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Abstract 
 
Design study of an experiment for plasma-loaded cyclotron resonance maser (CRM) utilizing 
TPD-II Machine at NIFS, Japan is described in some detail. The principle of gyrotrons has been 
believed the CRM instability. However, all the existing linear theories of CRM instability include 
unphysical modes unstable at infinite values of axial wavenumber that can never be observed 
experimentally. To overcome the difficulty, we derive and analyze numerically an exact linear 
dispersion relation of a large orbit electron beam for CRM, and removed the unphysical modes. 
However, the relation is found to include two principles of cyclotron emission with oscillation 
frequencies above and below the branch of fast electron cyclotron wave. The former is CRM 
instability, and the latter is named Cherenkov instability in the azimuthal direction (CIAD). It is 
noted that the CIAD we found remains only a proposal of a new mechanism for cyclotron emission 
until the physical existence is verified experimentally. To verify the CIAD, the design study of a 
plasma-loaded CRM has been carried out. The apparatus consists of two portions installed in the 
TPD-II: A pair of helical wiggler windings to create a mono-energetic beam with 15 keV and pitch 
factor / 1zV Vθ ≥ , and microwave circuits including a cylindrical TE011 mode cavity with resonant 

frequency 3.45 GHz. For high plasma density 111.5 10n ≥ ×  cm-3 from TPD-II, the CRM 
instability may be suppressed and the CIAD will take turn. The present experimental study 
contributes to a deeper understanding and a widened future prospect in gyrotron physics. 
 
 
 
Keywords: Cavity, Cherenkov instability in azimuthal direction, CRM instability, cyclotron 

resonance maser, fast wave, gyrotron, negative absorption, microwave, slow wave, 
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List of Notations 
 
Notation Definition    ([1] means a dimensionless quantity) 
a  Radius of helical windings of wiggler [m] in 3.1 

0B  Axial magnetic field at cavity [T] in 2 and 3.1  
Half half-width of resonant curve of cavity [s-1] in 3.2.2 

sB  Axial magnetic field at the wiggler [T] in 3.1 

tb  Right-hand circularly polarized dc magnetic field produced by wiggler [Gauss] in 3.1 

c  Light velocity in vacuum 83 10×  [m/s] 

bE  Beam energy [keV] 

cf  Electron cyclotron frequency [Hz] 

h  Coupling constant proportional to hole size of one-port cavity [1] in 3.2 

bI  Beam current [A] 

totI  DC current flowing the windings of wiggler [A] in 3.1 

zk  Axial wavenumber [m-1] 

L Total length of wiggler windings in 3.1 [m]  
l  Mode number in the azimuthal direction in 2, 

Axial length of cavity [m] in 3.2  
N  Number of gyrations in cavity [1]  
n  Beam density [m-3] 
p  Phenomenological factor [1] in 3.2.3, negative absorption arises for | | 1p >   

eQ  External Q value of a cavity [1] in 3.2.2 

uQ  Unloaded Q value of the cavity [1] in 3.2.2 
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0Q  Loaded Q value of the cavity [1] in 3.2.2 

br  Radius of thin annular beam [m] in 2  

cavr  Radius of cylindrical waveguide [m] in 2 

R  Reflection coefficient from the cavity [1] in 3.2.2  

maxR  Reflection coefficient from the cavity at the resonance [1] in 3.2 

s  Coupling factor between cavity and external circuit given by /u eQ Q [1] in 3.2.2 
T  Transmission coefficient through the cavity [1] in 3.2.4 
U Phenomenological potential well in the radial direction [V] in Appendix A 
Vθ  Azimuthal velocity of the spiraling beam [m/s] 

zV  Axial velocity of the spiraling beam [m/s] 

α  Pitch factor / zV Vθ  [1] in 2 and 3.1, 
Round-trip attenuation of microwave in cavity [m-1] in 3.2.2 

β  | | /V c  [1] or wavenumber in waveguide [m-1] 
γ  Relativistic factor [1] 

0γ  Initial relativistic factor [1] 

ε  Thickness of infinitely thin annular beam [m] , 0ε →  
κ  Surface current density [A/m] in 2 

cλ  Cutoff wavelength in cavity [m] in 3.2.2 

0 'λ  Free space wavelength in vacuum [m] in 3.2.2 

wλ  Periodic length of helical windings of wiggler [m] in 3.1 

θ  Coordinate in the azimuthal direction [1] in 2.2 -2.4,  
Phase of microwave in cavity [1] in 3.2.2 

