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In recent Large Helical Device (LHD) experiments, radial profiles of ion temperature, electric field,
etc. are measured in the m/n = 1/1 magnetic island produced by island control coils, where m is the
poloidal mode number and n the toroidal mode number. When the transport of the plasma in the radial
profiles is numerically analyzed, an average over a magnetic flux-surface in the island is a very useful
concept to understand the transport. On averaging, a proper labeling of the flux-surfaces is necessary.
In general, it is not easy to label the flux-surfaces in the magnetic field with the island, compared
with the case of a magnetic field configuration having nested flux-surfaces. In the present paper, we
have developed a new computational technique to label the magnetic flux-surfaces. This technique is
constructed by using an optimization algorithm, which is known as an optimization method called the
simulated annealing method. The flux-surfaces are discerned by using two labels: one is classification of
the magnetic field structure, i.e., core, island, ergodic, and outside regions, and the other is a value of
the toroidal magnetic flux. We have applied the technique to an LHD configuration with the m/n = 1/1
island, and successfully obtained the discrimination of the magnetic field structure.

Keywords: Large Helical Device, magnetic island, flux-surface, Poincaré plots, annealing method

1 Introduction

A flux-surface average of some quantity, e.g., particle
flux, heat flux, etc., is a very useful concept for trans-
port analysis of a toroidal plasma. The flux-surface
average of a function Φ(x) is defined by the volume
average over an infinitesimally small shell with vol-
ume ∆V , where ∆V lies between two neighboring flux-
surfaces with volumes V and V + ∆V , and is denoted
as

〈Φ(x)〉 := lim
∆V→0

1
∆V

∫∫∫

∆V

Φ(x)d3x, (1)

if there exist the closed flux-surfaces. On averaging,
we have to label the magnetic flux-surfaces, e.g., if the
nested flux-surfaces exist, the surface is labeled as the
volume enclosed by the surface in the Hamada coor-
dinates [1], and as the toroidal magnetic flux in the
Boozer coordinates [2,3]. In a non-axisymmetric con-
figuration, the existence of nested flux-surfaces is not
guaranteed [4]. However, it is possible to numerically
obtain an MHD equilibrium having closed magnetic
surfaces by using a suitable three dimensional equi-
librium code which does not assume the existence of
nested flux-surfaces, e.g., HINT code [5–7]. In gen-
eral, such an equilibrium includes magnetic islands
and ergodic regions. Thus, it is not easy to label
the magnetic surfaces. Without any approximations,
we cannot evaluate the flux-surface averages in terms
author’s e-mail: nunami.masanori@nifs.ac.jp

of magnetic coordinates in a non-axisymmetric con-
figuration. Although quasi magnetic-coordinates can
be constructed on the equilibrium with the islands as
shown in Refs. [8–12], the coordinate system does not
correspond to a magnetic coordinate system along the
flux-surfaces in the islands.

In recent Large Helical Device (LHD) experi-
ments, radial profiles of ion temperature, electric field,
etc. are measured in the m/n = 1/1 magnetic island
produced by island control coils [13, 14]. The numer-
ical transport analysis is required for understanding
the experimental results, thus the average over a flux-
surface of the island is necessary.

In the present paper, we develop a new compu-
tational technique for labeling magnetic surfaces in
the LHD configuration. The flux-surfaces can be ba-
sically labeled by tracing field lines, as shown in Refs.
[15–18]. The main task of the technique is to identify
a flux-surface from the Poincaré plots of a field line
on a poloidal cross section. For the identification, the
points of the Poincaré plots, i.e., the Poincaré points,
should be numbered along a closed curve given from
the poloidal cross section of a flux-surface, where this
procedure is called the ordering of the Poincaré points
in this paper. One of the simplest methods ordering
the Poincaré points is to search the nearest neighbor
point of each point. However, this method often fails
at, for example, a closed magnetic surface in the is-
land. In order to improve the ordering procedure, we



2

employ the algorithm which is a technique called the
simulated annealing method [19, 20]. This method is
familiar as a successful algorithm to solve the travel-
ing salesman problem [21], which is the problem for a
traveling salesman who has to visit a number of cities,
how to plan the trip so that every city is visited once
and just once and the whole trip is as short as possible.
This method is useful for solving our problem, i.e., how
to connect each Poincaré point of a field line. In the
technique developed here, the magnetic flux-surfaces
are identified by two labels, IREGION and TFLUX, which
describe classification of magnetic field structure and
a toroidal magnetic flux, respectively.

