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Abstract

Effects of multiple-helicity magnetic fields on the ion temperature gradient (ITG) instability and on
the zonal flow (ZF) evolution are studied with the linear gyrokinetic Vlasov code GKV. The model helical
fields corresponding to the standard and inward-shifted axis configurations of the Large Helical Device are
used to investigate how ITG mode properties and ZF evolution response to a given source are influenced
by the field geometry. It is shown that, in the inward-shifted configuration, the ITG mode growth rate
increases slightly while the ZF is sustained for a longer time. In addition, velocity-space structures of the
ion perturbed distribution function are numerically obtained which illustrate the validity of the analytical
prediction that the plasma inward shift retards the radial drift of the helically trapped particles leading
to the enhancement of the ZF response. This supports the conjecture that anomalous transport can be
reduced by the ZF generated in the configurations optimized to decrease the neoclassical transport.

I. INTRODUCTION

Helical magnetic plasma confinement systems are more influenced by neoclassical trans-
port (NCT) than tokamaks because of their lack of axisymmetry. This is why NCT opti-
mization is one of the main concerns towards the realization of fusion in nonaxisymmetric
devices [1]. Several approaches have been proposed in order to reduce the transport in
helical systems and a number of new experiments have been devised [2–6], some of them
presently under construction. Recent experimental results [7] seem to suggest that there
exists a correlation between NCT optimization and reduction of turbulent or anomalous
transport (AT) which is also becoming a major issue towards the characterization of
transport-optimized experiments [8–10].

It is well-known, and it has been observed both in laboratory and in nature, that
turbulent behavior often self-organizes into a stream-like flow called the Zonal Flow (ZF)
[11–13]. In plasma fusion experiments, the importance of the ZF lies on the fact that
it tends to reduce the AT. The ZF evolution is governed by the non-linear interaction
with the drift waves (which eventually determine the turbulence behavior), as well as
by the linear damping process through collisions and collision-less mechanisms such as
the Landau damping. It has been shown in the past [8, 9, 14] that linear studies of the
ZF behavior can provide important information as to its dependence magnetic geometry
which can help to develop ways to utilize the ZF capacity to reduce the AT in magnetically
confined plasmas.

The original motivation of the present work comes from a set of experiments in the
Large Helical Device (LHD) [15] in which the magnetic configuration was shifted inwards
by means of a vertical field [7]. In LHD, inward shifted configurations are known to
reduce the neoclassical helical ripple transport [16]. These experiments, however, showed
a reduction, not only of the NCT, but also of the AT. We expect that the decrease in
AT is achieved through the enhancement of the ZF caused by the slower radial drift of
helically trapped particles in the inward shifted configuration. The results presented here
are intended to identify the causes by which the change in magnetic geometry due to



the inward shift contribute to the enhancement of the ZF and reduction of the AT, thus
highlighting the correlation between the optimizations of NCT and AT. This is done by
first studying the change on the ion temperature gradient (ITG) mode destabilization,
which represents the source of the turbulence, and then investigating the ZF evolution
both in standard and in inward shifted configurations.

The calculations shown here have been performed with the GKV code [17] utilized
in the past to simulate ZF, geodesic acoustic modes (GAM) and ITG destabilization in
tokamaks and helical systems with single helicity magnetic fields. In addition, nonlin-
ear simulations with simple multiple-helicity fields to model LHD’s inward shifted-axis
configurations have been recently carried out [10]. In the present work, we extend the
calculations on shifted LHD configurations with the inclusion of more accurate values in
the description of the magnetic field. From the comparison between the simple and the
more realistic models, we aim to identify which parameters are more influential to the AT
optimization achieved in the shifted-axis LHD scenarios as observed in the experiment.

