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Recent Large Helical Device experiments show that the transport modeling based only on the fluid description
is not sufficient for expressing transport phenomena in/around an m/n = 1/1 magnetic island formed at the
edge, and that neoclassical effect should be considered in order to understand the edge transport phenomena,
wherem is the poloidal mode number and n the toroidal mode number. To study the edge transport phenomena,
we develop a new transport simulation code, KEATS, treating the neoclassical theory in/around the island. The
code is programmed by expanding a well-known Monte-Carlo particle simulation scheme based on the δf
method for taking account of the neoclassical effect. The guiding center distribution function of plasma is
separated into a local Maxwellian background fM and a kinetic part δf considered as a small perturbation
from fM. To treat evolution of the kinetic part δf , we solve the linearized drift kinetic equation of the first
order. In the modeling, evolution of the background fM described by fluid equations is also considered self-
consistently with the kinetic part δf . In this paper, we present the modeling used in the KEATS code, and show
the simulation results in a test calculation.
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1 Introduction

Recent Large Helical Device experiments show that the transport modeling based only on the fluid description is
not sufficient for expressing transport phenomena in/around magnetic islands formed at the edge. For example,
it is observed that an m/n = 1/1 magnetic island, which is formed at the edge by using external coils, is healed
[1, 2, 3, 4], where m and n are the poloidal and toroidal mode numbers respectively, and in the experiments the
island temperature is &500 eV and the island density∼ 1019 m−3. The island width depends on plasma pressure
in the edge region, i.e., the width reduces as the pressure increases. The experimental results suggest that a
current depending on the pressure is expected to explain the healing [4]. We have two conventional candidates of
such a current; one is the Pfirsch-Schlüter current and the other is the bootstrap current. In results of a previous
simulation study based on the fluid description [5], it is shown that the healing phenomenon is not explained by
the Pfirsch-Schlüter current only. Thus, the bootstrap current around the island is a possible mechanism related
to the pressure. However, we have the following difficulty of this argument: once the island is shrunk, the
m/n = 1/1 mode of the bootstrap current density disappears because the pressure gradient becomes low [4].
Thus, if the bootstrap current triggers the healing, it cannot maintain the healing. There is a possibility that the
healing is explained by additionally considering other current related to ergodic behavior of field lines around the
X-point of the island [6], and even if the island is shrunk the current may maintain the healing because the ergodic
region always exists around the island in the stellarator plasma confinement. In this case, the current is caused
by asymmetry of the distribution function in velocity space, because of the existence of the island involving
the ergodic region and the diffusion caused by the Coulomb collisions. From these discussions, we see that the
kinetic treatment is required for the edge plasma.
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The above presumption implies that when the island is formed at the edge region, ballistic motions in the island
and ergodic regions can play important roles even in the edge transport phenomena. Moreover, the Coulomb
collision causes the transition between a passing particle orbit and a trapped particle orbit in toroidal and helical
ripples (localized and/or blocked particle orbits) in the three dimensional field line structure. According to the
ratio of the mean free path to the connection length, the orbits of the particles which mainly contribute the
particle, momentum and energy fluxes in/around the island are expected to vary [7, 8]. Here, the connection
length is given as a length along a field line connecting the inside (i.e. the side facing the core) to the outside
of the island separatrix. With considering the above points, we treat the transport phenomena by expanding
neoclassical theory. There is no established theory describing radial transport in/around magnetic islands. Then,
to study the edge transport phenomena, we need a modeling of such an edge plasma, and develop a new transport
simulation code without an assumption of existence of nested flux surfaces; the code is named “KEATS” [9].
The code is programmed by expanding a well-known Monte-Carlo particle simulation scheme based on the δf
method [10, 11]. In this paper, we present the modeling used in the KEATS code, and show the simulation results
of the code in a test calculation.

2 Modeling of edge plasma in the KEATS code

In the previous section, it is pointed out that neoclassical effect can play important roles even in the edge transport
phenomena, when the island is formed at the edge. We consider that the guiding center distribution function of
plasma f is separated into an equilibrium-like background f0 and a kinetic part δf of the distribution, i.e.,
f = f0 + δf , where the kinetic part δf is considered as a small perturbation from f0. Approximately, the
edge plasma can be treated as fluid, thus the background is described by fluid equations. Then the Maxwellian
background is allowed. Thus, the zeroth-order distribution function f0 is given as a local Maxwellian distribution
f0 = fM(t,x, ξ, v) = n{m/(2πT )}3/2 exp{−mv2/(2T )}, where ξ = v‖/v is the cosine of the pitch angle,
v‖ = v · b, b = B/B the unit vector along a field line, B a magnetic field, B = |B|, v = |v|, n = n(t,x) the
density, m the particle mass, and T = T (t,x) the temperature. Applying the decomposition f = fM + δf to the
drift kinetic equation, we have the following equation of the kinetic part δf :