τ  Time normalized by gyration time [1] in 2.4,  
Time constant of cavity [s] in 3.2.2 

ω  Oscillation angular frequency [s-1] 

0ω  Resonant angular frequency of cavity [s-1] in 3.2.2 

Ω�  Initial electron cyclotron frequency 0 0/eB mγ  [s-1] 
Ω  Electron cyclotron frequency 0 /eB mγ  [s-1] in 2.4 
Δ  Small but finite thickness of annular beam [m] in 2.3, 0Δ ≠   
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1. Introduction 
 
1.1 How defective is the conventional theory of CRM instability? 

The principle of gyrotrons, high-power millimeter microwave sources indispensable for fusion 
research, is believed cyclotron resonance maser (CRM) instability [1-3]. The CRM was verified in 
an experiment in which negative absorption was observed for ω > Ω�  [4]. Here, ω  and 

0 0eB mγΩ =�  are, respectively, oscillation angular frequency and relativistic electron cyclotron 
frequency.  

However, all the existing linear dispersion relations of CRM instability [5-8] include unphysical 
modes unstable at infinite values of axial wavenumber zk  in slow wave region, / zk cω < , that 
can never be observed experimentally. Here, c  is the velocity of light in vacuum. These 
unphysical modes will be discussed in the subsequent section. It should be emphasized that the 
results from the linear CRM theory reported up to date are quantitatively erroneous because of the 
presence of the unphysical modes, no matter how people have trusted. No dispersion relation of 
CRM instability, in which the finite Larmor radius effect of gyrating relativistic electrons at the 
beam-vacuum interface is correctly analyzed, has been reported.  

 
1.2 Why is it necessary to study the new principle of cyclotron emission? 

To overcome the difficulty, we derive and analyze numerically an exact linear dispersion relation 
of CRM for a large orbit (LO, hereafter) electron beam, for the first time in the history of the CRM 
research [9, 10]. The conventional unphysical modes are replaced by stable modes near the fast 
cyclotron mode. Here, LO means that all the electrons have an identical location of guiding center 
on the center axis of waveguide. 

It is found, however, that our dispersion relation includes two principles of cyclotron emission 
with oscillation frequencies above and below the branch of relativistic fast electron cyclotron wave 

z zV kω = Ω +� . The former is well-known CRM instability ( )z zV kω > Ω +� , and the latter 

( )z zV kω < Ω +� is named Cherenkov instability in the azimuthal direction (CIAD). The reason 
why the CIAD has not been included in the existing dispersion relations is that the boundary 
conditions with inevitable finite Larmor radius effect at beam-vacuum interface were not analyzed 
correctly. The CIAD arises logically whenever distinct high density beam-vacuum interface is 
present. In order to understand the dispersion relations of the CRM instability more correctly, one 
must take into account the logical presence of the CIAD. 

The new principle of cyclotron emission of CIAD is resulted from a constrained gyration model 
assuming the interruption by neutralizing ions in high-density beams [9]. The physical reason for 
the model is described in Appendix A. The CIAD is expected to arise at an oscillation frequency 

z zV kω < Ω +�  in fast wave device region, namely, / zk cω > . Our novel and strange model of the 
constrained electron gyration has not been known up to date in the gyrotron community over the 
world. However, it really has an exact solution for cyclotron instabilities including CRM by taking 
into account the finite Larmor radius effect of gyrating electrons at the beam-vacuum interface 
correctly for the first time in CRM analyses. The CIAD might have happened in previous CRM 
experiments with high density intense relativistic electron beams (IREBs) produced by cold 
cathodes [11].  

It is also shown [10] that, for tenuous electron beams such as 2 2
bω Ω�� , the CRM instability 

z zV kω > Ω+�  caused by free gyration model is the principle of cyclotron radiation. On the other 

hand, in high density neutralized electron beams such as 2 2
bω Ω�� , the CIAD z zV kω < Ω +�  

obtained by the constrained gyration model will lead to the excitation of microwaves. The latter 
instability survives even for non-relativistic electron beams, and disappears in ultra-relativistic 
beams. Both instabilities might co-exist at the same time in non-uniform or incompletely neutralized 
beams. The CIAD may be an alternative or possibly a co-existing mechanism of cyclotron emission 
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in microwave devices including the gyrotrons, when high density neutralized beams are working. 
 
