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Abstract

Measurements of the edge plasma turbulence  obtained by reciprocating Lang-
muir probe are analyzed and tested for self-similarity, long-range dependence
and multifractality. We present evidence for the multifractal character existing
in  both L- and H- mode data and also provide strong support for the local self -
similarity in the case of  L-mode. However, we show that neither L-mode nor
H-mode measurements show self-similarity in  the global sense. Moreover, we use     
several fractal and multifractal measures in addition to some non-standard statis -
tical techniques in order to characterize the L and H-mode  fluctuations.

Keywords: plasma, turbulence, intermittency, tokamak, multifractal, long - range
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1. Introduction

Edge turbulence  measurements represent an important object of current research efforts in
understanding plasma confinement in magnetic fusion devices and studies related to this
issue focus among other things, on quantification of intermittent aspects of the dynamics
(e.g. [1] ). Study of  turbulence  data makes the important contributions to the study of
plasma confinement in spherical, as well as, in toroidal  devices. Recently, a study devoted
to the analysis of self-similar aspect of the turbulence in the MAST device reported
results based on the rescaled range analysis and its ability to distinguish between low and
high operating regimes (L- and H-mode) with respect to the existence (or lack of) long-
range dependence [2]. In particular, this analysis concentrated on detecting long-range
behavior in low and high confinement regimes. In recent years several works were reported
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addressing the same aspect of confined plasma turbulence in relation to the possible self-
organized criticality (SOC) (see e.g. [3], [4], [5]). An important aspect of the long-range
dependence (LRD) property is its relationship to the convective aspect of the dynamics
since it is assumed that the avalanche-type transport induces LRD. Hence, detection
of LRD property is important for understanding the intermittent convective transport,
particularly in the scrape-off layer of magnetically confined plasmas. Most (if not all) of
these research efforts assume that the processes representing turbulent plasma behavior are
self-similar, in the sense that only one scaling parameter is sufficient to describe the self-
similar properties of the dynamics. The purpose of this report is to offer clear evidence
that turbulent processes taking place during the low and high confinement regimes in
the MAST device are multifractal, in the sense that many parameters are needed in
order to adequately (and mathematically correctly) characterize the self-similar property.
Moreover, we introduce several methods for quantifying multifractal behavior which offer
new insights into the properties of turbulence of L and H modes. Several methods for
the analysis of turbulent plasma regimes used previously by the present authors may also
yield some important information about the underlying dynamics, however they are not
well suited for the analysis of multifractal processes [6], [7].
The report is organized in the following manner. Following a brief description of

datasets, an overview of long-range dependent processes is given along with the results
obtained for the MAST datasets. An important feature of this section is the statistical
test of constancy in time of the scaling exponents. Section 4 gives a short overview of
multifractal processes and its relationship with the wavelet transform. Results pertaining
to this section contain discussion of multifractal properties of the L and H-mode turbulence
in the MAST device. Section 5 discusses effects of coupling long-range dependence with
intermittency and the possibility of simultaneous determination of the strength of each of
these processes. Concluding remarks are presented in section 6 along with the suggestions
for future research activities.

2. MAST edge turbulence datasets

Three datasets are analyzed in this report, obtained by courtesy of R. O. Dandy (EU-
RATOM/UKAEA Fusion Association, Culham Science Center, U.K.) and B.D. Dudson
(Dept. of Physics, University of Oxford, U. K.). These datasets consist of ion saturation
current (Isat) measurements obtained by a moveable Langmuir probe positioned at the
outboard midplane on MAST device[2]. The advantage of studying ion saturation current
lies in the fact that it carries information about bursts that carry large amounts of par-
ticles. Sampling frequency was 1MHz. The datasets were taken during two confinement
regimes: L-mode and a dithering H-mode. The L-mode is represented by two datasets
labeled 6861 (high density L-mode) and 9035. Dataset 9031 is a dithering H-mode with
heating power close to a threshold for L-H transition with intermittent high frequency



edge localized modes. These signals are represented in Fig. 1. Further details pertaining
to the datasets may be found in[2].