When the number of sampling flux-surfaces is
quite large, the calculation code which is based on
the developed technique should be parallelized. The
code has been programed with the High Performance
FORTRAN [22] on a vector parallel supercomputer.

This paper is organized as follows. In Sec.2, we
show the outline of the developed technique which is
constructed from three parts shown in subsections 2.1-
2.3, and the numerical results are shown in subsection
2.4. Finally, a summary is given in Sec.3.

2 Computational Technique

We explain the outline of the technique hereafter. Fig-
ure 1 is the flowchart of the developed technique.
As shown in the flowchart, the technique is con-
structed from three parts: I) Classification of regions,
II) Ordering Poincaré points, and III) Calculation of
toroidal magnetic flux. In the part I, for a given
magnetic field configuration, we classify regions of the
magnetic field structure, i.e., core, island, ergodic, and
outside regions. In the part II, we trace a field line to
obtain the Poincaré points on a poloidal cross section,
and order these points by using two methods explained
in Sec.2.2. In the part III, we calculate a value of the
toroidal magnetic flux for the closed magnetic flux-
surface given by the points, and label it by the value.
In the following, we explain each part in detail.

2.1 Classification of regions

In this section, we consider the classification of regions
of the magnetic field structure. Because there does not
exist a magnetic coordinate system along the closed
magnetic surfaces in both core and island regions, we
have to classify the regions, as shown in Fig.2. We
can discern four parts of the structure, i.e., outside,
ergodic, island, and core regions. Here, we consider
that the island is visible under certain numerical ac-
curacy. Similarly, the ergodic region is considered to
be visible, but be narrow.

First, we roughly evaluate an initial guess of the
boundary between each region, and calculate several
magnetic flux-surfaces near the initial guess. Then
the suitable boundaries are determined by using the
above flux-surfaces, if the ordering of the Poincaré

points representing the flux-surfaces succeeds. By
using the boundaries, we label the regions into four
parts; IREGION = 1 (outside region), 2 (ergodic re-
gion), 3 (island region), and 4 (core region), as shown
in Fig.2.

2.2 Ordering Poincaré points with an-
nealing method

Next, we have to order the Poincaré points of a field
line on a poloidal cross section, in order to identify a
closed magnetic flux-surface. Note that in an ergodic
region, a visible flux-surface does not exist, thus the
field line tracing is not carried out in the region. For
the ordering, we use two methods. One is the simple
method ordering the points by searching the nearest
neighbor point for each point, where the ordering be-
gins from a given starting point of the Poincaré points.
This is one of simple ways of ordering the points. But
we frequently encounter a case that the simple method
does not work well, as will see later. The other is
based on the simulated annealing method [19,20]. This
method is a famous optimization algorithm employed
in the traveling salesman problem [21] (the problem
of finding the shortest cyclical itinerary for a travel-
ing salesman who must visit each of N cities in turn).
We use it to order the Poincaré points, if the simple
method does not work well; see the part II of Fig.1. In
the following, we introduce a brief review of the simu-
lated annealing method used for solving our problem.

2.2.1 Simulated annealing method

The simulated annealing method is a probabilistic al-
gorithm for combinatorial optimization problems [23].
In particular, when a given function has many lo-
cal extrema, the method is powerful to search the
global extremum. Of course, the most sure method
for searching the global extremum is to search for all
possibilities; e.g., in the traveling salesman problem,
the most sure method searches the true route with
the minimum length from all possible routes. In such
a method, we can always find the true extremum. But
this method is extremely time-consuming; for exam-
ple, in the traveling salesman problem to visit N cities,
the calculation time increases as ∼ exp(N) [23]. Note
that the most sure method is completely different from
the simple method explained above, because a start-
ing point of searching the true route by the simple
method is fixed. On the other hand, the simulated
annealing method can give us a better solution un-
der realistic calculation costs. Our main aim in this
section is to identify a poloidal cross section of a flux-
surface by using the Poincaré points of the field line.
We assume that the cross section of the flux-surface
is obtained by connecting the points with the short-
est route. This assumption is not always guaranteed
to identify the flux-surface, but it is almost valid for
practical cases, as shown in Sec.2.2.3.
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The simulated annealing method is formulated by
the analogy with the annealing of a heated metal with
lattice defects, under slowly cooling [19]. As the tem-
perature decreases slowly, the heated metal forms the
pure crystal which is the lowest energy state. On the
other hand, if the temperature decreases rapidly, it
forms the non-crystal which is not the lowest energy
state. This analogy suggests us that the lowest state,
i.e., the global minimum of its energy function, is ob-
tained by cooling slowly. An energy equilibrium with a
temperature T is distributed with a Boltzmann prob-
ability distribution,