1.3 Significance of the present experimental program 

It should be emphasized, however, that the CIAD we found remains only a proposal of possible 
cause of cyclotron emission, until its physical existence is verified experimentally. Feasibility to 
observe the CIAD radiated from the constrained electrons in laboratory experiments is not clarified 
yet and left as an open question. To verify the CIAD, the author tries to extend the CRM experiment 
in vacuum made by Hirshfield and Wachtel [4] to a plasma environment. The purpose of the present 
experiment is that, in high-density neutralized electron beams such as 2 2

bω Ω�� , the CIAD with 

z zV kω < Ω +�  may be observed instead of CRM instability with z zV kω > Ω +� . Although the 
Hirshfield and Wachtel’s short letter paper [4] is believed to be only one reported experiment to 
verify the CRM instability, it has not been discussed thoroughly by subsequent researchers in 
literature. This is probably because of terrible brevity of the letter paper. We believe that the present 
report is the first attempt to explore a possible extension of the experiment to plasma environment.   

The author designs and fabricates a plasma-loaded CRM in the TPD-II Machine [12, 13] at 
National Institute for Fusion Science (NIFS), Japan utilizing as beam source. With increase in 
density of plasma from TPD-II, the CRM instability may be suppressed and the CIAD may take turn. 
In other words, frequency of negative absorption observed in vacuum [4] may change from above to 
below the relativistic electron cyclotron frequency with increase in the beam density in the cavity 
such that 111.5 10n ≥ ×  cm-3. Analysis, design and preliminary measurements for the fabricated 
microwave circuits are described. The present efforts are believed to contribute to a deeper 
understanding and a widened future prospect in physics and engineering of the gyrotrons. 

 
1.4 What is plasma-loaded CRM? 

In this report, a design study for experimental verification of the CIAD in plasma-loaded 
microwave cavity utilizing TPD-II Machine is described. Schematic view of the TPD-II Machine 
[12, 13] and our constructed plasma-loaded CRM are shown in Fig. 1. In (a), total view of the 
apparatus is depicted. Plasma is produced by dc helium gas discharge between a hot cathode and 
grounded anode in TPD-II at the right-side. Plasma is spouted out from an orifice in the anode into 
left-side plasma container made of quartz pipe in solenoid coils where the plasma-loaded CRM is 
installed. This portion is evacuated by high speed pumps to remove neutral gases for attaining fully 
ionized plasma. The plasma column has high density up to 1014 cm-3, temperature of a few eV and 
beam diameter 10 mm.  

To detect negative absorption caused by CRM instability or CIAD, a large number of gyrations of 
the beam inside the cavity is required. The principle of the plasma-loaded CRM is schematically 
shown in Fig. 1(b). It consists roughly of two different portions: (1) A pair of helical windings called 
wiggler in this report for creating transverse velocity in the beam at the right-hand side, and (2) the 
TE011 mode cylindrical cavity at the left-hand side. The latter is connected to microwave circuits for 
detecting negative absorption of incident microwave near 3.45 GHz with power less than 50 mW. 
The 15 keV electron beam from TPD-II Machine is incident from the right-hand side. The beam, 
however, has no azimuthal velocity component, namely 0Vθ � . In order to create Vθ  for 
gyrations, the beam is introduced on the axis of the wiggler that produces a helical circularly 
polarized static magnetic field tb  of the order of 310−  (T) near the axis. Here, tb  can be quite 

small, because it does not give any energy to the beam. The pitch factor / 0.65zV Vθα = �  will 
be obtained at the exit of the wiggler. The pitch factor α  of the beam is further increased by the 
mirror magnetic field shown in Fig. 1(c) before the incidence on the cavity.  

In Fig. 1(c), the calculated distribution of axial magnetic field on the axis of the plasma-loaded 
CRM is shown. The wiggler and the cavity are located in the axial magnetic field 0.03268sB =  T 

and 0B = 0.1268 T, respectively. The mirror ratio 3.88 between both of them increases the α  
above unity that enables many gyrations in the cavity.  
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It is the purpose of our experimental program to verify a physical cause of cyclotron emission that 
has not been known up to date. In our plasma-loaded CRM, negative absorption due to the CRM 
instability is suppressed in high-density beam such as 2 2

bω Ω�� , namely density 111.5 10n ×�  
cm-3, and the CIAD will take turn.  