3. Quantification of long-range dependence

Widely used methods for characterization of plasma turbulence include probability distrib-
ution function (PDF), autocorrelation function (ACF) and power spectrum, while recently
several papers address the topic of possible long-range dependence in the edge turbulence
of toroidal magnetic confinement devices. Upon getting a Hurst exponent in the range
0.5 < H < 1, the authors often make conclusions concerning the global self-similar prop-
erties of such signals, particularly in relationship with the Self-Organized criticality (SOC)
models.(e.g. [1]). However, self-similarity is a strong statistical property which intuitively
may be defined as a property of scale invariance. This property implies that all scales have
equal importance and hence, there is no characteristic scale controlling the dynamics. The
notion of self-similar process is defined as follows.

Definition 1. A random process X(t), t > 0 is called self-similar if for any a > 0, there
exists b > 0, such that

X(at) $ bX(t).

and the following property may be proved.

Theorem 2. (Lamperti). If random process X(t), t ≥ 0 is nontrivial, stochastically con-
tinuous at 0, and self-similar, then there exists uniqueH ≥ 0 such that b = aH . IfX(0) = 0,
then H > 0. A self-similar process with parameter H is usually denoted as H-ss.

Such a process, evidently, cannot be stationary. Long-range dependence, on the other
hand, is associated with stationary processes and may be defined through spectral density.
The stationarity issue may be avoided if, for example, linear filtering is used which produces
stationary process. In such a case one may define a quasi spectral density as a function
of spectral density of filtered stationary process and transfer function of the filter. An
example is the spectrum of the fractional Brownian motion.
A stationary process X(t) is called long-range dependent (LRD) process if its autocor-

relation function or spectral density behave as

r(k) ∼ crk
α−1 as k→∞, α ∈ (0, 1). (1)

or
ΓX(ν) ∼ cf |ν|−α as ν → 0, α ∈ (0, 1). (2)

Equations (1) and (2) imply that the covariances r(k)decay so slowly, thatX∞

k=−∞
r(k) =∞, or equivalently ΓX(0) =∞.



There is a close relationship between long-range dependence and self-similar process as
increments of any finite variance H − sssi process (sssi stands for self-similar stationary
increments) have LRD, as long as 1/2 < H < 1, with H and α related through

α = 2H − 1.

The self-similarity exponent H is usually called the Hurst exponent. However, a Hurst
exponent H > 1/2 does not necessarily imply long time correlations like those found in
fractional Brownian motion. For example, Markov processes which by construction have
no memory, may also exhibit long-time correlations [8] The statement that H > 1/2
(persistence), or H < 1/2 (antipersistence) imply that correlations may be deduced from
a simple argument [9]. Calculating the autocorrelation as:

2 h∆x(t−∆t)∆x(t+∆t)i =
(∆x(t−∆t) +∆x(t+∆t))2

®
−

∆x2(t−∆t)

®
−

∆x2(t+∆t)

®
,

where ∆x(t+∆t) = x(t+∆t)− x(t) and ∆x(t−∆t) = x(t)− x(t−∆t). If the process,
which is assumed to be stochastic, has stationary increments, requiring that the mean
square fluctuation from any x(t) scales as [10]

(∆x(t+∆t)− x(t))2
®
= c∆t2H .

Since the scaling relationship depends only on ∆t and not on t, rescaling the autocorrela-
tion function by the mean square fluctuation

C(−∆t,∆t) =
h∆x(t−∆t)∆x(t+∆t)i

h∆x2(∆t)i ,

the following relationship is obtained:

C(−∆t,∆t) = 2α − 1 = 22H−1 − 1. (3)

Hence any H 6= 1/2 implies autocorrelations. The crucial part of the above derivation
is that the autocorrelations may exist for H 6= 1/2 only if the increments are stationary.
Hence an empirical measurement (or theoretical prediction) of Hurst exponent, without
evidence for stationarity of increments (or explicit evidence that the process possesses
memory) cannot be accepted as evidence for autocorrelations in the data. Since the data for
both L and H modes do not have stationary increments due to the extreme increment value
excursions as evident in Fig. 2, the signals should be carefully inspected for stationarity, for
example by dividing the signal into blocks of equal length which are essentially stationary
with respect to the first and second moments. It is interesting to notice that compared
to the other two signals, signal 6861 has the largest number of segments with stationary



increments, in spite of having the largest bursts. The LRD analysis presented here is
based on the discrete wavelet technique of stochastic processes[13], while more details on
the importance of the stationarity property may be found in [12]. Details of the wavelet
techniques used in the determination of Hurst exponent may be found, for example in [13]
and [14], and we mention here only the most important aspects.

