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We theoretically study the Nernst effect and the Seebeck effect in a two-dimensional electron gas in a strong
magnetic field and a temperature gradient under adiabatic condition. We recently predicted for a pure system in the
quantum Hall regime that the Nernst coefficient is strongly suppressed and the thermal conductance is quantized
due to quantum ballistic transport. Taking account of impurities, we here compute the Nernst coefficient and
the Seebeck coefficient when the chemical potential coincides with a Landau level. We adopt the self-consistent
Born approximation and consider the linear transport equations of the thermal electric transport induced by the
temperature gradient. The thermal conductance and the Nernst coefficient are slightly modified from the pure case
and the Seebeck coefficient newly appears because of the impurity scattering of electrons in the bulk states.

Keywords: Models of non-equilibrium phenomena; Green’s function methods; Electrical transport (conductivity, resistivity,

mobility, etc.); Hall effect; Nano-electronics and related devices

I. INTRODUCTION

The adiabatic Nernst effect in a bar of conductor is the
generation of a voltage difference in the y direction under
a magnetic field in the z direction and a temperature bias
in the = direction (Fig. 1). Each of the left and right ends
of the conductor is attached to a heat bath with a different
temperature, Ty on the left and 7 on the right. An
electric insulator is inserted in between the conductor and
each heat bath, so that only the heat transfer takes place
at both ends. A constant magnetic field B is applied in
the z direction. Then the Nernst voltage Vx is generated
in the y direction. In what follows, we always put AT =
T, —T_ > 0 and B > 0. The Nernst coeflicient is defined
by

N=_ W (1)

BAT/L
where W and L are the width and the length of the con-
ductor bar, respectively.

A classical-mechanical consideration on this Nernst ef-
fect yields the following: a heat current flows from the left
end to the right end because of the temperature bias; the
electrons that carry the heat current receive the Lorentz
force from the magnetic field and deviate to the upper
edge; then we have Vy < 0 and N > 0. In reality, the
Nernst coefficient can be positive or negative, depending
on the scattering process of electrons.

We recently studied the Nernst effect in the quan-
tum Hall regime, that is, the Nernst effect of the two-
dimensional electron gas at low temperatures, low enough
for the mean free path to be greater than the system size
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FIG. 1: A setup for observation of the Nernst effect. The
Nernst voltage Vx is defined as such that it is positive when
the voltage of the upper edge is higher than the voltage of the
lower edge.

A

[1]. Using a simple argument on the basis of edge cur-
rents [2], we predicted that, when the chemical potential
is located between a pair of Landau levels, (i) the Nernst
coefficient is strongly suppressed and (ii) the heat cur-
rent in the z direction is quantized in the unit k%7 /3h
when summed over up and down spins. (The quantized
unit of the heat current per one spin degree of freedom is
k% T /6h.)

However, our previous argument using the edge cur-
rents is not applicable when the chemical potential co-
incides with a Landau level. We must take account of
scattering process by impurities and interactions. The
bulk states as well as the edge states contribute to the
heat conduction and there is influence of impurities on
the bulk states. In the present paper, we take account of
impurity scattering by adopting the self-consistent Born
approximation. We construct the linear transport equa-



tions of the thermomagnetic transport using the current-
current correlation functions, which we obtain within the
self-consistent Born approximation.

Our conclusions are that (i) the Nernst coefficient and
the thermal conductance are slightly modified from the
pure case when the chemical potential coincides with a
Landau level and (ii) the Seebeck coefficient, which was
zero in the pure case, appears due to the impurity scat-
tering. The Seebeck effect is the voltage generation Vg in
the direction parallel to the temperature gradient. The
Seebeck coefficient is defined by

_ W
= 2)

In the room temperature, the Seebeck coefficient S is pos-
itive if the carrier is the hole and is negative if the carrier
is the electron [3]. The present calculation shows that the
Seebeck coefficient oscillates around zero.

The outline of the paper is as follows: In section II, we
briefly explain our convection model, which we introduced
[1] to study the Nernst effect in the quantum Hall regime.
The construction of the linear transport equation and the
self-consistent Born approximation are explained in sec-
tion III. The numerical result and discussion are given in
IV. The final section V is devoted to the summary.