D

Dt
δf − S(δf) = −

{
D

Dt
fM − CFfM − S(fM)

}
, (1)

where the operator D/Dt is defined as D/Dt := ∂/∂t + (v‖ + vd) · ∇ + a · ∂/∂v − CT, v‖ = v‖b is the
parallel velocity, vd the drift velocity of guiding center motion, a the acceleration, and S(f) the source/sink term
assuming S(f) = S(fM) + S(δf). Note that the equation (1) includes the drift kinetic equation of the zeroth-
order, i.e. the equation of fM, which leads to the fluid equations describing evolution of fM. The test particle
collision operator CT is given, for simplicity, as

CT = νdL =
νd

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ
, (2)

and it can be implemented numerically by random kicks in velocity space, which represents the Coulomb scat-
tering process, where νd is the deflection frequency. The operator CF is the field particle collision term, which
represents local momentum conservation;

CF = νd
m

T
v · u0 and u0 =

∫
d3v νd v δf

/∫
d3v νd

mv2

3T
fM. (3)

Note that the operator CF is needed to treat accurately the parallel transport. To solve Eq. (1) by Monte-Carlo
techniques, we adopt the two-weight scheme of the δf formulation [10, 11]. In evolution of the δf part, the
background fM is fixed under assumptions that evolution of the background is extremely slow compared to the
frequent change of δf and the background is in a quasi steady-state from the viewpoint of the δf part.

In the drift kinetic equation (1), we can consider a fluctuating electric field, i.e. the effect of ṽd = Ẽ×B/B2,
where Ẽ = −∇φ̃ is a fluctuating electric field, and φ̃ is interpreted as a random function in the present paper. We
assume that the potential of the fluctuating electric field is very small, |eφ̃/T | � 1, and that Ẽ appears only in
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the drift velocity in the drift kinetic equation of the first order, where e the charge. Thus, through the terms given
by the δf part in the fluid equations, the background should be influenced by the fluctuating field.

The relaxation of background is affected by complex transport in typical space-time scale of the kinetic part
δf . Slow evolution of the background fM described by the fluid equations is considered self-consistently with the
kinetic part δf . For simplicity in the first step of the simulation studies, we treat only the heat balance equation,
and assume that 1) the magnetic field is fixed as B = B(x) in the relaxation, 2) the density profile is set as a
given function (a constant in the present paper), and 3) the mean velocity V is negligibly small in the Maxwellian
background. Then we have

∂

∂t

(
3

2
nαTα

)
+∇ ·Qα = Sα(t,x), (4)

where α = i, e means a particle species and Sα the source/sink of the heat. For simplicity, J ·E is assumed to
be neglected in Eq. (4). The energy fluxQ is given as

Q(t,x) =

∫
d3v

1

2
mv2(v‖ + vd + ṽd)(fM + δf) =

∫
d3v

1

2
mv2(v‖ + vd + ṽd)δf, (5)

where · · · means the time-average, and the averaging time is longer than the typical time-scale of δf . In the
treatment of the background evolution, the modeling of a fluctuating field is important because the fluctuating
field strongly affects the transport phenomena. The modeling should be based on stochastic approach to the
flow caused by the fluctuating field; e.g. see Ref. [12]. A fluid equation in a steady-state corresponds to a
stochastic differential equation described as dX i

t = γU i(Xt)dt+ cij(Xt)dW
j
t and i, j = 1, 2, 3 [13, 14], where

γ is a constant (e.g. γ = 5n/2 for the heat balance equation), U = (U 1, U2, U3) is a flow in a steady-state,
Dij = cikδ

k`cj` is a diffusion coefficient, Xt = (X1
t , X

2
t , X

3
t ) is a diffusion process, andW t = (W 1

t ,W
2
t ,W

3
t )

is a Brownian process. It is assumed that a fluctuating flow is represented as Ũ (t, ω) = U (Y t) + noise, and that
a fluid particle motion is described by an Itô process dY it = γŨ i(t, ω)dt + cij(Y t)dW

j
t instead of the process

Xt, where ω is a label of a fluid particle, “noise” is a random function having zero mean, and the definition of
an Itô process is given in Ref. [15]. It is known that an Itô process Y t coincides in law with a diffusion process
Xt if and only if Ex[Ũ (t, ω)|PYt ] = U (Y t) [15], where X0 = Y 0 = x is a starting point of a random walker
(i.e. a fluid particle), PYt is the σ-algebra generated by the set {Y s; 0 ≤ s ≤ t}, and Ex[· · · |PYt ] denotes the
conditional expectation with respect to PYt . From this viewpoint, the flux should be evaluated as the average; e.g.
we can neglect the term relating with ṽdfM in Eq. (4).