3.1. Wavelet transform of scaling processes

Although the wavelet theory was originally developed for the analysis of deterministic
finite energy processes, applications to stochastic processes, in particular to turbulence
phenomena, have been very successful in recent years. Since the wavelet transform par-
titions the data into different frequency components and analyzes each component with
a resolution matched to its scale, the coefficients may be used to collect microscopic in-
formation about the scale-dependent properties of the data. It has been shown that for a
H-ss process the wavelet coefficients dX(j, k) exactly reproduce the self-similarity property
of the process. In particular, for sufficiently large scales j, the following relationship holds

log2 Ed
2
X(j, k) ∼ jα+ C = j(2H − 1) + C, (4)

where C is constant independent of location index k and E denotes the expectation value.
The above property in the wavelet domain allows the analysis of stationary, short-range
dependent (SRD) processes dX(j, .) for each j. A quantity of central importance is the
non-parametric, unbiased variance of the process dX(j, .)

μj =
1

nj

Xnj

k=1
|dX(j, k)|2 , (5)

where nj is the number of coefficients at octave j available for the analysis. Based on
the power-law expression (4), the scaling exponent α (and hence H) could be simply
obtained by inspecting the slope of log2 μj vs.j. This scaling behavior is detected by
means of the so called log-scale diagrams which display log μj as a function of scale j.
Confidence intervals about the log μj increase monotonically with j as larger and larger
scales are encountered and region of alignment in the log-scale diagram is detected where
up to statistical variation, the log2 μj values fall on a straight line. Since possible LRD
processes are analyzed, the alignment should be detected for large values of scales j (e.g.
≥ 6). Hence a log-scale diagram may be considered a spectral estimator where large scales
correspond to low frequencies.

3.2. Log-scale diagrams of MAST datasets

The log-scale diagrams are presented in Figs. 3, 4 and 5 corresponding to L-mode 6861, H-
mode 9031 and L-mode 9035 respectively. According to these diagrams L-mode turbulent



signals 6861 and 9035 display LRD while H-mode is practically white noise with Hurst
exponent almost equal to 1/2, hence not an LRD process. We also estimate coefficients
cf which take positive real values. Their importance lies in the property of long-range
dependence that the sum over all correlations is large (actually infinite), but individually
their sizes (which can be arbitrarily small) at large lag is controlled by cf . Moreover,
confidence intervals around mean estimates of LRD are proportional to the square root of
cf . In Table 1 we present LRD parameter estimates for all three signals, along with the
confidence intervals

L-mode 6861 H-mode 9031 L-mode 9035
α 0.254 0.03 0.264
H 0.627 [0.577 0.676] 0.515 [0.438 0.532] 0.632 [0.587 0.677]
cf 0.1225 [0.0719 0.1956] 0.1775 [0.058 0.4187] 0.03 [0.023 0.120]

Table 1: Global indicators of self-similar character of the three signals. Confidence inter-
vals are presented in square brackets.

We have also performed the LRD parameter evaluation using the Allan variance and
the obtained H values correspond well with the above values, being 0.620, 0.52 and 0.61 for
signals 6861, 9031 and 9035 respectively. Characteristic feature of all log-scale diagrams
obtained here is the large variability in top portion of the spectrum (large scales, usually
greater or equal to 6), which suggests that particular care should be taken in interpreting
the (possible) global Hurst exponent[14], requiring careful examination of the stationarity
properties of each signal and possible evaluation of local Hurst exponents.

3.3. Testing time constancy of scaling exponents

Large variability in the scaling process of the log-scale diagram may easily yield erroneous
detection of scaling regions when actually the data is not scaling but is non-stationary (in
a non-scaling sense). Hence any conclusion relating to the estimation of the global Hurst
exponent (for the entire time series) calls for detecting constancy (or non constancy) of the
scaling exponent. The test consists in dividing the data set into non-overlapping blocks
and estimation of scaling exponent for each of them[15]. The wavelet based estimates may
be assumed as uncorrelated Gaussian variables with unknown means but known variances.
The null hypothesis is that exponents for each block are equal,although unknown, and the
test is so devised that if the null-hypothesis is rejected one may conclude that the data
is both non-scaling and non-stationary. The size of each block must be chosen in such a
way so that the scaling region may be measurable over a sufficiently wide range of scales.
Consequently, the number and size of the blocks should be large enough to see or follow
precisely enough the variation in time of exponent H. For L-modes 6861 and 9035 we
obtained very good constancy of exponent H for several sets of block sizes (between 5