II. CONVECTION OF THE EDGE CURRENT

Let us first briefly explain our model (Fig. 1) that we
introduced in our previous study [1]. Since there is no
input or output electric current, an edge current circu-
lates around the Hall bar when the chemical potential is
in between neighboring Landau levels [2]. The edge cur-
rent along the left end of the bar is in contact with the
heat bath with the temperature 7', and equilibrated to
the Fermi distribution f(7y,py) with the temperature
T, and a chemical potential p4 while running from the
corner Cy to the corner C;. Since the upper edge is not in
contact with anything, the edge current there runs ballis-
tically, maintaining the Fermi distribution f(7’;,u4) all
the way from the corner C; to the corner Cs. It then en-
counters the other heat bath with the temperature 7" and
is equilibrated to the Fermi distribution f(7_,pu_) while
running from the corner C, to the corner C3. The edge
current along the lower edge runs ballistically likewise,
maintaining the Fermi distribution f(7_,u_) all the way
from the corner C3 to the corner C4. The Nernst volt-
age VW = Ap/e = (uy — p—)/e is thus generated, where
e(< 0) denotes the charge of the electron.

Our prediction for the pure system was as follows [1].
First, the difference in the chemical potential, Ay, is of
a higher order of the temperature bias AT, because the
number of the conduction electrons is conserved. The
Nernst coefficient (1) hence vanishes as a linear response.
Second, the heat current in the  direction, (Jg)., is car-
ried ballistically by the edge current along the upper and
lower edges. The edge current does not change much when
we vary the magnetic field B as long as the chemical po-
tential stays between a pair of neighboring Landau levels.
The heat current hence has quantized steps as a function
of B.
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FIG. 2: The geometry of the two-dimensional electron system
in a strong magnetic field. We assume that each of the upper
and lower edge currents flows maintaining its own temperature
all along the edge.

The precise forms of the peaks of the Nernst coefficient
and the steps of the thermal conductance in our ballistic
model, however, may be different from the reality. This
is because our argument using the edge currents is not
applicable when the chemical potential coincides with a
Landau level. The current is then carried by bulk states
as well as the edge states. We thereby need to take ac-
count of the effects of the impurity scattering; the impuri-
ties strongly affect the bulk state, broadening the Landau
levels. We assume that we can separate the contribution
of the bulk states from the contribution of the circulat-
ing edge currents, which are less affected by the impurity
scattering (Fig. 2). In the present paper, we calculate
the contribution of the bulk states in the simplest way of
considering the impurity scattering.

III. CONTRIBUTION OF THE BULK STATES

In our model shown in Fig. 2, the electrons at each of
the upper and the lower edges flow in the z direction main-
taining their temperature and chemical potential. There-
fore we assume that the temperature gradient inside the
bulk area is parallel to the y direction:

V.T ~0 inside the bulk area. (3)
Note that the temperature difference outside the sample
is normal to the temperature gradient inside the bulk area
[1]. In order to obtain the contribution of the bulk states
to the Nernst coefficient, we need the ratio between the
voltage in the y direction and the temperature gradient
in the same direction in the bulk area. The Seebeck co-
efficient is given by the ratio between the voltage in the
x direction and the temperature gradient in the y direc-
tion. In the present section, we show the formulation of
calculating the voltages from the temperature gradient.

A. FUNDAMENTAL EQUATIONS

We here review some £undamentals. We introduce the
particle current density .J,,(7) and the heat current density



Jo(7), given by
o= (T )
((B=1)jn), (5)

where ;n is the particle current operator, p is the chemical
potential and E is the energy of the electrons. Suppose
that there are a temperature gradient VT and a chemical-
potential gradient ﬁ,u. They work as forces that induce
the electric current and the heat current. The linear trans-
port equations are [4]

Jg =

. 1 . . (1
- _Llray g (L
T (7) L+ LY <T> , (6)

. 1 - /1
_ _Lren ()¢ (L
Jo(7) LVt L V<T>, (7)

where L(9) is the transport tensor.
The transport tensor

L6 = (Lgf,z; Ly ) )
Ly’ Lyy

defined in egs. (6) and (7) has the following symmetries.
Generally, we have the Onsager relation with respect to
the reversal of B: Lgé)(—B) = L(ﬁj(i) (B) [5, 6]. Because
of the isotropy of the two-dimensional system, we have
L(B) = L7 (B) and L) (B) = —L{)(B), where the
direction of B is not changed. From these symmetries, we
find the relation L% (B) = L2}(B).

The tensor element L") is given by the current-current

correlation function and is a function of the local temper-
ature and the local chemical potential:

1/ksT

/ dr e (Tyju(1)js(0)) .

