ra2
i )(eφk⊥(0)/Ti)Fi0 for helical-ripple-

trapped ions [characterized by κ2 ≡ (2εh)−1{1/(λB0) −
1 + εt cos θ + εh} < 1 with λ ≡ (v⊥/v)2/B] which
remains unchanged from the initial distribution. On
the other hand, Fig. 4 (b) shows that, at (θ, ζ) =
(8π/13, 12π/13), the ion gyrocenter distribution in the
helical-ripple-trapped region localized around v‖ ∼ 0 has
a distinctive hollow (a blue region) that is produced by
a modulation along the v⊥-direction due to the finite ra-
dial drift vdr. These characteristics predicted by the the-
oretical results in Figs. 4 (a) and (b) are in a reasonable
agreement with the average features of the corresponding
distribution functions in Fig. 3 (a) and (b) although some
oscillatory structures caused by the ion parallel motion,
which are averaged out in the former figures, are found
in the latter figures even in the helical-ripple-trapped re-
gion.

VII. CONCLUSIONS

In the present paper, collisionless short- and long-time
behaviors of zonal flows in helical systems are theoreti-
cally investigated. A complete collisionless response of
the zonal-flow potential to the initial potential and a
given nonlinear source is derived in Eq. (62). The dis-
persion relation for the GAM oscillations, which occur in
a short-time scale, is analytically derived by taking ac-
count of the helical geometry and FOW orbits of passing
ions. It is theoretically shown that the GAM frequency
is slightly reduced by the helical ripples while the GAM
damping rate is strongly enhanced by the ripples and
the FOW effect. On the other hand, the collisionless
long-time behavior of zonal flows in helical systems is in-
fluenced by the bounce-averaged radial drift motions of
helical-ripple-trapped particles. It is predicted that, un-
der the influence of helical-ripple-trapped particles, for
the lower radial wave numbers, the long-time limit of the
zonal-flow potential amplitude (or the residual flow) be-
comes smaller although simultaneously the characteristic
transition time τc(∼ 1/kr|vdr|) becomes longer. The va-
lidity of our analytical results on the zonal-flow evolution
and on the velocity-space structures of the ion gyrocenter
distribution is verified by the gyrokinetic Vlasov simula-
tions for the helical geometries with the single-helicity.

In this work, collisional effects are neglected. Col-
lisional decay of zonal flows is anticipated to occur in
the long course of time although the residual zonal flows
in a collisionless time scale still influence the turbulent
transport. In some optimized helical configurations such
as quasi-poloidally-symmetric systems [22] which signifi-
cantly reduce neoclassical transport by suppressing both
|vdr| and G, we expect the response kernels K>, K<

and τc to increase such that large zonal flows can be
maintained for a long-time period and contribute to a
reduction of anomalous transport as well. More detailed
simulation studies of the multi-helicity systems includ-
ing collisions remain as an interesting future problem to
investigate the control of the GAM oscillations and the
residual zonal flows.
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APPENDIX A: DERIVATION OF EQ. (13)

In this Appendix, we see how Eq. (13) is derived.
Here, we use (v‖, µ) instead of (w, µ) as the independent
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velocity-space variables of the the gyrocenter distribution
function. Then, v‖b · ∇ in Eqs. (3) and (7) should be re-
placed with v‖b ·∇−(µ/m)(b ·∇B)∂/∂v‖, where the last
term represents the effect of the mirror force. Since the
characteristic parallel phase velocity of the GAM is on
the order of the ion thermal velocity, particles resonant
with the GAM are not trapped but passing ions. Thus,
we now consider only passing ions, for which we neglect
the mirror force term and rewrite Eq. (7) as

[
∂

∂t
+

v‖
R0

(
∂

∂ζ
+

1
q

∂

∂θ

)](
eikrdrδf̂

(g)
k⊥

)