and 30) and several scaling regions, as shown in Figs 6 and 7. Hence the null hypothesis
was accepted in this case. In contrast to this, the null hypothesis was rejected in case
of an H-mode dataset 9031 for some of the dataset partitioning as shown in Fig 8, for
the case of partitioning into 10 blocks. However, for the case of 5 blocks (small number
of blocks) the null hypothesis is accepted due to the fact that the blocks are too wide
to reveal the variation in H. The null-hypothesis is again rejected for small block sizes
( ≥ 20) because the statistical fluctuations of the estimates are large enough to mask
the temporal variation of exponents H. Therefore, our final decision was to reject the
hypothesis of constancy of exponent H over blocks. An important feature of the log-scale
diagrams for each block (as well as for the entire signal) is that for large scales the log2 μj
practically does not change as a function of scale j (the slope is practically equal to 0 within
the confidence interval).But in order to deduce long-range dependence the scaling at large
scales is absolutely necessary, so rejection of the null hypothesis is more a consequence of
the non-scaling than the scaling variability. Based on these considerations we conclude
that the long-range dependence is not present in this dataset. The non-stationarity (in
the non-scaling sense) and inability to obtain the common scaling regions for the median
number of blocks (10 in this case) for the H-mode dataset 9031 is probably due to the
H-mode plasma being in the threshold region of the low to high confinement transition.
This transition state and its influence on intermittency properties may be responsible for
the high variability of the Hurst exponent.

3.4. Randomization method in detecting long range correlations

The basic idea of a randomization method is to decouple the short-range from the long-
range correlations in order to more clearly inspect the effects of the long-range dependence.
Following partitioning of the time series into a number of blocks of equal size, three types
of randomization procedures are performed. The first one is the external randomization
where the content of each block remains intact while the order of the block is randomly
shuffled. If the series is sufficiently long, the autocorrelations should exhibit significant
correlations beyond the block size. The next procedure is internal randomization, where
the order of the blocks remains the same while the contents of each block are randomized.
In this case if the dataset has long memory the autocorrelation function following such
a procedure will still exhibit power-law behavior. Finally, there is a two level random-
ization where each block is further subdivided into smaller blocks and the randomization
procedure is performed for the contents of each block as well as the order of the larger
blocks is shuffled. As a result of this procedure, both short and long range correlations
(across multiple blocks) are preserved, while medium range correlations (across multiple
smaller blocks within the same block) are equalized. In our tests the block size was set
at 20 and the results are presented in Figs 9, 10 and 11. External randomizations for all
signals causes elimination of all correlations beyond the block size. Internal randomization



preserves power law behavior for the case of L-mode signals 6861 and 9035, however this
is not so clear for the case of H-mode 9035 which is almost exponential. Also two-level
randomization distorts the medium-range correlations in the case of L-modes 6861 and
9035, while this is not the case for H-mode signal 9035.
Finally, we may conclude that the L-modes 6861 and 9035 definitely display long-range

correlations,while the H-mode signal shows white noise like properties and the lack of long-
range dependence due to the non-stationarity and lack of constancy of the H exponent
over time. In addition, we argue that the relationship of the power-law behavior at small
frequencies with high variability of the block-data Hurst exponents at large scales (small
frequencies) suggests that strong intermittent bursts at small scales (high frequencies)
have a large impact on the dynamics at large scales. Hence, a simultaneous evaluation of
the effects of long-range dependent effects and intermittency could give some more insight
into this phenomenon.

4. Multifractal properties of datasets

4.1. Basic properties of multifractal processes

Definition 3. A random process X(t), t>0 is called Multifractal process (mf), if for any
a>0, there exists a random function M(a) such that

X(at) $M(a)X(t).

Here the scaling (self-similar) factor M(a) is a random variable, whose distribution
does not depend on the particular time instant t. Exact self-similar process is a degenerate
example of a multifractal, with M(a) = ah and sometimes is referred to as a mono-fractal
process. The generalized self-similarity index is defined as h(a) = logaM (a). Therefore
the above relationship may be rewritten as

X(at) $ ah(a)X(t). (6)

In contrast to self-similar processes, the index h(a) is a random function of a. The exponent
h(a) is referred to as the Hölder exponent.

