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Abstract. The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed 
using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal 
flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the 
weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly 
caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of 
zonal flows governs the global confinement in toroidal plasmas. 
 
1. Introduction 
 
The turbulence-driven transport and transport barriers are the key issues in fusion research. 
Main efforts have been focused on the understanding of improved confinement modes (such 
as the H-mode [1]). In these phenomena, the turbulent (anomalous) transport coefficient 
shows the steep gradient at a particular radius after the onset of the transition. One thread of 
thoughts to explain transport barriers is the structural transition of the profile of radial electric 
field Er and the suppression of turbulence by its gradient [2]. The bifurcation of the radial 
electric field in helical plasmas is influenced by the neoclassical ripple transport, and the 
resultant electric field interface (by which the radial domains with positive Er and negative Er 
are separated) was predicted to induce the internal transport barrier due to the shear of the 
radial electric field in the helical plasmas. The Er -interface was found on the Compact Helical 
System (CHS), and the improvement of the electron confinement was found inside of the 
interface for Er [3] (hereafter called 'electron internal transport barrier', e-ITB). The 
appearance and the location of the Er-interface were analyzed [4]. Observations on 
Wendelstein 7-AS [5], Large Helical Device (LHD) [6] and other confinement devices 
followed [7]. However, the essential issue of the e-ITB in helical devices has been 
unexplained; i.e., the turbulent transport coefficient was found to be suppressed not only near 
the interface (with the strong inhomogeneity of Er) but also in the whole region of the strong 
positive Er. Away from the transition radius, the gradient dEr/dr is not strong enough to 
suppress the turbulent transport. Fundamental problems remain unresolved. (In LHD, an 
internal diffusion barrier (IDB) is recently observed with the high gradient of the density in a 
super dense core plasma. In a core region, the high density of 4.5 !1020m"3  and the 
temperature of 0.85keV are obtained. Physics of an IDB is beyond the scope of this article, 
and details of an IDB are discussed in [8].) 
 
In this article, we study the role of zonal flows (ZFs) [9] in the formation of e-ITB. The 
turbulent transport coefficient, in which the screening influence of zonal flows is included, is 
shown to be reduced when the plasma state changes from the branch of weak negative Er to 
the strong positive Er. This new transition of the turbulent transport is induced by the change 
of the damping rate of zonal flows, which is strongly influenced by the neoclassical ripple 
transport. We show the clear transport barrier in the electron temperature profile. The analytic 
results by use of the transport code are shown. 
 
2. One-dimensional model for transport equations 
 
In this section, the model equations used here are shown. The one-dimensional transport 
model is employed.  The cylindrical coordinate is used and r-axis is taken in the radial 
cylindrical plasma in this article. The region 0 < ! < 1  is considered, where a  is the minor 
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radius and ! = r / a . The expression for the radial neoclassical flux associated with 
helical-ripple trapped particles is given in [10] which covers from the ! j  regime to the 1/! j  
regime, where ! j  is the collision frequency for the species j . The total particle flux t

!  is 
written as t

! =
na

! "
T

D n' , where na

! is the neoclassical flux associated with the 

helical-ripple trapped particles, and the prime denotes the radial derivative. Here, 
T

D  is the 

turbulent (anomalous) particle diffusivity with the effect of the zonal flow. The effect of ZFs 
is discussed in the next section. The energy flux related with the neoclassical ripple transport, 
Qj

na , is obtained like the neoclassical particle flux. The total heat flux Qj

t  for the species j  is 

written as Qj

t
= Qj

na ! n
T

" jT '! 3
T

D n' jT / 2 , where 
T

!  is the anomalous heat diffusivity. A 

theoretical model for the anomalous heat conductivity is adopted and is explained later. The 
neoclassical diffusion coefficient for the electric field is expressed in [11]. The anomalous 
diffusion coefficient for the radial electric field is denoted by the parameterD

ET
. The temporal 

equation for the density is  
 

!n

!t
= "

1

r

!