0

(9)
The tensor elements other than L(') are, within the self-
consistent Born approximation, given by integrals of L('")
at zero temperature [6-8]:

_ ksT

n

Ly =L (T,

L) = L (1, p)
oo ' - .T
— / de (E . 'u)er] 2 <_af(58)8 )N)) L((xlﬁl) (075) ,

for (i,j) # (1,1). (10)

B. THE TRANSPORT TENSOR

We now explain the outline of the calculation of the
transport coefficients of the two-dimensional electron sys-
tem including impurities [6-10]. Neutral impurities in the
system can be described as a random impurity potential
Vimp- The Hamiltonian in the bulk area is then given by

N2
% (ﬁ + eA)
N2

(F+ed) +w 3 oF-m).

HO = + Vimp

m*

where m* is the effective mass of an electron and 7; is
the position of an impurity. In the following, we use a
measure of the strength of the interaction with impurity,
given by

2= M, (12)
272

where ninp is the density of the impurities and [ is the

cyclotron radius.

We treat the effect of the random potential in (11) by
using the self-consistent Born approximation. Although
there are various ways of treating the effect of the disorder,
we here adopt the simplest approximation. The Green’s
function of the electron propagation in the Nth Landau
level is expressed by

1

Gn(z) = By =)

(13)

where Ey = hwp (N + 1/2) is the energy of the Nth Lan-
dau level and ¥(z) is the self-energy with wg = |e|B/m*.
The self-energy is given by the diagram in Fig. 3(a). Here
the solid line and the dotted line correspond to the elec-
tron Green’s function and the interaction with an impu-
rity, respectively.

FIG. 3: The diagrams which give the self-energy ¥(z) and the
current-current correlation function. (a) The self-energy di-
agram. The solid line and the dotted line correspond to the
electron Green’s function and the interaction with an impurity,
respectively. (b) The diagram for the current-current correla-
tion function. The solid circles correspond to the current J,,
where o = x and y.

The electron Green’s function is obtained from the
Dyson equation

Gn (E) =Gy (B) +GY ()2 (B)GN (B),  (14)

where G%; is the unperturbed electron Green’s function

G%(E) = 1/(E — Ex). We here make an approximation
for a strong magnetic field, or I' € wp:

F2

L(E)~ ZGNO (E), (15)

where Ny denotes the Landau level closest to the energy
E. This is followed by [9]

2
s(E 0w B b (BB g

2r

where Ey, is the energy of the Landau level closest to E.
In the self-consistent Born approximation, we express I'



in terms of the relaxation time 7, which is obtained in
the Born approximation under no magnetic field [10]:

F2 o 2 h2wB
- ™ To

(17)

In the calculation of the transport coefficient (9), we
use the diagram for the correlation function, shown in Fig.
3(b). Because we are considering the short-range poten-
tial, the vertex corrections are negligible. The transport
coefficient is given as follows:

ReL(\M (T, p)

(f;g:?’ e (2T

= -T

X Z N + DImG (e + i0)ImGn 11 (e + 30),
N=0

(18)
and
ReL(\M (T, )
_ th >
= T 5 /dsfsTu NEZ:O (N +1)
x {ImGN(s +i0) aReGN“(g +i0)
CImGyi (e + iO)aRQG%—fﬂo)} :
(19)

In the calculation, we should note that the matrix ele-
ments of the current operator do not vanish only between
the Nth and the (N £ 1)th Landau levels and that each
Landau level has the m* (Lwp)® /(2rh)-fold degeneracy.
The transport tensor expressed by eqs. (18) and (19) cor-
responds to each spin of an electron. The other elements
of the transport tensor are given by eq. (10).

C. THERMAL CONDUCTANCE, NERNST
COEFFICIENT AND SEEBECK COEFFICIENT

Now that the transport tensor is given, we solve the
linear transport equations (6) and (7) under appropriate
boundary conditions. In Fig. 2, we have shown our geom-
etry of the two-dimensional electron system in a strong
magnetic field. The conductor bar is electrically insu-
lated on all edges and thermally insulated on the upper
and lower edges. Hence the boundary conditions of the
currents are

(Jn)z =0 at the left and right edges,

and
(Jn)y = (Jg)y =0 at the upper and lower edges.
(20)

In order to simplify the equations, we assume that the
temperature gradient and the chemical-potential gradient

are uniform in the bulk area of the sample. Although
the influence of the confining potential appears near the
boundaries of the sample, we leave the effect as a future
topic.