Definition 4. A random process X(t), t>0 is called Multifractal process if it has station-
ary increments and satisfies

E(|X(t)|q) = C(q)τ(q)+1, for all t ∈ T ; q ∈ Q,

where T and Q are intervals on the real line, τ (q) and C(q) are functions with domain Q.
Moreover, we assume that T and Q have positive lengths, and that 0 ∈ t, [01] ⊆ q.



Function τ (q) is the scaling function of a multifractal process. All τ (q) has the intercept
−1, which is implied by E(|X(t)|q) = 0 at q = 0. As a special case, monofractal has the
linear scaling function τ (q) = Hq − 1. It is also shown that τ (q) is always a concave
function for all multifractal functions.
Based on the expression for the self-similar process (strict sense),

X(at) $ aHX(t) (7)

one may question whether this relationship holds for the datasets under study and con-
sequently question into the meaning of the determined Hurst exponent in the analysis of
the long-range dependence. As an initial step in this direction our aim here is to deter-
mine whether the above expression is valid for the L and H mode datasets of the MAST
confinement regimes.
Local exponents h(a) are evaluated through the modulus of the maxima values of the

wavelet transform at each point in the time series. Then, the scaling partition function
Z(q) is defined as the sum of the q-th powers of the local maxima of the modulus of the
wavelet transform coefficients at scale a. For small scales, the following relationship is
expected

Z(q) ∼ a τ (q). (8)

For certain values of q, the exponents τ (q) have familiar meanings. In particular τ (2) is
related to the scaling exponent of the power spectra, Γ(ν) ∼ 1/νβ , as β = 2 − τ (2). For
positive q, Z(q) reflects the scaling of the large fluctuations and strong singularities, while
for negative q, Z(q) reflects the scaling of the small fluctuations and weak singularities
[11]. Hence, the scaling exponent τ(q) may reveal much about the underlying dynamics.
Monofractal signals display linear τ(q) spectrum,

τ (q) = qH − 1, (9)

where H is the global Hurst exponent. For multifractal signals τ (q) is a nonlinear function
τ (q) = qh(q)−D(h), where

h(q) ≡ dτ(q)/dq (10)

is non- constant Hölder exponent (local Hurst exponent).and D(h) is the fractal dimension

D(h) = qh− τ(q). (11)

This function, also known as the Legendre multifractal spectrum since it is obtained by
taking the Legendre transform of τ (q), is very useful to characterize multifractals. It is
smooth and continuous and shows a single maximum. It is also universal in the sense
that the same general type of function characterizes many different types of multifractal
phenomena, or that an identical function characterizes a whole range of phenomena. The
maximum value of D(h) is the capacity dimension D0 of the multifractal support, hence



it may be an integer. The D(h) = h line is tangent to the D(h) vs. h plot, and the
point of contact gives the information dimension D1. The other generalized dimensions
are arranged around the D(h) vs. h curve, positive values to the left of the maximum,
and negative values to the right. The spread of the D(h) vs. h curve is a measure of
clustering of the data. Large positive D(h).(low h values) correspond to points having
small higher moments, so that large data values (or concentrations of data points) are
clustered around these points. Large negative D(h) (high h values) correspond to points
with higher moments, so that low data values (or low concentrations of data points) are
found close to these points. In a typical multifractal, there is a strong clustering of the
data, whereas in a monofractal the D(h) vs. h plot would be a single spike (all generalized
dimensions are equal to D0) indicating that clustering is no more than would be expected
from the simple generating mechanism, or from a random process. The curve D(h) vs. h
is not necessarily symmetric. Most commonly the left side is steeper than the right one.
This indicates that dense clusters, or clusters of exceptional large values, are rare relative
to sparse concentrations, or low values.

4.2. Multiscale diagrams and wavelet coefficients

In the wavelet transform formalism, the partition function is defined as

Z(q) = lim
j→−∞

logE |dX(j, k)|q .

The log-scale diagrams used to inspect the scaling of the variance of the wavelet coefficients,
eq.(5), may be generalized to the study of higher order statistics so that the generalized
eq.(5) takes the form

μj =
1

nj

Xnj

k=1
|dX(j, k)|q .

This expression may be related to the definition 4 of the multifractal process in the fol-
lowing manner. From the definition of self-similarity, the moments of the random process
X(t) satisfy

E(|X(t)|q) = E(|X(1)|q) · |t|qH , ∀t.
The property of wavelet coefficients

E |dX(j, k)|q = E |dX(0, k)|q · 2j(τ (q)+q/2),

implies that
Eμqj = C(q)2j(τ (q)+q/2), ∀j,

with
τ (q) = qH.