The GKV code solves the gyrokinetic equation of the perturbed ion gyrocenter distri-
bution function for the electrostatic case [8, 17, 18],

∂δf

∂t
+ v‖b · ∇δf +

c

B0

(b×∇Φ · ∇δf) + vd · ∇δf − μ (b · ∇Ω)
∂δf

∂v‖
=

(v∗ − vd − v‖b) · e∇Φ

Ti

FM + C(δf), (1)

and the quasineutrality condition with adiabatic electron response,∫
J0δfkx,kyd

3v − eφkx,ky

Ti
n0(1 − Γ0) = δne,kx,ky , (2)

where δfkx,ky and δne,kx,ky are the Fourier components of δf and δne, respectively. Here,
Γ0 = e−bI0(b), with b = (k⊥vti/Ωi)

2, J0 is the zeroth order Bessel function and I0 is the
modified zeroth order Bessel function. The electron density fluctuation is assumed to be
given by:

δne,kx,ky =

{
n0e(φkx,ky − 〈φkx,ky〉)/Te if ky = 0

n0eφkx,ky/Te if ky �= 0,

where n0 is the averaged electron density (see Ref. [10] for more details on the notation).
We consider ITG modes as the source of the turbulence. ZFs are generated by the

ITG turbulence but, simultaneously, they regulate it. Linear calculations can not give
information about nonlinear saturation levels of the turbulence but, in turn, they do not
require huge computer resources, allowing the survey of different scenarios for a wider
range of parameters, from which some important cases can be selected for further inves-
tigation by non-linear simulations. In particular, linear calculations can be very useful in
comparing effects of magnetic geometry on ITG mode destabilization and on ZF response
to a given source. In the following sections, these type of comparative studies are applied
to the standard and inward-shifted LHD configurations.

The reminder of the paper is organized as follows. Section II defines the modeling of the
standard and inward-shifted LHD configurations in terms of the Fourier representation of
the magnetic field strength. Section III presents linear ITG instability simulation results
for both configurations emphasizing on a proper choice of parameters for the calculation
relevant to experimental conditions. Finally, Sec. IV is devoted to the linear simulation
and analysis of the ZF for both scenarios. A discussion of the results follows in the
conclusion.



II. MULTIPLE-HELICITY CONFIGURATIONS

The standard and shifted LHD configurations can be modeled by a Fourier expansion
of the magnetic field strength that includes a toroidal term εt, a main helicity term εh = εL
and side-band terms ε+ = εL+1 and ε− = εL−1:

B/B0 = 1 − ε00 − εt cos(θ) −
L+1∑

l=L−1

εl cos[(l −Mq)θ −Mα]

= 1 − εT (θ) − εH(θ) cos[(L−M q)θ −Mα] + χH(θ), (3)

where

εT (θ) = εt cos(θ), C(θ) =
L+1∑

l=L−1

εl cos(lθ),

εH(θ) =
√
C2(θ) +D2(θ), D(θ) =

L+1∑
l=L−1

εl sin(lθ),

χH(θ) = arctan[D(θ)/C(θ)].

Here, θ (ζ) is the poloidal (toroidal) angle and M (L) is the toroidal (main poloidal)
period number of the field. For the LHD, we use L = 2 and M = 10. The magnetic shear
is denoted by ŝ, q is the safety factor and α = ζ−qθ is the label of the magnetic field line.
The effect of the multiple helicity terms is included in the functions εH(θ) and χH(θ).

The stability of the ITG modes depends in great measure on the magnetic drift fre-
quency which is defined as ωd = k⊥ · vd = −(kθGc(θ)/R0Ω)(v2

‖ + v2
⊥/2). Here, Gc(θ) de-

scribes the curvature along the field line is defined byGc(θ) = −(R0/kθ)(k⊥×b)·(∇B/B).
Therefore, multiple helicity terms alter the shape of Gc(θ) as follows:

Gc =
R0εt
r

[
r ε′00
εt

+

(
r ε′t
εt

)
cos θ + ŝ θ sin θ

+
L+1∑

l=L−1

{(
r ε′l
εt

)
cos [(l −Mq0)θ −Mα] +

(
εl
εt

)
ŝ θ l sin[(l −Mq0)θ −Mα]

}]
, (4)

where ε′00 represents the averaged normal curvature [19].
Here, the flux tube coordinates [20] have been used in a similar way as in [10], i.e.,

x = r − r0, y = (r0/q0)[q(r)θ − ζ ] and z = θ, with R0 and r being the major and minor
radii, respectively; q(r) is the safety factor and ŝ ≡ (r0/q0)dq/dr is the magnetic shear.
In order to model the standard and inward-shifted LHD configurations, two different sets
of implementations of magnetic parameters have been considered. The first one consists
of idealized versions of the standard and inward-shifted axis configurations, both with the
same values for the safety factor and the magnetic shear namely q = 1.5 and ŝ = −1.
In addition, the radial dependence of the expansion amplitudes are assumed to follow
εl ∝ rl based on the large aspect ratio (or cylindrical) representation, and we impose
εt = r/R0 as in [9, 10]. Under these conditions, the standard case is chosen to be a pure
single helicity case, with side-band coefficients imposed to zero. The inward-shifted case’s
coefficients, in turn, are chosen so that they give a high NCT optimization following [21].