Solving the equations (6) and (7) with the boundary
conditions (3) and (20), we obtain the chemical-potential

gradient Vo and the heat current (Jg)z- The Nernst
coefficient is given by
N — VN/W L Vyu
= "BAT/L -  WeBv,T
L1 1
- W 2 2
W eTB (L(;;)) n (L(wlyl))
K
_(ran a2 (11) (12)) e
x{ (Lm L L¢ ) 0
+ (LS;)LS? + L§};>L;1;>)} .
(21)

Note that the temperature gradient in the bulk area is
given by V, T ~ AT /W because of the assumption (3).
The Seebeck coefficient is given by

g_ Vs _ LV
T AT Wev,T
L1 1

W () 4 (147)

% {(Lgn) (12) + L(11)L(12)) gm

xy
11) 7 (12 11) 7 (12

+ (zu0zg - o)},

(22)
The adiabatic thermal conductivity K¢ is given by

(‘]Q)w L (JQ)x L K2
Kg = == =—-—= | K, =), (2
AL wov,r - w \ Bt ) ()

where K,z is the thermal conductivity tensor given by

T — % L§02x2) 2 ! 2
T (L) 4 (£49)

% (Lglivl) (Lg;))Q _ QLSZ})L“Q)L(H)

T Ty

-2 (z2)") ],
(24)

and

v =g g L L
(£&D)" + (28
% (L(n) (L(12))2 _ 97,1 1,(12) 1 (12)
Ty Tz T T Ty

o (1))}

(25)
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FIG. 4: Scaling plots of (a) the Seebeck coefficient —S and
(b) the Nernst coefficient —N x B both against m*u/kle|B.
The red curve, the green curve and the blue curve indicate
the results at T = 1, 3, 6 K, respectively. The gray curves
in (b) indicate the results of the ballistic transport model [1].
The Seebeck coefficient is always zero in the ballistic transport
model.

IV. RESULTS AND DISCUSSIONS

We now present our numerical results. We set the
parameters as follows [1]: the effective mass is m* =
0.067mg for GaAs, where my is the bare mass of the elec-
tron; the relaxation time is set to h/m = 1.0 x 10~%eV,
which means that the mean free path is 2um; the sample
size is L = W ~ 10um, which is in the same order of
the mean free path; the chemical potential is y = 15meV,
which means the carrier density n, = 4.24 x 10°m=2.

We calculated the Seebeck coefficient S, the Nernst co-
efficient N and the thermal conductance Gg = Kqo(W/L)
as shown in Figs. 4 and 5. At low temperatures, the co-
efficients S and N vanish when the chemical potential is
located between the pair of neighboring Landau levels.
They appear when the chemical potential is nearly at a
Landau level. The Seebeck coefficient S changes its sign
rapidly when the chemical potential crosses a Landau level
(Fig. 4(a)). In our calculations, the Nernst coefficient N
is generally negative and its behavior is similar to the re-
sult of the ballistic transport model [1]; the gray curves
in Fig. 4(b) are results of the ballistic transport model.
The peaks that appear when the chemical potential coin-
cides with a Landau level are broadened by the impurity
scattering.

The thermal conductance has quantized steps in the
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FIG. 5: Scaling plots of Go/T x 6h/mwk% against m* u/hle|B.
The red curve, the green curve and the blue curve indicate
the results at 7 = 1, 3, 6 K, respectively. The gray curves
indicate the result at 7 =1, 3, 6K in the ballistic transport
model.

unit

Ggo = (26)

6h
as in the case of the ballistic transport model. (In Fig. 5,
the gray curves indicate the results of the ballistic trans-
port model.) It can be interpreted that the heat current
is M times a unit current when there are M channels of
the edge current.

Incidentally, the ratio between G, the step height of
the thermal conductance in our quantum Nernst effect,
and the step height of the electric conductance in the
quantum Hall effect, Gy = e*/27h, is

GQO _ ﬂ'2k%
G()T - 362 '

(27)

This is consistent with the Wiedemann-Franz law well-
known for the Fermi gas.

V. SUMMARY

We discussed a novel quantum effect of the two-
dimensional electron gas, in close analogy to the quan-
tum Hall effect. When the chemical potential is between
a pair of Landau levels, the edge currents suppress the
Nernst coefficient and quantize the thermal conductance.
In the present paper, we take account of impurity scat-
tering using the self-consistent Born approximation. The
electronic states extend over the system when the chem-
ical potential is close to a Landau level. Then the heat
current is carried mainly by the bulk states. As a re-
sult, the peaks of the Nernst coefficient and the steps of
the thermal conductance are broadened. In addition, the
Seebeck coefficient emerges and oscillates rapidly.
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