This relationship indicates that self-similarity (and multifractality) may be inferred by
testing the linearity of ζ(q) with q. For multifractal processesZ

|TX(a, t)|q dt ≈ a(τ(q)+q/2) (a→ 0),

where TX(a, t) are continuous wavelet coefficients

TX(a, t) =

X
¯̄
ψa,t

®
, a ∈ R+, t ∈ R,

and where ψa,t are dilatations and translations of the mother wavelet ψ0
. From these ex-

pressions τ (q) may be measured and the Legendre multifractal spectrum may be obtained.
Naturally, one is first interested whether τ (q) takes a simple form τ(q) = qH. For example,
self-similar processes, for which

μqj ≈ 2j(τ(q)+q/2),
for all scales satisfy τ(q) = qH, and are therefore fractal processes with h = H. The
multiscale diagram is obtained by plotting τ(q) = hq−(1/2)(q−1) against q, (together with
confidence intervals about τ (q)). If there is no alignment, i.e. the relationship τ (q) = qH
does not hold, a multifractal scaling is deduced. Using the same wavelet formalism we may
obtain the τ (q) vs. q and the Legendre spectrum (D(h) vs. h), and as discussed above
they may be used to qualitatively and quantitatively describe the multifractal properties
of the signals.

4.3. Multiscale diagrams and multifractal spectra for the L and H modes

Test for multifractal property of the signals are presented in Figs. 12, 13 and 141. Dia-
grams on the left side of each figure show scaling of τ (q) with q, while diagrams on the
right show q-dependence of hq(= τ (q)/q). Diagrams clearly illustrate that all three confine-
ment regimes (6861 L-mode, 9031 H-mode and 9035 L-mode) are multifractal processes,
and hence cannot be characterized by a single Hurst exponent. Specifically, none of the
diagrams on the right (Linear multiscale diagrams) have approximately constant h(q) for
positive q (a sign of global scaling). In order to compare this with the monofractal process,
in Fig. 15 we show the same diagrams for the fractal Gaussian noise where a flat region
for positive q is a clear indication of global self similarity. Hence signals of both the low
and high confinement regimes are multifractal processes. In order to quantify the multi-
fractal properties we present in Figs 16, 17 and 18 the τ (q) spectra and the corresponding
singularity spectra. The singularity spectra (or the Legendre spectra) are obtained from
the scaling exponents τ (q) of the partition function by means of the Legendre transfor-
mation. Essentially, the singularity spectrum describes the statistical distribution of the
singularity exponents by associating with any given exponent the Hausdorff dimension of

1Matlab routines developed by P. Abry and D. Veitch were used for this purpose.



the set of points which have the same singularity exponent[11]. It is simple to deduce three
key attributes of the multifractal spectrum, namely the left slope, mode and the width
spread. By the arguments given earlier, one can deduce that the value corresponding to
the most frequent singularity is the information dimension D0 (mode). This quantity rep-
resents actually the most sensitive indicator of the mentioned three geometrical attributes
of the multifractal spectrum. Information dimension for the L-mode signal 9035 and the
H-mode signal 9031 are very close to 1, however it is somewhat smaller for the L-mode
6861 signal (D0.≈ 0.95). The left side in all three cases is steeper than the right one, indi-
cating that dense clusters, or clusters of exceptional large values are rare relative to spares
(low value) concentrations. The mode for the L-mode 6861 is the most positive indicating
slightly weaker intermittency compared to other two datasets. Recalling that according
to Kolmogorov K41 theory the mode is 1/3 and since all three signals have modes below
this K41 value, the intermittency effects are strong in all three datasets. This suggest
that it is important to study the coupling effects of long-range dependence together with
intermittency in order to more effectively interpret the dynamics of the two regimes. This
issue will be discussed in somewhat more detail later on.
In contrast to the power spectra, which describe the distribution of energy of the

signal, the multifractal spectrum describes the distribution of local singularities expressed
in terms of the so-called Hölder exponents. Formally, the function X is Hölder continuous
with exponent α, 0 < α < 1, at t0 if as |t− t0| = |∆t|→ 0,

|X(t0 +∆t)−X(t0)| ≤ C |∆t|α .