Hereafter, these configurations are referred to as Standard-A (S-A) and Inward-A (I-A),
respectively. The other set of model configurations are implemented with more realistic
values for the magnetic field coefficients, their radial derivatives, q and ŝ which are taken
from the vacuum magnetic field (the use of vacuum field data is justified because we
consider here low beta plasmas only). We use the terms Standard-B (S-B) and Inward-B
(I-B) to refer to this set in the remainder of the paper. The values for both sets are shown
in Table I.

In Fig.1, profiles for the normalized magnetic field strength along a magnetic field line
for the S-A/I-A set and the S-B/I-B set implementations, respectively, are displayed
in the top row. The two bottom plots correspond to the profiles of Gc. A fair amount
of qualitative information can be already drawn from Fig.1. The magnetic field strength
profile in S-B slightly deviates from the pure single helicity case S-A and the wells become
deeper away from θ = 0 while becoming shallower around this point. There is an increase
of the number of helical ripples in the realistic set-up due to the higher safety factors of
S-B and I-B. For I-A and I-B , the ripples of the magnetic field strength show almost
constant values at their bottoms, which implies that the radial drift of deeply trapped
particles is weak and the NCT is small in the inward shifted configurations. The curvature
factor Gc provides a very good intuitive picture of how unfavorable the curvature is with
respect to the stability of the ITG modes (see Ref. [21]), i.e., Gc > 0 around θ = 0 is
destabilizing while Gc < 0 is stabilizing. From the Gc profiles in Fig.1 it is clear that,
while there is a considerable difference between S-A and I-A profiles around θ = 0, the
discrepancy is very small between the I-B and S-B cases. In addition, the latter ones are
more clearly positive than the former ones. It is, thus, reasonable to expect a greater
difference in the growth rates of the unstable modes in the simple models (S-A, I-A) than
in the more realistic models (S-B, I-B), with possibly higher growth rates in the latter
ones. The ITG instability for both sets of configurations is examined in greater detail in
the next section.

III. LINEAR ITG STABILITY

Linear gyrokinetic Vlasov simulations have been carried out in a similar way as in
[10, 17] but with the implementation of the multiple helicity terms described in Sec. II to
study the behavior of the unstable ITG modes. Other parameters used in the simulations
are Ln/R0 = 0.3, ηi = Ln/LT = 4, Te/Ti = 1 and α = 0, where Ln and LT represent scale
lengths of the averaged density and temperature gradients, respectively. In both sets of
scenarios, the same initial perturbation is imposed triggering the growth of the unstable
modes for various values of kyρti (where ρti is the thermal ion gyroradius radius defined as

ρti = vti/Ωi with vti =
√
Ti/mi). Their growth rates and the real frequencies are depicted

in Fig.2. Here, the real frequencies ωr and the growth rates γ have the units vti/Ln. The
left hand side picture shows a remarkable difference between the simple model configura-
tions (S-A and I-A), which is in agreement with the qualitative discussion stated before
in Sec. II. On the right hand side picture, growth rates and real frequencies for the more
realistic models (S-B and I-B) are displayed. The growth rates are higher than in the
simple models and, indeed, they are very similar between each other, also confirming the
predictions made from examining the geometric factor profiles in the previous section.
This behavior of the ITG modes has been successfully benchmarked with eigenvalue anal-
ysis results of the GOBLIN code by Yamagishi [22] using elaborate magnetic data from
which the numerical values used in S-B and I-B are taken.

In order to examine the relevance of q and ŝ in the growth rates, the S-B and I-B



configurations with q = 1.5 and ŝ = −1 are also displayed in the right hand-side plot of
Fig.2. It can be seen that they are indeed closer to each other than in the S-A and I-A
cases but not as much as the implementations with safety factor and shear taken from the
accurate magnetic data. Therefore, the destabilization of the ITG modes is influenced
not only by the introduction of the side-band terms on the expansion of B on a magnetic
surface but also by q and ŝ, which alter the profiles of the curvature and the ITG-mode
eigenfunction along the field line [23].