!r
(r t
# ) + nS ,       (1) 

 
where the term nS  represents the particle source. The equation for the electron temperature is 
given as 
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where the term !

e
 denotes the electron collision time and the second term in the right hand 

side represents the heat exchange between ions and electrons. The term heP  represents the 
absorbed power due to the ECRH heating. The temporal equation for the ion temperature is  
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The term hiP  represents the absorbed power of ions. The radial electric field equation in a 
nonaxisymmetric system is expressed by [11] 
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where !

"
 is the perpendicular dielectric coefficient which equals to 

!0 (1+ c
2
/ vA

2
)(1+ q

2
/ ! t ) . Here, !

0
 is the dielectric constant in vacuum, v

A
 is the velocity 

of the Alfvén wave, !
t
 is the toroidal ripple and q  is a safety factor.  

 
The source profiles are chosen here as follows.  The particle source S

n
 is set to be 

Sn  = S0exp((r -a)/L0 ) , where L
0

 is set to be 0.01m. This profile represents the peaking at the 
plasma edge of the particle source due to the ionization effect.  The intensity, S

0
, governs the 

average density, and is taken as a control parameter to specify the density in this article.  The 
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radial profiles of the electron and ion heating terms, heP  and hiP , are assumed to be 
proportional to exp(!(r / (0.2a)2 )  for the sake of the analytic insight.  (Effect of the heating 
profile has been studied, and the assumption does not change the qualitative conclusion for 
the establishment of the internal transport barrier [4].) 
 
The equations of density, temperature and electric field (1)-(4) are solved, with the prescribed 
source profiles, under the appropriate boundary conditions. We fix the boundary condition at 
the center of the plasma (! = 0 ) such that n ' = T

e
' = T

i
' = E

r
= 0 . For the diffusion equation 

of the radial electric field, the boundary condition at the edge (! = 1) is chosen as jZ
j

! j
na

" = 0 . 

This simplification is employed because the electric field bifurcation in the core plasma is the 
main subject of this study. The boundary conditions at the edge (! = 1), with respect to the 
density and temperature, are given by specifying the gradient scale lengths.  We employ those 
expected in LHD: !n / n ' = 0.05m , !T

e
/ T

e
' = !T

i
/ T

i
' = 0.02m in this article. The machine 

parameters which are similar to those of LHD are set to be R = 3.6m , a=0.6m , B = 3T ,  != 2  
and m = 10 . In this case, we set the safety factor and the helical ripple coefficient as 
q = 1/(0.4 + 1.2!2

) and !h  = 2 1 - (2/(mq(0)) "1) I2 (mr/R) , respectively. Here, q(0)  is the 
value of the safety factor at ! = 0 and I

2
 is the second-order modified Bessel function.  

 
3. Model of turbulent transport coefficients 
 
The system of Eqs. (1)-(4) has been known to predict the structural bifurcation such that the 
internal transport barrier is formed when the heating power at the core is high enough in a low 
density regime. The improvement of the confinement was predicted in two ways: the 
turbulent transport is suppressed by E

r
'  near the transition interface, and the neoclassical 

transport is strongly suppressed inside of the electric field interface. The suppression of the 
turbulent transport is limited near the interface, and its reduction in the entire core plasma 
(! < !

T
) has not been explained, where the parameter !

T
 shows the location of the Er 

-interface.  
 
In the absence of the zonal flow, we adopt the model for the turbulent heat diffusivity !

T0
 

based on the theory of the self-sustained turbulence due to the ballooning mode and the 
interchange mode, both driven by the current diffusivity [12,13]. The reduction of the 
anomalous transport due to the inhomogeneous radial electric field was reported in the 
toroidal helical system. The anomalous transport coefficient for the temperatures is given as 

!
T0

= !
0
/ (1+G"

E1

2
) , (!0 = F(s,")"

3

2c
2
vA

2
/ (#pe

2
qR) ), where !pe  is the electron plasma 

frequency. The factor F(s,!)  is the function of the magnetic shear s  and the normalized 
pressure gradient ! , defined by s = rq '/ q  and ! = "q2R# ' . For the ballooning mode 
turbulence (in the system with a magnetic well), we employ the anomalous thermal 
conductivity !

T0,BM
. The details about the coefficients F(s,!) , G , and the factor !