= − v‖
R0

(
∂

∂ζ
+

1
q

∂

∂θ

)(
eikrdrJ0

eφk⊥

T

)
+ eikrdrSk⊥ ,

(A1)

where δf̂
(g)
k⊥ ≡ δf

(g)
k⊥ /F0, ωD = v‖b · ∇(krdr) =

−ie−ikrdrv‖b·∇eikrdr , and b·∇ ' R−1
0 (∂/∂ζ+q−1∂/∂θ)

are used. Here, the radial displacement dr of the passing
ion from the orbit-averaged radial position is given by

dr ≡ δ̂10 cos θ + δ̂L0 cos(Lθ)

+
∑

|n|≤nmax

δ̂L+n,M cos{(L + n)θ −Mζ},(A2)

where

δ̂10 = (R0q/rΩ)ε10(v‖ + v2
⊥/2v‖),

δ̂L0 = (R0q/rΩ)εL0(v‖ + v2
⊥/2v‖),

δ̂L+n,M = (R0q/rΩ)ε(n)
h (v‖ + v2

⊥/2v‖)
× (L + n)/[(L + n)− qM ]. (A3)

Recall that (v‖, µ) are used as the independent velocity-
space variables in Eq. (A1) where the mirror-force term
is neglected. Using Fourier and Laplace transforms as
shown in Eq. (12), Eq. (A1) is solved with the aid of the
formula eix cos y =

∑
n inJn(x)einy (Jn : the nth-order

Bessel function) to yield

δf̂krlm(ω) =
∑

n10,n′10

in
′
10−n10Jn10(kr δ̂10)Jn′10(kr δ̂10)

×
∑

nL0,n′L0

in
′
L0−nL0JnL0(kr δ̂L0)Jn′L0

(kr δ̂L0)

×
∏

|n|≤nmax


 ∑

nL+n,M ,n′L+n,M

in
′
L+n,M−nL+n,M

× JnL+n,M
(kr δ̂L+n,M )Jn′L+n,M

(kr δ̂L+n,M )
)

×
(

(l − qm + λ− qµ)(v‖/R0q)
ω − (l − qm + λ− qµ)(v‖/R0q)

)

× e

T
φkr,l+λ−λ′,m+µ−µ′(ω)

+ δÎkrlm(ω), (A4)

for (l, m) 6= (0, 0) Fourier components, where δf̂krlm ≡
δfkrlm/F0. [We should note that, for (l,m) = (0, 0), the

parallel streaming term vanishes and the neglect of the
mirror force term in Eq. (A1) is not a good approxima-
tion.] On the right-hand side of Eq. (A4),

λ ≡ n10 + LnL0 +
∑

|n|≤nmax

(L + n)nL+n,m

λ′ ≡ n′10 + Ln′L0 +
∑

|n|≤nmax

(L + n)n′L+n,m

µ ≡ M
∑

|n|≤nmax

nL+n,M

µ′ ≡ M
∑

|n|≤nmax

n′L+n,M . (A5)

are used and the zero-gyroradius limit krρ → +0 [or
J0(krρ) → 1], which is uninfluential to the GAM damp-
ing, is taken. The initial conditions and the nonlinear
source are included on the right-hand side of Eq. (A4)
through

δÎkrlm(ω) = i
∑

n10,n′10

in
′
10−n10Jn10(kr δ̂10)Jn′10(kr δ̂10)

×
∑

nL0,n′L0

in
′
L0−nL0JnL0(kr δ̂L0)Jn′L0

(kr δ̂L0)

×
∏

|n|≤nmax


 ∑

nL+n,M ,n′L+n,M

in
′
L+n,M−nL+n,M

× JnL+n,M
(kr δ̂L+n,M )Jn′L+n,M

(kr δ̂L+n,M )
)

× [
ω − (l − qm + λ− qµ)(v‖/R0q)

]−1

× [δf̂kr,l+λ−λ′,m+µ−µ′(t = 0)
+ Skr,l+λ−λ′,m+µ−µ′(ω)]. (A6)