These linear results predict that the inward shifted scenario will trigger a more rapid
initial growth of ITG modes than the standard case although the difference is greatly
reduced when realistic parameters are considered. Recent nonlinear simulation results by
Watanabe [10] for the ITG turbulence in helical systems described by the parameters of S-
A and I-A show that the initial difference in growth rates between the single and multiple
configurations triggers a higher AT level for the latter case. Nevertheless, regulation
of the ITG turbulence associated with the generation of ZF reduces the difference in the
turbulent ion thermal diffusivities for the two cases to comparable levels. It is conjectured
that the higher response of the ZF to the turbulent source is responsible for the greater
regulation of the AT in the inward-shifted configuration. Linear ZF simulations leading
to this discussion are presented in the next section.

IV. ZONAL FLOW EVOLUTION

The ZF theory states that its evolution is determined by the convolution of two main
factors: a source term related to the E×B non-linearity and a response function, or kernel
K(t) = φ(t)/φ(0) (with φ(t) = φkx(t) being the electrostatic potential), which governs the
time evolution of the ZF in response to a given initial perturbation. This kernel consists
of a rapidly-varying part dominated by the GAM oscillations (KGAM(t)) and a slowly-
varying part (KL(t)) which characterizes the long time response of the kernel [9]. In this
section, simulation results for the response kernel in the different model configurations
described in Sec. II are shown, together with a comparison with the analytical theory.
A discussion of the relationship between NCT optimization and higher ZF level is then
given through the velocity-space studies of the realistic model cases (S-B and I-B).

A. Simulation results

In the present subsection, linear gyrokinetic simulations with the GKV code of the
ZF component for both sets of implementations described in Sec. II are presented. The
simulation results are shown in Fig.3, where the numerical values of the previous section
are used except that now kyρti = 0. The values used for the radial wave number are
kxρti = 0.096 for both the S-A and I-A cases and kyρti = 0.103 and 0.104 for the S-B
and I-B configurations, respectively. These small difference between the values kyρti have
a negligible effect on the results presented here. Note that the same units for the time
variable Ln/vti as in Sec. III are used. The more relevant units R0/vti are directly obtained
by the relation: R0/vti = (Ln/R0)(Ln/vti) = 0.3(Ln/vti). The initial perturbation of the
ion distribution function is assumed to be given by δf(t = 0) = δn exp(−miv

2
i /2Ti). In

Fig.3, the ZF evolution for the S-A and I-A cases is displayed in the top plot while the
more realistic S-B and I-B cases are depicted in the bottom plot. Once again, both sets of
scenarios show a remarkable difference. It can be seen that there is a clearer contrast in the
early ZF level between the S-B and I-B configurations than between the S-A and I-A cases.
Therefore, unlike the ITG growth rates, the discrepancy in ZF evolution for standard and



inward-shifted LHD configurations seems to be greater when realistic magnetic geometry
parameters are used. It is also observed that the lower safety factor in the S-A and I-A
models imply a faster damping of the GAM oscillations in agreement with global drift
kinetic calculations by Satake et al.[24] as well as with theoretical predictions [9]. For all
implementations, the residual ZF level at t→ ∞ does not differ much. It is accepted that
it is the low frequency (or stationary) and not the high frequency ZF level what provides
the main contribution to the reduction of AT [25]. Therefore, the correlation between the
AT and the linear ZF response should come, not only from the ZF response at t → ∞,
but also from the different rate of reduction of the time-averaged response with rapid
oscillation (such as the GAM) disregarded. Thus, we define the “ZF decay time” as:

τZF ≡
∫ tf

0

dt
〈φ(t)〉
〈φ(0)〉 ≈

∫ tf

0

dt KL(t), (5)

where tf represents the time in which the residual ZF level is achieved or does not change
significantly for the purpose of the comparison between configurations. In the simulation,
the GAM-averaged response kernel, denoted as Knum

L (t), is calculated as follows:

Knum
L (t) =

1

TGAM

∫ t+TGAM /2

t−TGAM /2

〈φ(t′)〉/〈φ(0)〉dt′, for t ≥ TGAM/2, (6)

where TGAM is the period of the GAM oscillations. For t < TGAM/2, numerical ex-
trapolation has been carried out. The GAM-averaged profiles correspond to the slowly-
varying curves in Fig. 3. Comparing τZF for tf = 80[Ln/vti ] in both sets of scenar-
ios it can be seen that the I-B ZF decay time (τ I−B