 
1.5 Contents of this report 

Organization of this report is as follows. The list of contents is shown in page 2. In the sections 2 
and 3, our theoretical and experimental works are presented, respectively. In 2.1, a defect in all the 
existing linear dispersion relations of CRM instability is discussed. In 2.2 and 2.3, our exact linear 
dispersion relations for cyclotron emission from electron beams neutralized by cold ions are 
described. In 2.2, the case of an infinitely thin thickness annular beam is analyzed. The constrained 
gyration model explained in the Appendix A is used. The derivation of the dispersion relation is 
summarized in the Appendix B. The results of the numerical analysis are shown in Fig. 4. 
Somewhat surprisingly, observed instability is not the well-known CRM instability ( )z zV kω > Ω +� , 

but CIAD ( )z zV kω < Ω +�  newly found by us. In 2.3, the case of annular electron beam with small 
but finite thickness is analyzed. The derivation of the dispersion relation is shortly summarized in 
the Appendix C. A numerical example of our dispersion relation (C 1) involving both instabilities is 
shown in Fig. 5. In 2.4, particle simulation is conducted to elucidate the physical distinction 
between both instabilities. The equations used in the simulation are listed in the Appendix D. The 
results are described in some detail in Figs 6-9. The CRM instability and CIAD are caused, 
respectively, by free and constrained gyrations of the electrons near the cyclotron resonance 
ω Ω�� .   

In 3.1 and 3.2, respectively, we design (1) a pair of helical windings of wiggler for creating 
transverse velocity with pitch factor 0.65α �  in 15 keV beam, and (2) microwave circuits 
including the TE011 mode cylindrical cavity for detecting negative absorption of incident microwave 
at 3.45 GHz. Design study of (2) is described in 3.2. In 3.2.1, physical interpretation of the previous 
experiment [4] to detect negative absorption caused by CRM instability in a cavity in vacuum is 
tried. In 3.2.2, performance of one-port cavity is analyzed by using scattering matrix theory for 
understanding the relationship between negative absorption inside the cavity and detected signals in 
external microwave circuits. In 3.2.3, expected microwave signals to detect the CIAD in addition to 
CRM instability are calculated numerically. In 3.2.4, fabricated cavity and microwave circuits for 
the plasma-loaded CRM are described. 

Lastly, discussion and conclusion are given in 4. In Appendix A, the physical reason of the 
constrained gyration model that gives rise to the CIAD is explained. In Appendices B-D, the 
formulations derived for our theoretical works in section 2 are summarized.   

Flow chart of this report is given in page 3 to clarify the logical relationship among various  
sub-sections. The upper and lower halves of the chart are, respectively, theoretical and experimental 
works. Arrows mean the logical relationship between motivation and consequence. 

 
2. Theoretical Study on CRM Instability and CIAD 
 
2.1 Conventional erroneous linear dispersion relations for CRM instability 

The CRM instability [4-8] has been believed to be caused by the faster branch z zV kω > Ω+�  

denoted by +FCM of the fast cyclotron wave z zV kω = Ω+� . It must be emphasized, however, that 
all the existing linear dispersion relations [5-8] of the CRM instability include unphysical branches 
unstable at infinite values of axial wavenumber kz in the slow wave region ( / )zk cω <  that can 
never be observed experimentally. 

A numerical example of the linear dispersion relation of CRM instability derived by Sprangle and 
Drobot [5, eq. 1] calculated by us is shown in Fig. 2. Given numerical parameters are indicated in 
the figure. The growth rate in the fast wave region ( / )zk cω >  near 0zk =  was believed the 
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CRM instability. This figure, however, involves unphysical numerical instabilities both sides 
extending to infinite values of zk , although the authors erased these unphysical branches without 

any notice [5, Fig. 4]. Researchers have trusted that the growth rate near 0zk =  is still CRM 
instability. The fact is as follows: Their physical explanation [5, Fig. 1] of CRM instability was 
correct, but their relation [5, eq. 1] of CRM was incorrect. Both of them have nothing to do with 
each other. 

The reason why the CIAD was not involved in their dispersion relation [5, eq. 1] of CRM was 
that the boundary conditions with finite Larmor radius effect at beam-vacuum interface were not 
analyzed correctly. In order to understand CRM instability physically, one must take into account 
the logical presence of CIAD that is unavoidable in general whenever a high density beam has 
boundary. It is quite important to understand the CIAD, a new principle of cyclotron emission, for 
the development of physics of gyrotrons. 