We find from Eqs. (A4) and (A6) that, even for the single
(l, m) Fourier component, the multiple resonance condi-
tions ω − (l − qm + λ − qµ)(v‖/R0q) = 0 appear ac-
cording to various numbers of (λ, µ). Without finite or-
bit widths (FOWs), the resonance conditions, in which
λ 6= 0 or µ 6= 0, never appear. The FOW effects given
by the (λ, µ) 6= (0, 0) terms may seem to be weak for
longer radial wavelengths than the orbit widths since
small non-zeroth-order Bessel function factors and cou-
plings to small potential components with higher Fourier-
mode numbers appear as seen in Eqs. (A4) and (A6).
However, as shown in Ref. 12, the FOW effect on the
GAM damping is significant for the (l, m) = (±1, 0)
Fourier components which correspond to the longest par-
allel wavelength (= 2πR0q). This is because, without
the FOW, the population of ions with the highest res-
onant parallel velocity (|v‖| = R0qω) can be negligibly
small while, with the FOW, the lower resonant veloc-
ity (|v‖| = R0qω/2) and accordingly the larger popu-
lation of resonant ions are produced [see that the reso-
nance condition ω = ±2(v‖/R0q) appears in Eq. (A4) for
l = λ = n10 = ±1, m = µ = 0, and nL0 = nL+n,M = 0
(|n| ≤ nmax)]. Thus, we retain this FOW effect on the



14

(l, m) = (±1, 0) components δf̂ikr±10 in the following
analysis of the GAM. For other Fourier components with
(l, m) 6= (±1, 0), the FOW effects are relatively small
and we neglect them by retaining only the terms with
n10 = nL0 = nL+n,M = 0 (|n| ≤ nmax) in Eqs. (A4) and
(A6), for which (λ, µ) = (0, 0) [but (λ′, µ′) 6= (0, 0) for
some of these terms].

Using Eq. (9), we obtain

∫
d3vFi0δf̂ikrlm − n0(krai)2

eφkrlm

Ti
= δnekrlm, (A7)

where 1 − Γ0(b) ' b [for b = (k⊥ai)2 ¿ 1], ai ≡
(Ti/mi)1/2/Ωi, and k⊥ ' kr are used and subscripts
referring to particle species are explicitly shown. The
second term on the left-hand side of Eq. (A7) represents
the ion polarization. For (l,m) 6= (0, 0) modes, the per-
turbed electron density is approximately given by the
Boltzmann relation, nekrlm = n0eφkrlm/Te, because of
the fast parallel motions of electrons. Then, Eq. (A7) is
rewritten as

∫
d3vFi0δf̂ikrlm(ω) = n0

eφkrlm(ω)
Te

for (l, m) 6= (0, 0)

(A8)
where krai ¿ 1 is used. Taking the time differentiation
and the flux-surface average of Eq. (9) and using Eq. (7),
we obtain

n0(k⊥ai)2
e

Ti
[−iωφkr00(ω)− φkr00(t = 0)]

=
∫

d3vFi0
kr

2rΩi

(
v2
‖ +

µB0

mi

)

×
[
ε10

{
δf̂ikr−10(ω) +

eφkr−10(ω)
Ti

− δf̂ikr10(ω)

− eφkr10(ω)
Ti

}
+ LεL0

{
δf̂ikr−L0(ω) +

eφkr−L0(ω)
Ti

− δf̂ikrL0(ω)− eφkrL0(ω)
Ti

}
+

∑

|n|≤nmax

Lε
(n)
h

×
{

δf̂ikr,−L−n,−M (ω) +
eφkr,−L−n,−M (ω)

Ti

− δf̂ikr,L+n,M (ω)− eφkr,L+n,M (ω)
Ti

}]

+
∫

d3vFi0Sikr00(ω). (A9)

where the flux-surface average is approximately
given by the poloidal- and toroidal-angle average,∮
(dθ/2π)

∮
(dζ/2π) · · · . Electron contributions do not

appear in Eq. (A9) because δf̂ekrlm = (eφkrlm/Te)Fe0 is
used for (l,m) 6= (0, 0).