ZF = 5.6[Ln/vti] = 18.7[R0/vti])
is around 65% greater than in the S-B case (τS−B

ZF = 3.4[Ln/vti] = 11.3[R0/vti]),
while in I-A (τ I−A

ZF = 4.0[Ln/vti] = 13.3[R0/vti]) is 38% greater than in the S-A case
(τS−A

ZF = 2.9[Ln/vti] = 9.7[R0/vti]).
It has been argued in [9, 10] that NCT optimization leads to a lower radial drift of

helically trapped particles and therefore keeps a high ZF level for a longer time. The
constant value of the magnetic field strength of the bottoms of the ripples in the overall
magnetic profile for the I-B and I-A configurations (see Fig.1) suggests a reduction of the
radial drift velocity of the particles deeply trapped in helical ripples. Accordingly, longer
ZF decay times are expected for the inward shifted configuration models (I-A and I-B)
than for the standard models (S-A and S-B). The question is, why is the improvement of
the ZF decay time greater for the realistic inward shift model (I-B) than for the simple
model (I-A)? In order to answer this question, in the next section a comparison of the
simulation results with the analytical theory predictions for the linear response of the ZF
in multiple-helicity systems [9] is presented .

B. Comparison with analytical predictions

The linear collisionless theory for the dynamics of ZFs is modeled by the following
equations [9]:

φk⊥(t) = K(t)φk⊥(0), K(t) = KGAM(t) [1 −KL(0)] + KL(t), (7)

KL(t) =
1 − (2/π)

〈
(2εH)1/2 (1 − g1i(t, θ))

〉
1 +G+ E(t)

(n0〈k2
⊥ρ2

ti〉)
, (8)



where 〈...〉 denotes flux surface average (which, in this analysis, is approximated to the
poloidal angle average (2π)−1

∮
...dθ, as stated in [9]). KGAM(t) refers to the analytical

description of the GAM oscillations KGAM(t) = cos(ωrt) exp(−γt) and KL(t) is the non-
oscillatory long time response kernel. E(t) accounts for the additional shielding caused by
the radial drift of non-adiabatic helically trapped particles [9] and can be expressed as:

E(t) =
2

π
n0

[
〈(2εH)1/2 {1 − gi1(t, θ)}〉 − 3

2
〈k2

⊥ρ
2
ti〉〈(2εH)1/2 {1 − gi2(t, θ)}〉

]
, (9)

where the electron contribution is ignored. The functions gi1(t, θ) and gi2(t, θ) are such
that gi1 = gi2 = 1 at t = 0 giving E(t = 0) = 0 (i.e., there is no shielding before the
helically trapped particles begin to experience the radial drift) and gi1 = gi2 � 0 at
t τc = 1/(krvdr), where τc denotes as the characteristic time for the shielding.

The analytical derivation of the kernel K(t) in the right hand-side equation in (7)
clearly differentiates two parts. The first part, corresponding to the earlier stages of the
evolution, is dominated by the GAM oscillations. The second part, however, is governed
by the long time kernel KL(t). The collisionless long-time limit of this kernel gives the
so-called residual level. KL(t) is also responsible for the non-oscillatory (or time-averaged)
ZF in the early stages. Correspondingly, the limiting values of the kernel take the following
shape:

K< ≡ lim
t→0

KL(t) =
1

1 +G
(10)

K> ≡ lim
t→∞

KL(t) =
〈k2ρ2

ti〉[1 − (2/π)
〈
(2εH)1/2

〉
]

〈k2ρ2
ti〉[1 − (3/π) 〈(2εH)1/2〉 +G] + (2/π) 〈(2εH)1/2〉 . (11)

Equation (10) shows that, for t < τc, the ZF response is governed by the shielding due
to the toroidally trapped ions. Here, G represents the ratio of the neoclassical polarization
due to toroidally trapped ions to the classical polarization [8] and it is given by:

G =
12

π3
B0R

2
0q

2

〈
B2

|∇ψ|2
〉(∫ 1/BM

0

dλ

∮
dθ

2π
(2λB0εH)−1/2 κ−1K(κ−1)