Geometrically, a local singularity at time t0 can be visualized as a relation between neigh-
borhood fluctuations of a function X(t) and two bounding curves as shown in Fig. 19.
To estimate such a singularity, two curves expressed through X(t0) ± C |t− t0|α may be
constructed (where C is a constant). The maximum value of α that locally bounds X(t)
in the neighborhood of t0 between these two curves is the local singularity (bottom-left
diagram of Fig. 19). When α is large, the curvatures are narrow thus limiting local
fluctuations (bottom-right diagram of Fig. 19). When α is small, two curves have small
curvature, thus allowing X(t) to take on large local irregular behavior and when t0 slides
across the time series, the distribution of the resulting α is described by the multifractal
spectrum. It has been shown that the local singularity strength can be measured in terms
of the wavelet coefficients as[18]

h(t) = lim
k2j→t

1

j
log2 |dX(j, k)| .

With the h determined, the multifractal spectrum, sometimes denoted by f(α) because
α is used instead of h, measures the distribution of h(t) within a time series and can be
also obtained using the standard box-counting technique. The Hölder exponent may be



thus interpreted as a local Hurst exponent, and in the manner that global Hurst exponent
carries information about self-similar functions, it characterizes the regularity of a function
at a given point of the time-series. A Hölder exponent between 0 and 1 indicates that
the signal is continuous but not differentiable at the considered point, and the closer
this exponent is to zero, the less regular the function is. Pointwise Hölder exponents,
measuring the scaling behavior at infinite resolution, for the two regimes are presented in
diagrams of Figs 20, 21 and 22. Hence, all modes are characterized by continuous but not
differentiable signals. For comparison purposes, Hölder exponents for the three signals are
presented using the large deviation spectra. A large deviation spectrum (LDS) represents
coarse grained Hölder exponents which measure scaling behavior at finite resolution. The
large deviation spectra which point to discernible differences between the signals for the
three confinement regimes are presented in Fig. 23. The x-axis in this diagram represents
the Hölder exponents of signals and the y-axis reflects the number of points with the
corresponding exponent, i.e. the probability of finding the particular Hölder exponent
within the signal. The 6861 L-mode is considerably more regular than the other two,
while the 9035 H-mode and 9035 L-mode exhibit surprisingly similar spectra with the L-
mode 9035 being slightly more irregular. Recalling the almost stationary increments of the
6861 signal it may be inferred that intermittent burst do not change much the regularity
of this signal. Based on these results of the analysis alone, it is clear that all signals are
the product of small-scale stochastic plasma turbulence, without large-scale events.
Few words should be devoted to the relationship between the singularity (Legendre)

spectrum and the large deviation spectrum. The singularity spectrum represents a con-
cave approximation to the large deviation spectrum (LDS). The LDS yields more robust
estimates however at the expense of a loss of information. Hence both spectra should be
used in the analysis along with the Hausdorff spectrum which is the most precise spec-
trum from a mathematical aspect, however very demanding as far as computational time
is concerned. The complete analysis of the three spectra will be given elsewhere.

5. Coupled effects of long-range dependence and intermittency

The scaling of the energy spectrum in the high frequency range in all three processes
is different from the scaling in the low frequency range. Since the scaling in the low
frequency range determines long-range behavior and the scaling in the high frequency
range is determined by intermittency effects it is of great importance to study both effects
simultaneously on the basis of the model presented in [19] and [20]. Namely it has been
argued that the fractional Riesz-Bessel motion (fRB), which represents a Gaussian process
which has stationary increments and spectral density of the form

Γ(ν) =
cf

|ν|2β
1

(1 + ν2)γ
, (12)



with the two fractional parameters satisfying

β ∈ (1/2, 3/2) and γ ≥ 0,

or

Γ(ν) =
cf

|ν|2β
1

(1 + ν2)γ
ν2

1 + ν2
, (13)

with the two fractional parameters being

β ∈ (1/2, 3/2) and β + γ ≥ 1/2,

may be appropriate to model combined effects of long-range dependence and intermittency.
Synergistic action of these two effects is reflected in the scaling of the energy spectrum. It
may be easily noticed that the fractional Brownian Motion (fBM) is the limiting case of
the expression (12) as γ → 0 and H = (2β−1)/2. The importance of these two expressions
(12) and (13) in the analysis of turbulent signals stems from the physical meaning of these
expressions. The component |ν|−2β signifies the long-range dependence with fractional
parameter β = H + 1/2, while the component (1 + ν2)−γ indicates second-order intermit-
tency. Therefore, based on the model of the fractional Riesz-Bessel motion it is possible
to study both effects simultaneously by determining the corresponding exponents β and
γ. In order to illustrate graphically these two effects we show the periodograms for the
three processes under study in Figs. 24, 25 and 26. The periodogram IN of the signal
X(t) represents the power spectrum of the entire signal according to the expression