P (E) ∼ exp
(

E

kT

)
, (2)

where k means the Boltzmann constant. According to
the probability P (E), a lower energy state can climb
up to a higher energy state, i.e., there is a possibil-
ity that the system can escape from a local minimum
of the energy to a better state. As shown in Fig.3,
when the system is trapped in a local minimum of
the function, it can escape from there with the prob-
ability P ∼ exp[−(E2 − E1)/T ], where the energy of
the system is changed from E1 to E2(> E1). As the
temperature parameter T decreases slowly, the proba-
bility P becomes small. Then we may reach the global
minimum of the function. In the following, we show
how the method works, with a simple example.

2.2.2 Illustration of annealing method

We illustrate the annealing method applied to the
traveling salesman problem. The N points are pro-
vided as shown in Fig.4, where a number of each point
describes the initial order i = 1, . . . , N , N = 10 in
Fig.4. Each point locates at (xi, yi) and the solid line
in the figure represents the initial route of the sales-
man. An arrangement is defined as a permutation of
the number 1, . . . , N , interpreted as the ordering in
which the points are visited.

The initial order is rearranged as follows. We ran-
domly choose a segment from the initial route for the
rearrangement. For example, in Fig.5, the segment of
the route is chosen as the red line, where n1 is the be-
ginning of the segment and n2 the end of the segment.
Here, this segment is named n1-n2. We introduce an
objective function E to estimate a degree of the op-
timization. This function can be defined as various
forms according to considering cases. In our problem,
the objective function is just given as the total length
of the route,

E =
N∑

i=1

L(i, i + 1), (3)

where the point i = N + 1 is identified with the point
i = 1, and L(j, k) is defined to represent a path-length
between a point j and a point k, i.e.,

L(j, k) :=
√

(xj − xk)2 + (yj − yk)2. (4)

For finding the solution of the problem, the function
E should be minimized. In the method, we rear-
range the order of the points according to the following
two ways, reversal or transplant, which have the same
probability.

The reversal operation is that the segment is re-
moved and replaced with the same points in the oppo-
site order. As shown in Fig.6, we reverse the segment
n1-n2, i.e., we connect n1 to n4, and n2 to n3. In
the figure, blue lines represent new paths after revers-
ing the segment. We then introduce the cost of the
reversal operation, Crev, defined by the difference be-
tween the total lengths of the route before and after
the reversal operation, i.e., Crev = Eafter −Ebefore. In
the case of Fig.6, considering only changing paths, the
cost of the reversal is

Crev =
[
L (2, 7) + L (3, 8)

]

−
[
L (2, 3) + L (7, 8)

]
. (5)

The other way of rearranging the order of the
points is given by the transplant operation. The oper-
ation is that the segment is removed and transplanted
between two neighboring points which are randomly
chosen from the points not on the segment. In Fig.7,
the destination path of the transplant, n3-n4, is cho-
sen. We transplant the segment n1-n2 into the des-
tination path n3-n4, and close the route. In the fig-
ure, dashed-lines represent the old paths which are
replaced by the blue paths after the transplant of the
segment n1-n2 . The cost of the transplant operation,
Ctr, is given as

Ctr =
[
L (2, 8) + L (9, 7) + L (3, 10)

]

−
[
L (2, 3) + L (7, 8) + L (9, 10)

]
. (6)

After estimating the cost of the reversal or transplant
operation, we actually adopt the rearrangement ac-
cording to the probability PA based on the Metropolis
algorithm [24], where PA is defined by the cost C and
the temperature T ,

PA :=
{

1 for C ≤ 0
exp (−C/T ) for C > 0 . (7)

By the above operations, the annealing, i.e., escapade
with the Boltzmann probability distribution P (E) in
Eq.(2), is executed.

We proceed the above steps, i.e., the repetition
of the rearrangements and the annealing operations,
according to an annealing schedule which controls a
procedure how to reduce the temperature parameter
T [23]. When efforts to reduce the total path-length
E become sufficiently discouraging, the all calculation
steps are stopped.

