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Abstract

Detailed descriptions of the uncertainties in measurements of the effective minor radius, elec-

tron density and the diamagnetic energy content together with the uncertainty of the estimated

absorbed power are presented for LHD and CHS. Data entries ofboth devices to the Inter-

national Stellarator Confinement Database [ISCDB] are examined to study the impact of un-

certainties on scaling expressions of the energy confinement time. It is proposed to employ

Bayesian inference as a statistical tool for the determination of the scaling exponents.
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Introduction

The International Stellarator Confinement Data-Base (ISCDB) [ISCDB] contains global vari-

ables of discharges from various stellarators, among theseLHD and CHS. In order to classify

data values against each other and to compare machines a thorough discussion of the uncertain-

ties of the entries is inevitable. For example neglecting the uncertainties of data in the regression

method employed to derive a scaling relation is equivalent to assign same weight to every entry

in a data-base. However, the diagnostics which measure these data, i.e. machine variables, may

perform differently among the fusion devices, and, moreover, for a machine itself the conditions

may change over the years. This should be given credit to in the analysis of the data. A further

reason for the consideration of the uncertainties originates from the fact that the uncertainties

of some machine variables, e.g. minor radius or absorbed heating power, are of comparable size

to the uncertainty of the quantity of interest, e.g. plasma energy content. Ordinary least squares

fitting fails in this case, because it focuses only on the deviations between response variable

and model value but does not incorporate uncertainties of the input variables. An approach

to overcome this problem has been performed for tokamak scaling by an errors in variables

technique [Kardaun et al.(1989), Cordey et al.(2004)]. Forthe stellarators a discussion of the

uncertainties of thēι = 1/3 data of W7-AS was performed within a probability theoretical ap-

proach, i.e. Bayesian inference [Dose et al.(1998), Preusset al.(1999)]. This paper expands the

discussion to the heliotrons LHD and CHS.

Confinement time scaling

The scaling function for the plasma confinement time of a fusion device in the stellara-

tor/heliotron line is

τ = 10αcaαaRαRPαPnαnBαBῑα¯ι , (1)

with the effective minor radiusa, the major radiusR, absorbed heating powerP, electron density

n, toroidal magnetic fieldB, rotational transform̄ι and linear constantc. In order to linearize this

power law ansatz it is common practice to consider the decadic logarithm of Eq. (1):

logτi =~α ·~xi . (2)

The indexi denotes a single data point. For convenience we use vector notation with the regres-

sion parameters~αT = (αa,αR,αP,αn,αB,αῑ ,αc) and the logarithm of the machine variables

~xT
i = (logai , logRi , logPi, logni , logBi , logῑ i ,1).

Bayesian probability theory [Jaynes(2005)] provides a straightforward and unique recipe to

the problem of uncertainties in input (~xT
i ) and response (logτi) variables in the regression for



deriving the scaling exponents. In this probabilistic framework, the results for the parameters are

given as expectation values over posterior probability distributions of the data, e.g. for scaling

exponentαk one has to evaluate

〈αk〉 =

∫

αkp(~xi , logτi |~α,~σi)p(~α)d~α
∫

p(~xi , logτi |~α,~σi)p(~α)d~α
. (3)

The first probability function in both integrals is the so-called likelihood function being a mea-

sure for the model description of the data. It reads for data point i with uncertainties in all

variables

p(~xi , logτi|~α,~σi) =
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with the uncertainty vector~σT
i = (σlogai ,σlogRi ,σlogPi ,σlogni ,σlogBi ,σlogῑ

i
) of the logarithm of

the machine variables. Note that the denominator in the argument of the exponent makes the

difference to ordinary least squares fitting.

The second function showing up in Eq. (3) is the prior probability function of the parame-

ters entering the problem. Since apriori there is nothing known about the values the parameters

should adopt, one has to go back to basic requirements like transformation invariances. Follow-

ing this path one can derive the so-called hyperplane prior given by (see [Dose(2003)])

p(~α|I) ∝
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The integrals in Eq. (3) are not analytically solvable, so Markov chain Monte Carlo methods

are employed for the calculation.

Uncertainties of control parameters in LHD and CHS

In the following we present a discussion of the uncertainties of the machine variables of CHS

and LHD (see Tab. 1). The major radiusR and the toroidal magnetic fieldB can be accurately

measured. In comparison with the other control parameters which enter the scaling relation their

uncertainty is negligible. The rotational transform is known to very high accuracy as well.