×
{

(2λB0εH)1/2 κE(κ−1) −
∮

(dθ/2π)K(κ−1)E(κ−1)∮
(dθ/2π) (2λB0εH)−1/2 κ−1K(κ−1)

}2

+

∫ 1/Bm′

1/BM

dλ

∫
κ2(θ)>1

dθ

2π
(2λB0εH)1/2 κK(κ−1)

{
E(κ−1) − 1

κ

(
εH(θt)

εH

)1/2
}2)

, (12)

where the dependence on the magnetic structure is included in εH(θ) which accounts for
the multiple helicity effects. θt(λ) defines the boundary between helically and toroidally
trapped particles and E(κ) and K(κ) are the complete elliptic integrals. In the tokamak
limit (εH → 0), we have G = 1.6 q2/

√
εt and K> = K< = 1/(1 + 1.6 q2/

√
εt) which give

the Rosenbluth-Hinton residual level. Following [8] we define the trapping parameter κ
as:



κ2 =
1 − λB0 (1 − εT (θ) − εH(θ))

2λB0εH(θ)
, (13)

where λ ≡ μ/w = (v⊥/v)2/B with μ and w being the magnetic moment and the kinetic
energy, respectively. Thus, we say that particles are either passing or toroidally trapped
if they fall within the region κ2 > 1 and they are helically trapped if κ2 < 1, therefore
the boundary is given by the condition κ2 = 1 which defines θt. ψ represents the toroidal
magnetic flux and the radial coordinate r is defined by ψ = B0r

2/2 (see Ref. [9]). It
is then possible to calculate G and consequently the limiting values of the kernel. In
order to calculate the evolution of the kernel between these limiting values, however, it
is necessary to take into account the shape of the functions gi1 and gi2 in Eq. (8) (see
Ref. [9] for a detailed definition) which depend mainly on the relation: krVdrt. In Ref.[9]

the bounce-averaged radial drift velocity Vdr at v = vT i =
√

2vti =
√

2Ti/mi is taken to
be:

Vdr(θ, κ) =
cTi

eψ′

[
∂εH
∂θ

(
2
E(κ)

K(κ)
− 1

)
+
∂εT
∂θ

]
. (14)

We are now in the position of visualizing the complete time evolution of KL. In Fig. 4,
the analytical profiles and the ones corresponding to the numerical average of the simu-
lations are presented. Naturally, the oscillation-averaged profiles obtained using Eq. (6)
have to be extrapolated to t = 0 and can not depict the detailed shape of the functions
calculated in the analytical case. In addition, there seems to be an overall overestimation
of KL in the analytical case, as seen already in Ref. [9] due to the approximations assumed
for the analytical implementation. Nevertheless, the similarity of the profiles is evident
which motivates the use of the analytical implementations to study in more detail the
reasons of the discrepancy between ZF evolution in the simple and realistic models for
standard and inward-shifted configurations.

The analytical values of K> and the ones from the simulation at t = 80[Ln/vti ] are
presented in Table II. In agreement with the theoretical predictions in Ref. [9], the ana-
lytical and numerical values are closer in the standard configurations (S-A and S-B) than
in the inward-shifted ones (I-A and I-B) since the theory is based on the small helical
ripple amplitude (εH) approximation.

Next, we investigate the configuration dependence of the bounce-averaged radial drift
velocity Vdr(θ, κ) as defined in Eq. (14). In this equation, there is no explicit dependence
on the safety factor. The κ-averaged Vdr(θ) profiles in the helically trapped region (κ2 < 1)
are displayed in Fig. 5. In average, the particles in the I-B configuration are the ones that
have the slowest radial drift. Then, in increasing order of magnitude of vdr, we have the
I-A, the S-B and finally the S-A configurations. This suggests that the magnetic geometry
of the I-B scenario is the one with the highest NCT optimization. However, it does not
explain why the early-time value of the response kernel of the I-B case is so different from
the one of the S-B case, or why the early-time values of KL(t) for S-A and I-A are so
close to each other and in between those of the S-B and I-B cases. While the Vdr governs
the speed with which the ZF decreases due to the shielding effect of helically trapped
particles, the initial value of the ZF response, K< or Knum