2.2.3 Demonstration and application of an-
nealing method

We demonstrate the annealing method with an ex-
ample of the traveling salesman problem. As shown
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in Fig.8, an initial set of 30 random points is given,
where the number means the initial order in which
the points are visited, and the solid lines represent
the initial route of the salesman. The total length
of the initial route is calculated as Einitial = 18.16521.
The results of the simple method searching the nearest
neighbor point and the simulated annealing method
are shown in Figs.9 and 10, respectively. Each total
length of the route is calculated as Enearest = 4.994745
and Eanneal = 4.546217. Using the simulated anneal-
ing method, we obtain the better solution for the op-
timization of cyclical itinerary. This means that in
the simple method, the system is trapped in a local
minimum of the total length E, as shown in Fig.3,
because of the no-good choice of the initial starting
point. Therefore, even if the simple method does not
work well as such a situation, we have alternative way,
i.e., the simulated annealing method, to obtain the so-
lution of the traveling salesman problem.

We apply the annealing method to order the
Poincaré points of a field line. Specifically, we re-
gard that the route connecting the points, which is
obtained by using the annealing method, is the closed
curve of a poloidal cross section of a magnetic flux-
surface. Note that the minimum of E does not always
guarantee to identify a flux-surface; in general, when
the total number of the points is small, there are a
lot of possible routes and the shortest route does not
always express the true curve of the flux-surface. If
the number of the points is sufficiently large, then the
flux-surface is usually identified by the minimum of E.

As shown in Fig.11(a), the simple method search-
ing the nearest neighbors often fails the ordering. Of
course, if the number of the points becomes extremely
large, then the simple method may succeed to obtain
the flux-surface, but it is very time consuming. As
shown in Fig.11(b), the annealing method can find
the flux-surface with the comparable computing time
to the case of Fig.11(a). Therefore, the annealing
method enables us to obtain a flux-surface in realistic
calculation time. Note that it is difficult to identify
a rational surface by using the methods introduced
here. In such a case, we define the rational surface
by interpolating from neighbor irrational surfaces; see
the part III of Fig.1.

2.3 Calculation of toroidal fluxes

In the last part of the developed technique, we cal-
culate a value of toroidal magnetic flux ΨT and give
the label TFLUX to the flux-surface. In the following,
we consider the case of ΨA in Fig.2. As shown in the
figure, we assign square areas ∆Si to each grid-point
(xi, yi) which is included in the interior region SA on
a poloidal cross section. Note that the accuracy of the
calculation depends on the number of the grids. Con-
vergence of the calculation will be discussed in Sec.2.4.
The toroidal flux for the point A in Fig.2, for example,

is written as

ΨT =
∫

SA

Bϕ dS, (8)

where Bϕ is the toroidal component of the magnetic
field B. A value of the magnetic field in an area ∆Si

is acted as substituted by the value at a grid-point
(xi, yi), B(i). We denote the toroidal component of
B(i) by B

(i)
ϕ . Thus we numerically proceed the calcu-

lation of toroidal flux by the sum of B
(i)
ϕ ∆Si,

ΨT

ΨN
'

∑
(xi,yi)∈SA

B
(i)
ϕ ∆Si

ΨN
≡ TFLUX, (9)

where ΨN is the normalization and TFLUX is the label
denoting the value of the toroidal flux. Of course,
we can improve the integration scheme more precisely,
although we use the above simple scheme.

If an evaluation point locates on a rational surface
or an invisibly thin island, we calculate the toroidal
fluxes at the neighbor points of the original point, and
interpolate into the original point from the values at
the neighbor points, as mentioned in the part III of
Fig.1.

2.4 Numerical results

We confirm the convergence of calculating the toroidal
flux according to the number of the grids ∆Si. In
Fig.12, our result is compared with analytic value of
ΨT at the minor radius r = 0.5 m in the magnetic
field of a simple tokamak configuration given as

BR = −B0R0

q

Z

R2
,

Bϕ = −B0R0
1
R

, (10)

BZ =
B0R0

q

(R−R0)
R2

,

in terms of the cylindrical coordinate system,
(R, ϕ,Z), where B0 is the strength of the magnetic
field at the magnetic axis, R0 the major radius of the
axis, and q a safety factor. In Fig.12, B0 = 3 T and
R0 = 3.6 m. From this figure, we can see that the rel-
ative error becomes small as increasing the number of
the grids. The relative error does not significantly de-
pend on the choice of a flux-surface except a rational
surface.