Effective minor radius: In CHS the uncertainty is an absolute value ofσa = 0.2cm. For LHD

we have a relative uncertainty depending on the minor radiusae f f: σa = 0.024·ae f f.

Absorbed heating power:To determine the uncertainty of the heating powerP we have to

take a closer look at the constituents ofP = Pabs,ECR+Pabs,NBI. For CHS we got an uncertainty

estimation of 20% for ECR and 10% for NBI heating. In LHD the uncertainty of the neutral

beam deposition corrected for shine through is 8%. Only NBI heating data sets contribute to the

database.



CHS LHD

Ndata 196 162

amin 0.187 0.519
amax 0.2 0.634
σa 1% 2.4%

Pmin 0.061 1.300
Pmax 0.945 6.516
σP 10-20% 8%

nmin 0.241 0.89
nmax 7.9 5.44
σn 0.7% 0.21-0.77%

Wmin 178.3 49650
Wmax 3670 691300
σW 1.3-19% 2.2-6.8%

Table 1: Data ranges and uncertainties of the minor radiusa [m], the absorbed heating power
P[MJ], densityn[1019/m3] and the energy contentW[J].

Electron density: The line integral over the electron density,
∫

nedl = 2an, is obtained with

very high accuracy (within 2 %) for all machines. The uncertainty in the densityn depends

therefore mainly from error propagation of the uncertaintyin a. For CHS the measurement is

over a larger distance than the minor radius, reducing the uncertainty to 0.7%. In LHD we face

an absolute uncertainty of 6·1016m−3 due to the mechanical changes in the dimensions of the

vessel and a relative uncertainty of 0.1% due to the microwave interferometer diagnostic itself.

Confinement energy:In the process of calculating the confinement time the total plasma energy

as determined by diamagnetic measurements (ISCDB column name: WDIA) is used. In CHS

its uncertainty is 40× BT (with BT as the ISCDB column name of the toroidal magnetic

field). For LHD the diamagnetic energy is calculated from thesum of toroidal, helical and

paramagnetic/diamagnetic fluxes, termed PHI_TOR, PHI_PARA and PHI_HEL, respectively.

The total uncertainty results from error propagation of thesingle uncertainties of those fluxes.

σWDIA =
{

(0.02·WDIA)2+(8 ·107 ·BT/3)2 ·
[

(0.01·PHI_TOR)2+(0.01·PHI_PARA)2+(0.02·PHI_HEL/0.07)2]}
1
2 (6)

Eventually, we get the uncertainty in the confinement timeτ = WDIA/PTOT from error

propagation. Note, that all above discussed uncertaintieshave to be transformed to decadic



αa αR αP αn αB αῑ αc

1 2.28±0.02 0.64±0.02 -0.61±0.01 0.54±0.01 0.84±0.01 0.41±0.01 -0.87±0.02
2 2.06±0.03 1.15±0.03 -0.60±0.02 0.57±0.01 0.99±0.02 -0.03±0.03 -1.49±0.09
3 2.39±0.04 1.22±0.03 -0.77±0.02 0.69±0.02 0.88±0.02 0.04±0.04 -1.32±0.10

Table 2: Case study results: (1) ISS04 restated for comparison; (2) ISCDB subset with W7-AS,

W7-A, CHS and LHD not using uncertainties; (3) same as (2), but using uncertainties of the

machine variables.
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Figure 1: Plot of the confinement time from experiment vs. fit.The dotted line represents the

result for the analysis not employing the uncertainties. The error bars are stated for both logτexp

and logτ f it .

logarithmic scale, e.g. in the case of the confinement time one has to calculate:

σLOGT =

√

[ σWDIA

10LOG_TAU ·PTOT

]2
+
[σPTOT

PTOT

]2
/log2(10) (7)

Results and final remarks

Tab. 2 shows the ISS04 result [Yamada et al.(2005)] in the first row. Note that it was obtained

with an configuration dependent parameter. The second row isthe result for the small subset of

W7-AS, W7-A, CHS and LHD neglecting the uncertainties of thedata. The discrepancies inαR

andαῑ in comparison with ISS04 can be explained by the choice of this subset without paying

attention to configuration. Eventually, the third row showsthe result of the present study. If we

compare the results of the subsets in row 2 and 3, the most prominent differences are found in



exactly those scaling exponents where the discussion of theuncertainties took place, i.e.αa,

αP andαn. This demonstrates the importance of considering the uncertainties of the machine

variables. As can be seen in Fig. 1 the result of the fit logτ f it and the measured logτexp agree

well within the abscissa error bars, which is a direct measure for the reliability of the prediction.
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