Neglecting terms of the second and higher orders in the
radial wave number except for influential FOW terms, we

obtain from Eq. (A4),

δf̂ikr10(ω)

=


 (v‖/R0q)

ω − (v‖/R0q)
+ +

2(v‖/R0q)
ω − 2(v‖/R0q)

(
kr δ̂10

2

)2



×
[

eφkr10(ω)
Ti

+ i
eφkr00(ω)

Ti

(
kr δ̂10

2

)]
+ δÎikr10(ω),

(A10)

δf̂ikrL0(ω) =
L(v‖/R0q)

ω − L(v‖/R0q)

[
eφkrL0(ω)

Ti
+ i

eφkr00(ω)
Ti

×
(

kr δ̂L0

2

)]
+ δÎikrL0(ω), (A11)

and

δf̂ikr,L+n,M (ω) =
(L + n− qM)(v‖/R0q)

ω − (L + n− qM)(v‖/R0q)

×
[

eφkr,L+n,M (ω)
Ti

+ i
eφkr00(ω)

Ti

(
kr δ̂L+n,M

2

)]

+ δÎikr,L+n,M (ω). (A12)

On the right-hand side of Eq. (A10), we see two reso-
nance conditions ω = v‖/R0q and ω = 2v‖/R0q. The
latter is induced by the FOW and it can significantly af-
fect the damping of the GAM oscillations as remarked
after Eq. (A6). On the other hand, the FOW effect on
the real frequency of the GAM is weak because of the
small factor (kr δ̂10/2)2 appearing together with the fac-
tor 1/[ω − 2(v‖/R0q)]. Then, in (A10), we retain the
resonant (or imaginary) part of 1/[ω − 2(v‖/R0q)] while
neglecting its non-resonant (or real) part. Thus, when
using (A10) for evaluations of velocity-space integrals,
we perform the replacement,

1/[ω − 2(v‖/R0q)] → −iπδ[ωr − 2(v‖/R0q)], (A13)

where |ωi/ωr| << 1 with (ωr, ωi) ≡ (Re(ω), Im(ω)) is
assumed.

Substituting Eqs. (A10), (A11), and (A12) into Eq.
(A8), we obtain

eφkr10(ω)
Ti

=
{

Ti

Te
+ 1 + ω̂Z(ω̂)

}−1 [(
−i

krvTi

4Ωi

R0q

r

)

×
{

[
2ω̂ +

(
2ω̂2 + 1

)
Z(ω̂)

]
+ i
√

π

(
krvTiq

Ωi

)2

× e−ω̂2
r/4

(
ω̂4

r

32
+

3ω̂2
r

16
+

3
4

+
3

2ω̂2
r

)}

×ε10
eφkr00(ω)

Ti
+

∫
d3v

Fi0

n0
δÎikr10(ω)

]
,

(A14)
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eφkrL0(ω)
Ti

=
{

Ti

Te
+ 1 +

ω̂

L
Z

(
ω̂

L

)}−1

×
[{

2
ω̂

L
+

(
2

(
ω̂

L

)2

+ 1

)
Z

(
ω̂

L

)}

×
(
−i

krvTi

4Ωi

R0q

r

)
εL0

eφkr00(ω)
Ti

+
∫

d3v
Fi0

n0
δÎikrL0(ω)

]
, (A15)

and

eφkr,L+n,M (ω)
Ti

=
{

Ti

Te
+ 1 +

ω̂

|L + n− qM |Z
(

ω̂

|L + n− qM |
)}−1

×
[{

2
ω̂

|L + n− qM | +

(
2

(
ω̂

|L + n− qM |
)2

+ 1

)

×Z

(
ω̂

|L + n− qM |
)}(

−i
krvTi

4Ωi

R0q

r

) (
(L + n)ε(n)

h

|L + n− qM |

)