 
2.2 An exact dispersion relation for infinitely thin thickness annular beam 

The model of our analyses is shown in Fig. 3, that is a cross-sectional view of cylindrical 
waveguide including a concentric LO annular beam in the region II. Here, the regions I and III are 
vacuum. The axial magnetic field 0B  is in the direction from the sheet to our eyes. Circular arrow 
means the direction of rotation of electrons and right-hand ciecularly polarized electromagnetic 
field. 

First, we analyze a case that the thickness denoted by Δ  of annular beam in the region II is 
infinitely thin, namely 0Δ → . In this case, no radial motion of the gyrating electrons is allowed, 
and they must stay on the original LO circle at any momemt. This strange model is called the 
constrained gyration model in this peport. The physical reason for the model is explained in the 
Appendix A.  

The derivation of the exact dispersion relation (B 1) for infinitely thin annular beam is 
summarized in Appendix B. We here describe only the results of numerical analysis. In Figs. 4(a) 
and (b), the dispersion relation (B 1) is solved numerically for quasi-TE11 (Q-TE11, hereafter) mode. 
Numerical parameters are given in the caption. The strength of 0B  is chosen so that the negative 
energy wave [14], namely, slow branch of fast cyclotron mode (–FCM) grazes the parabolic curve 
of TE11 mode in empty waveguide. The thin dotted oblique lines in Fig. 4(a), (c) and (e) are light 
lines in vacuum. The dashed line is FCM, z zk Vω = +Ω� , when the space-charge effects are ignored.  

In Figs. 4(a) and (b), all terms in surface current density (A 3) are retained while solving the 
dispersion relation (B 1). In Fig. 4(a), the frequency of radiation is less than the cyclotron frequency 
ω < Ω�  at kz=0. The temporal growth rate is depicted in Fig. 4(b). The instability shown in Fig. 
4(a) and (b) is named the CIAD. It is clearly shown that the unstable branch is the slower branch 
–FCM that is different from +FCM in the case of CRM instability as shown in Fig. 2. Somewhat 
surprisingly, Fig. 4 (a) and (b) for infinitely thin annular beam does not indicate CRM instability. 

In Figs. 4(c) and (d), all relativistic terms are ignored approximately in (A 3) by tending c →∞ . 
In doing so, we exclude azimuthal bunching caused by relativistic effect for CRM instability [3-8]. 
It is noted that Figs 4(c) and (d) are qualitatively similar to Figs. 4(a) and (b), respectively. Figure 
4(c) suggests the non-relativistic nature of the instability shown in Fig. 4(a), because the thick 
curves of Re( ) / 2ω π  in both figures are qualitatively similar to each other. The corresponding 
temporal growth rate shown in Fig. 4(d) becomes doubly peaked because –FCM is intersecting the 
TE11 mode at slightly higher frequency in case of 0 1γ = . In this report, the instability observed in 

Fig. 4(a)-(d) is named the CIAD in fast wave region ( / zk cω > ). This instsbility is smoothly 
continuing to fast cyclotron instability in slow wave region ( / zk cω < ) of BWOs [9], when the 
radius of the cylindrical waveguide has a corrugation in the axial direction.  

On the other hand, we drop all the non-relativistic terms in (A 3), without legitimacy, to exclude 
the nonrelativistic effect in Fig. 4(e) and (f). The illogical assumption 0c →  results in radiation 
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with ω > Ω�  at kz=0 as shown by thick curves in Fig. 4(e). The corresponding temporal growth rates 
are shown in Fig. 4(f). Figures 4(e) and (f), drawn through unphysical prosedure from the dispersion 
relation (B 1), is very similar to conventional linear dispersion relations of CRM obtained by 
Sprangle and Drobot [5, eq. 1], and by Chu and Hirshfield [6, eq. 8]. In other words, Figs 4(e) and 
(f) are almost identical to Fig. 2. Their relations include unphysical branches, P2 and P2’ in Fig. 4(f), 
that are unstable in the limit of wavenumber zk → ±∞ . Their analyses are approximate ones in the 
sense that either a particular mode was assumed in advance or the boundary conditions with finite 
Larmor radius effect at beam-vacuum interface were not correctly included. The relativistic 
Vlasov-Maxwell equations that these authors started to derive the dispersion relations might not be 
Lorentz invariant.  