We show the results for labeling the magnetic
flux-surfaces in some magnetic field configurations. In
Fig.13, we label the flux-surfaces on a poloidal sec-
tion in a magnetic configuration given by adding an
m/n = 1/1 magnetic island to the simple tokamak
configuration, which is called the test configuration in
this paper. The label of the regions of the magnetic
field structure IREGION and the label of toroidal fluxes
TFLUX are indicated by colors and their hues, respec-
tively. Here, we consider the success rate of ordering
the Poincaré points by the simple method. The rate is
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proportional to the number of the flux-surfaces iden-
tified successfully, i.e., there are no crossing paths in
the ordering and the points do not locate on a rational
surface or an invisibly thin island. Table 1 shows the
success rates of the simple method in the m/n = 1/1
magnetic island of the test configuration. From the
table, we see that as the number of the points in-
creases, the rate for the simple method approaches to
100 %, while the rate for the developed method is al-
ways 100 % for the all cases in the table. As shown
in Fig.14, when the number of the points is small,
the simple method often fails, because there is a case
where the path-length in the true curve L(i, j) is larger
than the path-length in the wrong curve L(i, k), i.e.,
L(i, j) > L(i, k). Thus the simple method selects a
wrong point, as shown in Fig.14. We should note that
there exist some rational surfaces and invisibly thin
islands in the configuration. When we encounter the
points on a rational surface or an invisibly thin island,
we interpolate the label of the surface from the neigh-
boring irrational surfaces; see the part III of Fig.1.

Finally, figure 15 shows a result for the LHD vac-
uum configuration with the m/n = 1/1 island, where
the vacuum magnetic field is calculated by using the
Biot-Savart low [25–27]. In this figure, the green line
represents the outside region which is very narrow,
then magnetic flux-surfaces in the exterior of the line
are not visible under the calculation accuracy. We
have succeeded in labeling the magnetic flux-surfaces
in the configuration with the island.

3 Summary

The labeling of magnetic flux-surfaces is needed for
transport analysis in non-axisymmetric magnetic field
configurations with magnetic islands. Frequently, it
is not easy to label the flux-surfaces because of their
complexity. We have developed the computational
technique for labeling the magnetic flux-surfaces by
applying the simulated annealing method. This is the
algorithm to find the global extremum. Our problem
is the ordering of the Poincaré points of field lines on
a poloidal cross section to identify the closed mag-
netic flux-surfaces. In the developed technique, we
label the flux-surfaces by two labels describing the re-
gions of the magnetic field structure (IREGION), and
the values of the toroidal magnetic fluxes (TFLUX). Of
course, a magnetic coordinate system can be locally
constructed on the island region by using the tech-
niques of the present paper and Refs. [15–18].

Using the technique developed here, the flux-
surface average can be obtained wherever closed flux-
surfaces exist; for example, the flux-surface average of
a function Φ(x) is given as

〈Φ(x)〉 ' 1
∆V

∫∫∫

∆V

Φ(x)d3x, (11)

where ∆V is the volume of a small shell which lies
between two neighboring flux-surfaces given by the

developed technique. Note that in an ergodic region
(IREGION = 2), the average is given as

〈Φ(x)〉 ' 1
V2

∫∫∫

V2

Φ(x)d3x, (12)

where V2 is the total volume of the ergodic region
assumed to be narrow. The average may be useful
to analyze the transport phenomena in terms of the
neoclassical transport theory. The neoclassical trans-
port analysis is frequently carried out on magnetic co-
ordinates [28–31]. However, in an LHD equilibrium
having the m/n = 1/1 island, there does not exist
a magnetic coordinate system along the flux-surfaces
in both the core and island regions. Therefore, we
are developing a δf -transport simulation code based
on computational techniques without magnetic coor-
dinates [32–34]. The results of the transport analysis
in/around the island region will be reported near fu-
ture.
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Table 1 The success rate of the simple method ordering
the Poincaré points. The result is obtained in the
m/n = 1/1 island in the test configuration. On the
other hand, the developed method always successes.

Number of points Success rate (%)
50 3.0
100 46.0
200 78.0
500 93.0

S T A R T

Input data of magnetic field

Input the initial guess 
for the boundaries between each regionI

Determine the boundaries
under the criterion

Ordering the Poincare plots
by seaching the nearest 
neighbour point

yes

no

’

Is the ordering success?

Ordering by 
the annealing method

Calculate "TFLUX" at the point A

Output "IREGION" and "TFLUX" of the point A

E  N  D

Determine "TFLUX" at the point A 
by interpolating from the values 
of Ψ  for the neighbor points.