IN (ν) =
1

2πN

¯̄̄̄Z N

0

e−iνtX(t)dt

¯̄̄̄2
,

where N > 0 is the upper bound of the interval [0, N ], on which each X(t) is observed.
Naturally, periodograms of segments of the time series may be averaged together to form
the power spectral density. The main advantage of the periodogram with respect to
the power spectral density, in this particular case, is the ability to clearly disclose the
scaling behavior both in the low and in the high frequency range. The negative slope
of power-law behavior in the low-frequency range determines the long-range dependence
while the steeper negative slope in the high frequency range determines the intermittency
strength. Note that the flat region in the low frequency range for the H-mode signal 9035
suggest possible lack of long-range dependence. Also evident is that the slopes in the
high frequency region are different, corresponding to the different intermittency effects in
the low and high confinement regimes. An estimation procedure based on the wavelet
transform, as suggested in [19] and [20], may be used for determining both fractional
exponents simultaneously. Details of this procedure and the obtained results will be given
elsewhere.



6. Conclusion

One of the main features of the H-mode signal 9035, pertaining to the lack of long-range
dependence, is that it shows large temporal variability in the Hurst exponents values
evaluated over signal partitioned into equal segments. This variability cannot be inferred
from the distribution of means and variances corresponding to the blocks, however may
be expected from the distribution of increments over time. The fact that this signal has
been recorded close to the threshold of the low-to-high confinement regimes is of particular
relevance with respect to the issue of exponents variability and suggests further inquiries
into the mechanism of the loss of long-range dependence. On the other hand almost
stationary segments in the temporal dynamics of the 6861 increments suggest LRD process.
The possible LRD in the signals may be anticipated from the slope of the periodogram at
small frequencies (large scales). All turbulent signals are multifractal which indicates that
they are only locally self-similar and that many Hurst (Hölder) exponents are necessary in
order to quantify the self-similar features. Singularity spectra, obtained with the wavelet
transform method, yield information about the distribution of singularities and may be
used to estimate several types of dimensions. Information dimension, pertaining to the
maximum of the singularity spectrum, is slightly lower for the L-mode signal 6861 due
to its higher regularity as compared to signals 9031 and 9035. Detailed analysis of the
multifractal features requires analysis of the Hausdorff spectrum, large deviation spectrum
and the singularity spectrum, and will be presented in another report. Finally, we suggest
that fractional Riesz-Bessel motion may be of relevance for explaining the coupling between
long-range dependent dynamics and intermittency.
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Figure 1: Saturation current as a function of time for the low confinement regime (signals
6861 and 9035) and the high confinement (dithering H-mode) 9035 signal.
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Figure 2: Increment process of the L-mode 6861 and 9035 signals and H-mode signal 9035.
Note high excursions in the 6861 signal. In spite of that, this signal also contains more
stationary blocks than the other two signals.
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Figure 3: Log-scale diagram displaying scaling of the variance of wavelet coefficients across
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Figure 4: Log-scale diagram for the H-mode 9031 signal. Note the zero slope for high
scales indicating lack of long-range dependence.
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overall value and the dashed line gives the average value.
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Figure 7: From top to bottom: means, variances, Hurst exponents and cf ’s evaluated
over each block for signal 9031. On means and variances diagram horizontal line gives the
overall value for the entire series. On H and cf diagram solid horizontal line indicates the
overall value and the dashed line gives the average value.
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obtained by performing internal, external, total and two-level randomization as indicated.
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indicated.
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Figure 19: Geometric interpretation of local scaling exponent. Distribution of scaling
exponents evaluated for the complete time series represents the multifractal spectrum.
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Figure 20: Pointwise Hölder exponents for the 6861 L-mode
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Figure 21: Pointwise Hölder exponents for the 9031 H-mode
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Figure 22: Pointwise Hölder exponents for the 9035 L-mode
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Figure 24: Periodogram of the L-mode 6861 signal.
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Figure 25: Periodogram of the H-mode 9031 signal.
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Figure 26: Periodogram of the L-mode 9035 signal.