E1
, which 

stands for the effect of the electric field shear, are given in [13] in the ballooning mode 
turbulence. In the case of the interchange mode turbulence for the system of the magnetic hill 
[12], we adopt the anomalous thermal conductivity !

T0,IM
. The details about F , G , and the 

factor !
E1

 in the case of the interchange mode were given in [12]. The greater one of these 
two diffusivities is adopted as !

T0
= max(!

T0,BM
,!

T0,IM
) .  

 



 4                                                                                                              PD/P6-4 

 

The zonal flows (at nearly zero frequency) are generated by the fluctuations and strongly 
influence the turbulent transport. The damping rate of zonal flows, !damp , controls the 
turbulent transport. The damping of zonal flows is caused by the collisional process and by 
the self-nonlinearity of zonal flows [9].  In the toroidal helical plasmas, the collisional process 
remains to be important even in the regime of !

*
< 1  (!* = !iqR / ("vthi ) ). In the case that the 

collisional damping rate !damp  is small, the heat diffusivity !
T

 has been derived considering 
the screening by zonal flows [9].  Whether the zonal flows are excited or not is judged by 
comparing !

T0
 (which is given in the absence of zonal flows) with the quantity 

 
   !damp " k#

2 qr
– 2k $

– 2 %damp ,        (5) 
 
where qr is the wave number of zonal flows, k

!
 is the poloidal wavenumber and k

!
 are the 

perpendicular wavenumber of the microscopic fluctuations, respectively. When the turbulence 
is weak and !

T0
 is smaller than !damp , zonal flows are not excited and one has !

T
= !

T0
. If 

the condition   !damp < !T0  is satisfied, zonal flows are excited and the fluctuation level of the 

electric field  !E  is controlled as 
 

!E
2

! "damp /#* , where !
*
is the drift frequency. Then the 

turbulent diffusivity !
T

 is reduced as !T = !T0!damp [14]. A fitting formula is often 
employed as

   
!T = !T0 min( !T0 , !damp )        (6)  

 
to include the effect of zonal flows in the transport codes.  
 
This dependence of !

T
 on the damping rate of zonal flows, in Eq. (6), explains the improved 

confinement in the e-ITB region of toroidal helical plasmas. The neoclassical part of the 
radial current J

r

NEO  in helical plasmas is induced by the ripple transport and has a nonlinear 
dependence on Er, where the superscript NEO  stands for the neoclassical ripple transport. 
The damping rate of zonal flows due to the dependence of the radial current on the electric 
field is given by the neoclassical ripple transport as !NEO = ("J

r

NEO
/ "E

r
) / #

$
. We obtain the 

damping rate !damp  as 
 

 !damp = min(1,!*)
vthi

qR
+ !

NEO ,      (7) 

 
where v

thi
 is the thermal velocity of ions. The first term min(1,!

*
)  takes the smaller value 

between the unity and !
*
, which represents the transports in the plateau and banana regimes, 

respectively. The second term comes form the ripple transport with the dependence of the 
radial electric field. Owing to the dependence of !damp  on E

r
, !damp  of Eq. (7) is large in the 

ion root branch (i.e., the weak negative solution of E
r
 that satisfies J

r

NEO
(E

r
) = 0 ), while it is 

small in the electron root branch of e-ITB (i.e., the strong positive E
r

 solution of 
J
r

NEO
(E

r
) = 0 ). The turbulent transport coefficient becomes smaller when the strong positive 

radial electric field is established in e-ITB [15], when we consider the role of zonal flows in 
the e-ITB formation in helical plasmas.  The bifurcation of E

r
 itself induces the transition of 
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turbulent transport in the bulk of the plasma column as well as at the interface of the electric 
field.  
 
For simplicity, the value for the anomalous diffusivities of the particle is set as D

T
= 10m

2
/ s . 

The essence of the results shown later does not change due to the value of D
T

. Therefore, the 
value of D

T
 is set to be constant spatially and temporally. We also set D

ET
= !

T
 in order to 

examine the variation of the typical length for the electric field shear at the transition point.  
 