L (t = 0) is determined by the
shielding effect of the toroidally trapped particles, which is evaluated by G in Eq. (12).
This equation shows that, while the values of εt, εh, ε+ and ε− are implicitly modifying
the function, another contribution to G comes from the safety factor q and the aspect
ratio r/R0 [where the dependence on r is included through |∇ψ| = B0r in Eq. (12)]. In
the S-A and I-A model configurations, r/R0 = εt is assumed, while in the more realistic
models S-B and I-B the discrepancy between r/R0 and εt is introduced through the new



parameter Rεt/r, as shown in Table I. The introduction of this new parameter permits
the discrimination of the effect of the inward plasma shift on G. Reducing R0 in the I-B
configuration decreases G and, therefore, increases K<, by reducing the banana bounce
period and the widths of the toroidal banana orbits. The differences in q also affect
considerably G by changing the orbit widths and, together with εh, ε+ and ε−, give the
final ordering to the values of K< for the different scenarios. These results indicate, once
more, the need of an accurate description of the global magnetic configuration in order
to efficiently model the shifted LHD configurations.

This subsection has been devoted to the explanation of the configuration dependence of
the linear ZF response based on the analytical formulae in Ref. [9]. To verify the validity
of the analytical treatment of helically trapped particles, a velocity-space study of the I-B
and S-B configurations is presented in the next subsection.

C. Velocity-space studies

The analytical description of the perturbed distribution function (see Ref. [9]) predicts
an oscillatory profile of the helically trapped particle distribution in the velocity space
which has a periodic dependence on the dimensionless perpendicular velocity v⊥/vti with

the velocity-space wave length λv ∝ 1/
√|kr Vdrt|. In order to visualize the effect of

the inward plasma shift, the velocity-space structures of the perturbed ion distribution
function for the standard, S-B, and inward, I-B, configurations are displayed in Fig.6.
The left hand side figures correspond to the S-B configuration and the right hand side
ones to the I-B case, all taken at t = 60[Ln/vti]. Here, the values for time and θ position
have been chosen to help visualizing the periodicity in velocity space predicted by the
theory. At θ = 0 (top row of Fig.6) the magnetic drift is tangential to the magnetic flux
surface, so the structures for both configurations are very similar. However, for θ �= 0
the radial drift of particles produces blue hollow areas in the helically-trapped particles
region of the velocity space. At fixed t and k⊥, being vdr greater in the S-B case, its λv is
shorter so we can visualize a red region of positive ion population after a blue hollow area.
Taking the velocity-space integral of this oscillatory distribution profile yields smaller ZF
potentials for the standard configurations through the quasineutrality condition. The
lower periodicity (or longer λv) of the I-B case due to the lower drift velocity does not
permit the next maximum of the oscillation to be seen. For shorter times, only a hollow
area would be discerned in S-B. This agrees with the theoretical prediction about the
behavior of the helically trapped particle distribution.

Thus, the link between lower radial drift of helical ripple trapped particles and higher
ZF level has been confirmed by comparison between the analytical predictions and the
numerical results for both the ZF time evolution and the velocity-space structures of the
perturbed distribution function.

V. CONCLUSIONS

Linear gyrokinetic simulations with the GKV code have been carried out to investigate
effects of the inward plasma shift on the ITG instability and on the ZF evolution in the
LHD.

Two sets of parameters to model the standard and the inward shifted configurations
have been considered. The first set uses single and multiple helicity fields to model
the standard and inward-shifted configurations, respectively, although both use the same



safety factor, the same aspect ratio and a large-aspect-ratio field approximation to evaluate
the radial derivative of the field strength. In order to model the inward shift we have
introduced side-band helicity terms to reduce the NCT. In the second set, the same
configurations are modeled using more realistic values for the safety factor, the aspect
ratio, the multiple helicity components and their radial derivatives taken from elaborate
field calculations.

The ITG growth rates for the realistic models of both LHD configurations turn out to
be closer to each other than in the case of using the simple models. Also, the discrepancy
in the ZF time evolution between the I-B and S-B cases is more evident when using the
realistic model parameters. For the simple model parameters, the ZF decay time [defined
by Eq. (5)] for the inward-shifted case is 38% larger than for the standard case. However,
a 65% increase is achieved when realistic parameters are used.