×eφkr00(ω)
Ti

+
∫

d3v
Fi0

n0
δÎikr,L+n,M (ω)

]
, (A16)

respectively, where the plasma dispersion function 　
Z(ω̂) ≡ π−1/2

∫∞
−∞ dα e−α2

/(α − ω̂) and the normal-
ized frequency ω̂ ≡ R0qω/vTi (vTi ≡

√
2Ti/mi) are

used. Other Fourier components δf̂ikr−10, δf̂ikr−L0,
δf̂ikr,−L−n,−M , φkr−10, φkr−L0, and φkr,−L−n,−M in Eq.
(A9) are given by using Eqs.(A10)–(A16) and the follow-
ing relations,

δf̂ikr−10(v‖) = −δf̂ikr10(−v‖),

δf̂ikr−L0(v‖) = −δf̂ikrL0(−v‖),

δf̂ikr,−L−n,−M (v‖) = −δf̂ikr,L+n,M (−v‖),
φkr−10 = −φkr10,

φkr−L0 = −φkrL0,

φkr,−L−n,−M = −φkr,L+n,M . (A17)

We now assume the initial perturbed ion gyrocen-
ter distribution function to take the Maxwellian form,
δfik⊥(t = 0) = (δn(g)

ik⊥(t = 0)/n0)Fi0. Using the
quasineutrality condition, the initial perturbed ion gy-
rocenter density is determined by δn

(g)
ik⊥(t = 0) =

n0(k2
ra2

i )(eφkr00(t = 0)/Ti) where φkrlm(t = 0) = 0 for
(l, m) 6= (0, 0) and k2

ra2
i ' 〈k2

⊥a2
i 〉 ¿ 1 are assumed. Sub-

stituting Eqs. (A10)–(A17) into Eq. (A9) and neglecting

effects of δÎikrlm(ω) as smaller than those of φkr00(t = 0)
and Sikr00 by the factor of krai, we can finally represent
φkr00(ω) by

eφkr00(ω)
Ti

= KGAM (ω)
[
eφkr00(t = 0)

Ti

+
∫

d3vFi0Sikr00(ω)
n0(krai)2

]
(A18)

where KGAM (ω) is defined by

1
KGAM (ω)

≡ −iω̂ − i
q2

2

[(
R0ε10

r

)2

{J(ω̂) + JFOW(ω̂)}

+ L

(
R0εL0

r

)2

J

(
ω̂

L

)

+
∑

|n|≤nmax

(L + n)2

|L + n− qM |

(
R0ε

(n)
h

r

)2

× J

(
ω̂

|L + n− qM |
)]

,

(A19)

with

J(ω̂) ≡ 2ω̂3 + 3ω̂ + (2ω̂4 + 2ω̂2 + 1)Z(ω̂)

− ω̂

2
{
2ω̂ + (2ω̂2 + 1)Z(ω̂)

}2

×
{

Ti

Te
+ 1 + ω̂Z(ω̂)

}−1

, (A20)

and

JFOW(ω̂) ≡ i

√
π

2

(
krvTiq

Ωi

)2

e−ω̂2
r/4

×
{

ω̂6
r

64
+

(
ω̂4

r

8
+

3ω̂2
r

4
+ 3 +

6
ω̂2

r

)

×
(

1− 3ω̂r

16
{
2ω̂r + (2ω̂2

r + 1)Zr(ω̂r)
}

×
{

Ti

Te
+ 1 + ω̂rZr(ω̂r)

}−1
)}

. (A21)

Here, JFOW and the terms proportional to
(krvTiq/Ωi)2 exp(−ω̂2

r/4) on the right-hand side of
Eq. (A14), where ω̂r = Re(ω̂), are derived from retaining
the FOW effect on the (l, m) = (±1, 0) components of
the ion gyrocenter distribution function as noted after
Eq. (A6).
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