The Monte-Carlo simulation code, KEATS, based on Eqs. (1)-(5) is programmed in an Eulerian coordinate
system, i.e. so-called helical coordinates [5], thus the code does not need magnetic flux coordinates. The code
solves iteratively the kinetic part of Eq. (1) and the fluid part of Eq. (4). In the calculation of obtaining a quasi
steady-state of δf in Eq. (1), the background fM is fixed. On the other hand, the fluid equation (4) is solved to
obtain slight evolution of the background fM under an assumption that contributions of the δf part, e.g. Q, are
fixed because the contributions are insensible to small change of fM. Solving iteratively the kinetic and fluid
parts, we can find steady-state transport of the edge plasma.

3 Simulation results of the KEATS code in a test calculation

For a test calculation of the KEATS code, we use a magnetic configuration which is formed by adding an m/n =
1/1 island component into a simple tokamak field, where the major radius of the magnetic axis Rax = 3.6 m, the
minor radius of the plasma a = 1.0 m and the magnetic field strength on the axis Bax = 3.0 T. Hereafter, it is
called the “test configuration.” The Poincaré plots of magnetic field lines on a poloidal cross section are shown
in Fig.1. In the test calculation, the effect of neutrals and the effect of electric field are neglected for simplicity.
In the KEATS code, the number of test particles is NTP = 16, 000, 000.

To investigate effect of the existence of the island on the transport phenomena, first of all, we evaluate the ion
energy flux Qi in a fixed temperature profile given as Ti = Tax{0.02 + 0.98 exp[−4(r/a)2.5]} with Tax = 2

keV and r =
√

(R −Rax)2 + Z2, which neglects the existence of the island; the background is fixed in this
calculation. The density profile is set homogeneous, ni = const. = 1 × 1019 1/m3. We calculate the energy

Copyright line will be provided by the publisher



6 R. Kanno, M. Nunami, S. Satake, H. Takamaru, and M. Okamoto: Transport modeling of edge plasma in · · ·

flux in two cases, i.e., in the configurations (a) without islands (the simple tokamak field) and (b) with the
m/n = 1/1 island (the test configuration). The radial profile of the energy flux can be estimated from the KEATS
computations and is shown in Fig.2. For simplicity, the radial energy fluxes are given neglecting the existence
of the island, because we have no magnetic coordinate system including several magnetic field structures as the
island and the core region. The energy flux Qi is averaged over concentric circular shell region in the whole
toroidal angles as if there were nested flux surfaces. From the results, we find that the energy flux is strongly
affected by the magnetic island. In the case (a), the radial energy flux has a gentle profile (solid circles). This
result is agreed with “FORTEC-3D” code [16] which uses magnetic flux coordinates. On the other hand, in the
case (b), we see that there is obvious difference compared with the case (a). In the island region, we obtain that
the flux has a steeple peak (solid triangles); the flux is considered to include the effect of convective flow. This
result suggests that the flux arises to make the temperature flat in the region.

Next, we solve iteratively the kinetic and fluid parts, and obtain a temperature profile in a steady-state. The
source/sink term is represented by fixing the distribution f in the outside of the “calculation region” of r = 0.5 ∼
0.95 m. Figure 3 shows the temperature profile along the line of Z = 0 in Fig.1, where the initial profile is given
as solid squares and the profile in the steady-state is given as the solid line. Around the O-point of the island, we
see the shoulder of the profile. On the other hand, around the X-point, the profiles is very complicated because
there is the edge of the island. In the ergodic region, the temperature becomes very low, but in the island the
temperature remains higher compared to one in the ergodic region.

4 Summary

We have been developing the new neoclassical transport code, KEATS, to study the transport phenomena in the
island. The KEATS code has the two parts solving 1) a steady-state of the kinetic part of distribution and 2)
a steady-state of the background. We applied the code to the edge of the test configuration, and confirmed the
relaxation of ion temperature profile in the island region. More detailed analysis is needed to understand the
transport phenomena in the island, e.g., we should evaluate the flux across the magnetic flux surfaces in the
island. Then, we may need to label magnetic flux surfaces using our labeling technique of the flux surfaces [17].
We are going on the detailed analysis. The results will be reported in near future.

In the evolution of the background, although the density n and the mean velocity V may evolve for accurate
treatment, we consider only the heat balance equation in this paper. The part solving the fluid equations in
the KEATS code is required to be improved. Moreover, in order to estimate net current and calculate MHD
equilibrium including the current, we need further development of the code treating electron transport.
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Fig. 1 Poincaré plots of magnetic field lines on a poloidal cross section in the test configuration.
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Fig. 2 Radial profiles of ion energy flux in the simple tokamak field (solid circles) and in the test configuration (solid
triangles), where r =

p
(R −Rax)2 + Z2.

Fig. 3 Temperature profile along the line of Z = 0 in Fig.1, where the initial profile is given as solid squares and the profile
in the steady-state is given as the solid line. The distribution f is fixed in the outside of the calculation region.
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