4. Results of the Analysis 
 
The reduction of the turbulent transport in the entire region of the strong positive E

r
 is 

quantitatively demonstrated by use of the transport code analysis. The one-dimensional 
transport analysis for LHD-like plasma has been performed and the mean profiles of E

r
, T

e
, 

T
i
 and n  are solved using the Eqs. (1), (2), (3) and (4) and adapting Eqs. (5) and (6) as the 

heat diffusivities. In this analysis, the thermal diffusivity is given as the sum of   !
T  and 

neoclassical transport. (In this calculation,   !T0  is given based on the nonlinear 
current-diffusive interchange mode which was found relevant in preceding analysis [4]. Here, 
the screening of   !

T  near the edge is not taken into account, because the study is focused in 
the core.)  An example is taken from the plasma which is sustained by electron cyclotron 
resonance (ECR) heating. In order to set the line-averaged temperature of electrons to be 
around T

e
= 1.6keV  (T

e
 at the center, T

e
(0) = 4.4keV ) and the line-averaged density to be 

around n = 2 !1019m"3 , the absorbed power of electrons is set to be 1MW and the coefficient 
S
0

 is taken as 7 !10
22

 m
-3

 s
-1 , for the choice of the above mentioned anomalous transport 

coefficients. The line-averaged ion temperature T
i
 is chosen to be about T

i
=0.9keV  (T

i
 at the 

center, Ti(0) = 2.5keV ), where the absorbed power of ions is taken as 500kW . When we 
evaluate !damp , we employ an estimate k!

2qr
"2k#

"2$i
"2 ~ 50 . [14] 

 
The profile of the stationary radial electric field is demonstrated in FIG. 1 by the solid line, 
including the effect of zonal flows (ZFs).  To show the reference, the radial profile of E

r
 

without the effect of the zonal flow is also shown in FIG. 1 by the dashed line. The parameter 
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FIG. 1. Stationary profiles of the radial electric 
field as the result of the transport code. The solid 
line shows the case with the effect of zonal flows 
and the dashed line indicates the case without 
the effect of zonal flows. 
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FIG. 2. Profiles of the electron temperature. 
Cases with the effect of zonal flows  (the solid 
line) and without the effect of zonal flows are 
shown (the dashed line), respectively. The 
transport barrier can be obtained. 
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FIG. 3. Profiles of the ion temperature. The case 
with the effect of zonal flows is obtained (the 
solid line) and the case without the effect of 
zonal flows is shown (the dashed line), 
respectively. 
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FIG. 4. The density profile as the results. Both 
cases with and without the effect of zonal flows 
qualitatively show the similar profile. 

 
!
T
 represents the location of the transition for the strong positive E

r  to the negative E
r
. In 

both cases, the E
r
-interface is established at !

T
= 0.3  and the steep gradient of E

r
 can be 

obtained. Therefore, the improvement near the transition point can be obtained in a narrow 
region even in the case without the effect of the zonal flows.  Maxwell’s construction chooses 
the consistent solution for E

r  from the multiple local solutions (circle marks in FIG. 1 with 
the effect of zonal flows) for a radial point. The local solution for E

r  satisfies the ambipolar 
condition which is derived from the obtained density and the temperature profiles. It is found 
that E

r
 is strongly positive for ! < !

T
. Including the effect of zonal flows, the stronger 

positive E
r
(owing to the increment of the temperature gradient) is shown in the region 

! < !
T  in FIG. 1. Profiles of the electron temperature with and without the zonal flow effects 

are shown in FIG. 2. We obtain the steeper gradient in the T
e
 profile in the case with the 

effect of zonal flows, in comparison with the case without the effect of zonal flows. We also 
show the profiles of the ion temperature and the density with and without the effect of zonal 
flows in FIG. 3 and FIG.4, respectively. The clear change of the gradient for the ion 
temperature can be obtained in the case with the effect of zonal flows. In the density profile, 
the significant effect of zonal flows cannot be found, because the particle diffusivity is set to 
be constant as D

T
= 10m

2
/ s in both cases with and without the effect of zonal flows. A weak 

hollowness of the density (dn/dr >0) is generated.  This is due to the outward neoclassical 
particle flux, which is driven by temperature gradient and radial electric field. 
 