Determine "IREGION" of the point A

Calculate Poincare plots of the 
field line starting from the point A
on the poloidal cross section

’

II

III T

yes

noIs the ordering success?

Fig. 1 Flowchart of the developed technique. The
chart describes the procedure labeling a flux-surface
which includes an evaluation point A. This tech-
nique is grouped into three parts: I) classification of
regions, II) ordering Poincaré points, and III) cal-
culation of toroidal magnetic flux, where IREGION

is a label of the regions and TFLUX is a value of the
toroidal flux.

3

4

2

1

point A

SA

Ψ
ΨA

B

ΨA

∆S i

Fig. 2 Classification of the regions (right-hand) and illus-
tration of calculating toroidal magnetic flux (left-
hand). We classify the regions into four parts: out-
side, ergodic, island, and core regions by the label
IREGION = 1, 2, 3, and 4, respectively. There does
not exist a magnetic coordinate system along both
the closed magnetic flux-surfaces, ΨA and ΨB . For
calculating the toroidal flux TFLUX at the evaluation
point A, we sum the toroidal fluxes B

(i)
ϕ ∆Si over

the interior region SA of ΨA.
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E (x)

P  exp[-(E -E )/T]

x

E 2
E 1

2 1

Fig. 3 Escapade from a local minimum. When the sys-
tem is trapped in a local minimum E1, it can
escape from there, according to the probability
P ∼ exp[−(E2 − E1)/T ].
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Fig. 4 The initial route of the traveling salesman problem.
The numbers describe the initial order.
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Fig. 5 The choice of the segment for the rearrangement.
In this case, the segment n1-n2 indicated by the red
line is the target for the rearrangement operations,
i.e., reversal and transplant.
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Fig. 6 Reversal of the segment n1-n2. In the reversal
operation, the segment n1-n2 is reversed; i.e., the
beginning point n1 of the segment is connected to
the point n4, and the end point n2 to the point
n3. Dashed lines represent the old paths before the
reversal operation.
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Fig. 7 Transplant of the segment n1-n2. In the transplant
operation, the segment n1-n2 is transplanted into
n3-n4 which is randomly chosen; i.e., the beginning
point n1 is connected to n4, and the end point n2

to n3. The point 2 has to be connected to the point
8 in order to close the route. Blue lines represent
new paths of the route, and dashed lines represent
the old paths before the transplant operation. By
repeating the transplant operation (this figure) and
the reversal operation (Fig.6), the rearrangements
of ordering the points are executed.
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Fig. 8 The initial set of 30 points. The numbers describe
the initial order and the solid line represents the
initial route. The total length of the initial route is
Einitial = 18.16521.
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Fig. 9 The result given by the simple method searching
the nearest neighbor point. The ordering fails, be-
cause the path from the point 30 to the point 1
crosses the path from 11 to 12. The total length of
the route is Enearest = 4.994745.
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Fig. 10 The result given by the simulated annealing
method. The ordering succeeds, because all paths
from a point i to a point i + 1 do not cross each
other, where i = 1, 2, . . . , 30, and the point 31
is identified the point 1. The solid line may be
a better minimum solution of the total length of
the route. In fact, the total length is Eanneal =
4.546217, which is less than the result of the simple
method in Fig.9.
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Fig. 11 Comparison between the results of two ordering
methods, i.e., the simple method and the simulated
annealing method, in an LHD configuration with
an m/n = 1/1 island. The ordering by the simple
method is unsuccessful; see the red line in figure
(a). On the other hand, the simulated annealing
method succeeds; see figure (b).
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Fig. 12 Convergence of the calculation of ΨT at r = 0.5
m for the simple tokamak configuration. The blue
line is given by the method of least squares.
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Fig. 13 The label of the magnetic flux-surfaces in the test
configuration on a poloidal section, where IREGION

and TFLUX are indicated by colors and their hues,
respectively.
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Fig. 14 A result of the simple method ordering the
Poincaré points in the test configuration shown in
Fig.13. The Red line represents failure connections
of each point and the dashed line represents the
true solution. Because L(i, j) > L(i, k), the order-
ing fails. Note that the point N has to be connected
to the point 1 in order to close the curve.
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Fig. 15 The label of the magnetic flux-surfaces in the LHD
configuration with the m/n = 1/1 island on a
poloidal cross section. The labels, IREGION and
TFLUX, are indicated by colors and their hues, re-
spectively. The green line represents the outside
region which is very narrow, and the flux-surfaces
in the exterior of the line are not visible under the
calculation accuracy.