Analytical predictions of the linear zonal flow response have been shown to be in a
qualitative agreement with the simulation. While the radial drift velocity of helically
trapped particles is mainly affected by the side-band terms, the early-time behavior of
the response depends on an accurate choice of the field strength spectra, the aspect
ratio and the safety factor which affect the shielding due to toroidally trapped particles’
polarization. Moreover, the slight reduction of the aspect ratio produced by the inward
shift has been shown to be one of the main parameters responsible for the enhancement
of the difference between the early-time ZF level of the realistic parameter models.

In addition, the velocity-space structures of the perturbed ion distribution function
associated with the ZF evolution are examined by the simulation of the standard and
inward-shifted configurations S-B and I-B. As expected form the theory, the fast radial
drift of helically trapped particles in the standard case produces a oscillatory distribution
and shows hollow and bumped regions that lead to a reduction of the ZF when the
velocity-space integration of the distribution function is carried out to determine the ZF
potential through the quasineutrality condition. Moreover, a periodicity on the velocity-
space structures in the helically trapped region has been identified in agreement with the
analytical predictions.

More conclusive evidence of the effect of the inward plasma shift on the AT requires
very computer-demanding nonlinear turbulence simulations. The present work, however,
helps to choose conditions in which high ZF generation by the turbulence is expected. In
particular, the results presented here for the standard and inward-shifted configurations
are in agreement with recent nonlinear simulation results of the AT [10] which used the
simple version of the field models (S-A and I-A). The larger ITG growth rates of the
inward-shifted case (I-A) trigger a greater drive of AT while the higher ZF level for
this configuration reduces the AT to a comparable level with the standard case (S-A).
Following the same reasoning, the more realistic set-up (S-B, I-B) which shows similar
ITG destabilization but much greater ZF level should show a greater compensation of the
AT in the inward-shifted scenario as it is observed in the experiment. These nonlinear
calculations are presently being performed.
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q εt r/R0 εh/εt ε−/εt ε+/εt

S-A 1.5 0.1 0.1 1 0 0
I-A 1.5 0.1 0.1 1 -0.8 -0.2
S-B 1.9 0.087 0.099 0.91 -0.28 0
I-B 1.7 0.082 0.114 1.2 -0.74 -0.24

ŝ (r/εt) ε′
00 (r/εt) ε′

t (r/εt) ε′
h (r/εt) ε′

− (r/εt) ε′
+

S-A -1 0.25 1 2 0 0
I-A -1 0.5 1 2 -0.8 -0.6
S-B -0.85 0.22 1.02 1.96 -0.63 0
I-B -0.96 0.71 1 2.44 -0.36 -0.61

TABLE I: Numerical values for the expansion parameters of the magnetic field and the curvature
factor Gc in the simple (S-A and I-A) and realistic (S-B and I-B) model configurations.

S-A S-B I-A I-B

Kan
> 2.2 10−2 2.7 10−2 2.5 10−2 2.6 10−2

Knum
L (t = 80) (2.2±0.4) 10−2 (2.3±1.6) 10−2 (1.8±0.6) 10−2 (1.7±0.9) 10−2

TABLE II: Compared values for the long time ZF residual level from the analytical theory Kan
>

and the simulation Knum
L (t) at t = 80[Ln/vTi ]. In these calculations, accurate values for the

radial wave vector are required. The values of kxρti for S-A , S-B , I-A and I-B are, respectively:
0.096, 0.103, 0.096 and 0.104.
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FIG. 1: Magnetic field strength B and geometric factor Gc along the magnetic field lines for the
simple model configurations S-A and I-A (on the left) and the more realistic models I-B and
S-B (on the right).
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FIG. 2: ITG growth rates and real frequencies (in units of vti/Ln) for the simple model config-
urations S-A and I-A (on the left) and the more realistic models I-B and S-B (on the right).
The relevance of q and ŝ is depicted in the right figure for the realistic configurations. Here,
ρ = ρti =

√
vti/Ω, Ln/R0 = 0.3, ηi = Ln/LT = 4, Te/Ti = 1 and α = 0.
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FIG. 6: Compared velocity-space structures for the realistic model standard (S-B) (left hand
side figures) and inward-shifted (I-B) (right hand side figures). The top row corresponds to θ = 0
and the bottom row to θ values corresponding of nearby local magnetic field minima of each
configuration. These θ positions and the time, t = 60[Ln/vti], are chosen to help to visualize
the periodicity in velocity space of the distribution function in the helically trapped region as
predicted by the theory.


