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Magnetization of a two-dimensional electron gas with a spin-orbit interaction
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We argue that a two-dimensional electron gas with a spin-orbit interaction is magnetized
when a voltage is applied with the Fermi level tuned to be in the energy gap. The magnetization
is an indication of spin-carrying currents due to the spin-orbit interaction.
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Fig. 1. A quantum wire under a voltage gradient.

In the present article, we consider a two-dimensional
electron gas with the Rashba or Dresselhaus spin-orbit
interaction.1–4 We argue that the system is magnetized
when a voltage is applied (Fig. 1) with the chemical po-
tential tuned to be in the energy gap. The magnetization
indicates spin-carrying currents due to the spin-orbit in-
teraction.

The spin current due to spin-orbit interactions is of
great interest recently, particularly from the viewpoint
of spintronics;5–7 we could control the dynamics of spins
with an external electric field. The spin current is pre-
dicted theoretically but has not been confirmed experi-
mentally. How can we detect a spin current? We propose
experimental observation of the magnetization that we
predict here. The magnetization will imply underlying
spin currents.

The following mechanism yields the magnetization. A
spin-orbit interaction in the Hamiltonian has two effects
on the dispersion of a channel (Fig. 2): first, the disper-
sion of up-spin electrons and the dispersion of down-spin
electrons, respectively, shift sideways in the opposite di-
rections; next, the crossing of the dispersions at kx = 0
opens up an energy gap. Under this dispersion, we con-
sider a simple theoretical state called the non-equilibrium
steady state;8–10 the right-going current has the Fermi
distribution of the left contact while the left-going cur-
rent has the Fermi distribution of the right contact and
they run ballistically and independently. When the chem-
ical potentials (the Fermi levels) of the right and left con-
tacts are tuned to be in the energy gap of the dispersion,

∗E-mail address: hatano@iis.u-tokyo.ac.jp
†E-mail address: sirasaki@phys.ynu.ac.jp
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Fig. 2. A schematic view of the dispersion relations of the upper

and lower bands of a channel. The right-going current has a
chemical potential μL = −|e|VL of the left contact, while the
left-going current has a chemical potential μR = −|e|VR of the
right contact.

the number of up-spin electrons in the left-going current
and the number of down-spin electrons in the right-going
current can differ, and thereby appears the magnetiza-
tion. This argument does not apply when the chemical
potential is in the middle of a band, where the right-
going up-spin electrons cancel the magnetization of the
right-going down-spin electrons.

Let us begin the explanation with the Rashba system.
The treatment of the Dresselhaus system is not much dif-
ferent. The Hamiltonian of the system with the Rashba
spin-orbit interaction is given by11

Ĥ =
1

2m∗
(
p̂2

x + p̂2
y

)
+ αRSO (p̂xσ̂y − p̂yσ̂x) , (1)

where m∗ denotes the effective mass of an electron and
αRSO denotes the strength of the Rashba interaction.
We choose the y direction as the quantization axis of the
electron spin and hence use the following representations
hereafter:

σ̂x =
(

0 1
1 0

)
, (2)

σ̂y =
(

1 0
0 −1

)
, (3)

σ̂z =
(

0 i
−i 0

)
. (4)

1
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Fig. 3. A schematic view of the dispersion relation (8) for (a)
some of the lowest channels and for (b) higher channels. The
lowest channel has a real crossing at kx = 0, but a higher channel
has an avoided crossing. In (b), the double minima of the lower

branch vanish for a high channel and the whole dispersion shifts
upwards as we go to even higher channels.

The system is of length L in the x direction and of width
W in the y direction with W � L � mean free path.
Hence the electrons run along the quantum wire ballisti-
cally through a few channels.

We first diagonalize the Hamiltonian (1) in the mo-
mentum space with the bases

|kx, ky, σy〉 =
1√
LW

ei(kxx+kyy) |σy〉 , (5)

where ky = 0, 2π/W, 4π/W, . . . and σy =↑, ↓.12 The
Hamiltonian (1) is given by a two-by-two matrix in the
spin space in the form

Ĥ =
�

2

2m∗
[
k2 + k (σ̂y cos φ − σ̂x sin φ)

]
, (6)

where k2 ≡ kx
2 + ky

2, (kx, ky) = k(cos φ, sin φ) and
θ ≡ 2m∗αRSO/�. The spin rotation exp(iφσ̂z/2) gives
the representation

Ĥ =
�

2

2m∗
(
k2 + kσ̂y

)
(7)

with the eigenvalues13,14

ε±(kx, ky) =
�

2

2m∗
(
k2 ± θk

)
, (8)

where the positive sign denotes the upper band and
the negative sign denotes the lower band. For the low-
est channel ky = 0, the dispersion has two branches
of parabolas with up and down spins, respectively. In
the higher channels ky > 0, the two branches are mixed
around the avoided crossing at kx = 0 (Fig. 3(a)). Note
that, away from the avoided crossing, the lower branch

in the region kx � 0 still predominantly has down spins
while it almost has up spins in the region kx � 0.

Incidentally, lower channels are nearly degenerate in
the present system as is shown in Fig. 3(a). This near
degeneracy may be lifted if we include a potential U(y) in
the Hamiltonian. As another remark, the double minima
of the lower branch shown in Fig. 3(a) vanish in higher
channels and their dispersion shifts upwards as we go to
even higher channels (Fig. 3(b)). The algebra hereafter
slightly changes in the latter case but the final result (18)
below is still valid.