A profile of the total diffusivity with the zonal flow effect (solid line) is shown in FIG. 5.  The 
clear reduction of the total diffusivity is shown in the region ! < !

T
 compared with that in the 

region ! > !
T

. The total thermal diffusivity of electrons !
e

total  represents the sum of the 
turbulent part and neoclassical part. Therefore, we can obtain the clear transport barrier in 
FIG.2 (T

e
 profile). It is found that the condition and   !

T  is reduced there (thin broken line), 
due to the smaller damping of zonal flows. [In the reference simulation using bare 
fluctuations (without the effects of zonal flows), the thermal diffusivity !

T0  has a dip near the 
interface, but does not show the noticeable reduction for ! < !

T
 (dashed line); !

T0
 increases 

in the core owing to the higher temperature (thin dotted line) in FIG. 6.] The screened 
transport coefficient is close to what has been reported from LHD experiments [16]. Outside 
the transition point !

T
, where the ion root branch appears, !damp  becomes large and the strong 
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FIG. 5. Profiles of the heat diffusivity by use of 
the transport code analysis of LHD-like plasma 
with the effect of the zonal flow. 
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FIG. 6. Profiles of the heat diffusivity without 
the effect of the zonal flow 
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FIG. 7. Profile for the neoclassical heat 
diffusivity of electrons with dashed line as the 
result of the transport code analysis. 
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FIG. 8. Profile for the neoclassical heat 
diffusivity of ions with dashed line. The 
reduction of the neoclassical transport of ions is 
obtained in the region ! < !

T
 due to the strong 

positive Er. 
 
zonal flows are not excited. Thus, the reduction is not expected for the region ! > !

T
 in this 

example. We also show that the neoclassical parts for the heat diffusivities of electrons !
e

NEO  
and ions !

i

NEO  in FIGS. 7 and 8, respectively (with the dashed line) in the case with the 
effect of zonal flows. In the inner region (! < !

T
), the turbulent transport is found to be 

dominant compared to the neoclassical transport in both electron and ion cases. Specially, the 
neoclassical transport of ions in the inner region (! < !

T
) is suppressed due to the strong E

r
. 

 
5. Summary 
 
We have studied the role of zonal flows in the e-ITB formation of toroidal helical plasmas.  It 
was found that the neoclassical ripple transport can enhance the turbulent transport, through 
its impact on the damping of the zonal flows.  The bifurcation of the radial electric field (from 
the state with weak and negative Er to that with strong and positive Er) was found to induce 
the transition of the turbulent transport coefficient.  The electron ITB is established by the 
mechanisms of (i) the bifurcation of the radial electric field via the neoclassical process and 
the reduction of neoclassical energy transport, (ii) the establishment of the electric field 
interface that quenches the turbulence, and (iii) the reduced damping of zonal flows which 
causes the suppression of the turbulent transport. When the electron internal transport barrier 
of LHD appears,  the results of the transport code analysis show that the total heat diffusivity 
!
T  in the entire inner region (! < !

T
) is reduced. The effect of zonal flows on the anomalous 

transport is investigated. The transport reduction is obtained in the wide region for Er>0 
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(ρ<ρT) in conjunction with the internal transport barrier. This is demonstration that the change 
of the collisional damping of zonal flows can cause the transition in the turbulent transport. 
The experimental confirmation is given on CHS.  It is reported that the fluctuation energy is 
transferred into zonal flows when the damping rate !damp  becomes weak.  Details will be 
discussed in [17].  
 
The result of this article provides further understanding of confinement in toroidal helical 
plasmas.  The important finding is that the reduction of the effective helical ripple ratio !

h
 

causes the reduction of !damp  (thus, of !
T

) even in the branch of the ion root.  This finding 
can explain the observations on LHD. In the collisionless plasmas of LHD (ion root branch), 
if the smaller the helical ripple, the lower the anomalous transport.   The study of this article 
is not limited to toroidal helical plasmas.  The control of the damping rate of zonal flows for 
further improvement of plasma confinement has been investigated [18].  The wide extension 
of the present work is possible, and is left for the future work. 
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