The density of states D± of each band of each channel
is given by

1
D±

=
2π

L

∣∣∣∣∂ε±
∂kx

∣∣∣∣ =
π�

2

m∗L
|kx|
k

√
θ2 +

8m∗

�2
ε±. (9)

The group velocity in the x direction is

v± =
1
�

∂

∂kx
ε(kx, ky), (10)

which is positive wherever the slope of the dispersion is
positive. The spin rotation exp(iφσ̂z/2) changes the spin
operator σ̂y to σ̂y cos φ + σ̂x sin φ and hence the magne-
tization per unit area in the y direction is

m± = ± μB

LW
cos φ = ± μB

LW

kx

k
. (11)

The right-going current originated in the left contact
with the chemical potential μL contains all the states
with positive group velocities. Thus we have the magne-
tization per unit area of the right-going current in the
form

mR(ky) =

(∫ 0

−k−min

+
∫ ∞

k−min

)
m−f(ε−;T, μL)

dkx

2π/L

+
∫ ∞

0

m+f(ε+;T, μL)
dkx

2π/L

=
μBm∗

π�2W

(∫ ε−0

ε−min

−
∫ ∞

ε−min

+
∫ ∞

ε+0

)
f(ε;T, μL)√
θ2 + 8m∗

�2 ε
dε

(12)
for a channel, where f(ε;T, μ) denotes the Fermi distri-
bution function with the temperature T and the chemical
potential μ. We here defined for each channel the follow-
ing variables:

k−min(ky) ≡
√

θ2

4
− ky

2 (13)

ε−min ≡ −�
2θ2

8m∗ (14)

ε±0(ky) ≡ �
2

2m∗ (ky
2 ± θky); (15)

see Fig. 2. We used Eq. (9) in changing the integration
variable from kx to ε in Eq. (12). We can likewise obtain
the magnetization of the left-going current in the form

mL(ky) =
μBm∗

π�2W

(
−

∫ ε−0

ε−min

+
∫ ∞

ε−min

−
∫ ∞

ε+0

)
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× f(ε;T, μR)√
θ2 + 8m∗

�2 ε
dε (16)

The total magnetization per unit area is given by

Mtot ≡
∑
ky

M(ky) (17)

with

M(ky) ≡ mR(ky) + mL(ky)

= − μB

2π�W

∫ ε+0(ky)

ε−0(ky)

f(ε;T, μL) − f(ε;T, μR)√
αRSO

2 + 2ε/m∗ dε. (18)

Note here that only the integration over the energy gap
survives. This is consistent with what we described in
Fig. 2.

Let us analyze the linear response. We define the
chemical-potential bias as

μL = μ +
Δμ

2
, μR = μ − Δμ

2
(19)

with ΔV = VL − VR = −Δμ/|e|. The expansion of
Eq. (18) with respect to Δμ is followed by

Mtot

ΔV
	

∑
ky

M (1)(ky) ≡ μB|e|
2π�W

∑
ky

B(ky), (20)

where

B(ky) ≡
∫ x+0(ky)

x−0(ky)

g(x)√
αRSO

2 + 2(kBTx + μ)/m∗ dx (21)

with g(x) ≡ [2 cosh(x/2)]−2 and x±0(ky) ≡ (ε±0(ky) −
μ)/kBT .

Figure 4 shows the result of numerical calculation,
where we used the values for an InGaAs/InAlAs hetero-
junction:15 αRSO� = 3×10−11[eV m] and m∗ = 0.041me.
We also set W = 1[μm]. We find in Fig. 4(a) a peak of the
magnetization around the energy gap of the dispersion
relation. We observe for ΔV = 1[mV] the magnetiza-
tion of the order of 10−10[J/T/m2], which translates to
10−5[G] if we assume that the thickness of the hetero-
junction is 10[nm].15 Figure 4(b) shows the contribution
of each channel, Mn ≡ M (1)(2nπ/W ), to the total mag-
netization Mtot at T = 1[K]. We note that each contri-
bution is finite over the range of the energy gap of the
respective channel, which is indicated by each bar. In the
present case, some of the energy gaps overlap and hence
a sharp peak in Fig. 4(a).

Finally, the Hamiltonian with the Dresselhaus interac-
tion takes the form11

Ĥ =
1

2m∗
(
p̂2

x + p̂2
y

)
+ αDSO (p̂xσ̂x − p̂yσ̂y) . (22)

The rest of the formulation is the same as above with
θ ≡ 2m∗αDSO/� and with the spin representations

σ̂x =
(

1 0
0 −1

)
, (23)

σ̂y =
(

0 −i
i 0

)
, (24)

M
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Fig. 4. (a) The response of the magnetization per unit area to the
voltage bias ΔV . (b) Contributions Mn ≡ M(1)(2nπ/W ) from

various channels for T = 1[K]. The bars indicate the energy
gaps of the channels. In higher channels, the double minima at
kx = k−min vanish and the “energy gap” shifts to the right.

σ̂z =
(

0 −1
−1 0

)
. (25)

The magnetization in the x direction is measured but the
expression is the same as Eq. (18).

To summarize, we argued that the magnetization ap-
pears under a voltage gradient in systems with spin-orbit
interactions when the Fermi levels are tuned to be in an
energy gap. The magnetization is an indication of the
spin-carrying current. Without taking account of any re-
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laxation processes, the argument may be quite naive; we
nevertheless believe that it is worth reporting and should
be checked experimentally.

When we introduce a potential U(y) into the Hamilto-
nians (1) and (22), the near degeneracy of the channels
may be lifted. Then the magnetization should appear at
the energy gap of every channel oscillatingly. We can also
argue that the magnetization appears under a tempera-
ture gradient16–18 rather than a voltage gradient; this
effect will be reported elsewhere.
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