These classical relations, Figs 4(e) and (f), were undersood to be correct, because the obtained 
branch of CRM instability P1 with ω > Ω�  at kz=0 in Figs 2 and 4(f) was qualitatively identical to 
the experimental fact ω > Ω�  [4, Fig. 2(a)] and physical interpretation of CRM instability ω > Ω�  [5, 
Fig. 1]. However, this coincidence cannot justify to ignore the presence of unphysical branches in 
their dispersion relations. The unphysical branches are the evidence of inadequate derivation of the 
linear dispersion relations of CRM. Such unphysical instabilities flat for kz are observed often in 
numerical analyses, but have never been observed experimentally.  

The correct dispersion relation of CRM instability should include radiation of z zV kω > Ω +� in 
the fast wave region, and should not include unphysical branches in the slow wave region such as 
those unstable for kz infinity. Any instability should be allowed for a limited range of kz  near the 
intersection of structure mode with a negative energy wave [14] in the beam. More exactly, an upper 
limit of wavenumber kz must exist always, above which the interaction is stable.  

A correct dispersion relation that includes both CIAD and CRM instability is obtained, if one 
analyzes a finite-thickness LO annular beam shown in Fig. 3 that allows radial displacement of the 
electrons, as will be shown in the next sub-section. 
 
2.3 An exact dispersion relation for small but finite thickness annular beam  

Next, we analyze the LO annular beam with small but finite-thickness in a cylindrical waveguide 
shown in Fig. 3. The model of analysis is similar to those by previous researchers [7, 8], but the 
result is significantly different. We show here a numerical example of our new dispersion relation 
that includes both CIAD ( z zV kω < Ω +� ) and CRM instability ( z zV kω > Ω +� ) of Q-TE11 mode at 
the same time. Some electrons located deep inside the surface of the beam can dislocate freely in 
radial direction through uniform ions, and result in the CRM instability. The other electrons near the 
boundary must be constrained from radial movements because of restoring force by neutralizing 
ions so that the CIAD arises.  

We assume again that the regions I and III in Fig. 3 are in vacuum, and the region II is a uniform 
LO beam. Notations of outer radius br

+ , inner radius br
− and a small thickness b br r+ −Δ = −  are 

used. The rf field components in regions I and III in vacuum can be straightforwardly written in 
ordinary way using Bessel functions. In Appendix C, the derivation of the linear dispersion relation 
(C 1) for a small but finite-thickness annular neutralized electron beams is shortly described.  

A numerical example of our new linear dispersion relation (C 1) of Q-TE11 mode is shown in Fig. 
5. Given numerical parameters are: Waveguide radius rcav=1.445 cm, axial magnetic field B0 =0.5 T, 
beam energy Eb=630 keV, pitch angle of the beam α = 10 and beam current Ib=3.864 mA. The 
resultant radius of LO circle is /br Vθ= Ω� =0.677 cm. The thickness of the annular beam is given 

by 3/100 6.77 10b b br r r r+ − −Δ = − = = ×  cm. Figure 5(a) is oscillation frequency 
Re( ) / 2f ω π=  (GHz) versus axial wavenumber kz (cm-1), and (b) is temporal growth rate 

Im( )ω  (ns-1) versus kz (cm-1). Thin solid parabolic curve in Fig. 5(a) is TE11 mode in empty 
cylindrical waveguide. The dashed straight line is fast electron cyclotron mode z zV kω = Ω +�  for 

0bω = .  
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It is clearly shown in Fig. 5(a) and (b) that the CIAD with Re( ) z zV kω < Ω +�  and the CRM 

instability with Re( ) z zV kω > Ω +�  denoted, respectively, by S and T are observed at the same 
time. This is because electrons with both free and constrained gyrations coexist in the 
finite-thickness annular LO beam. Here, 103.9 10Ω = ×�  Hz, and 910bω = Hz. It is noted that the 

CIAD can be observed although 2 2
bω < Ω� in this case. If one of the extreme conditions, 

2 2
bω Ω�� and 2 2

bω Ω�� , were chosen, the CRM instability and the CIAD will be exclusively 
observed, respectively.  

The previous analysis for infinitely thin-thickness annular beam in Fig. 4 exhibited CIAD, but no 
CRM instability was included. In the case of CRM instability, azimuthal bunching of freely gyrating 
electrons is always accompanied by radial excursion. On the other hand, radial displacements of the 
gyrating electrons are prohibited by restoring force from cold and localized ions in the constrained 
gyration model given in the Appendix A. The CRM instability is suppressed and the CIAD takes 
turn to arise in high density beam.  

Figure 5 supports the co-existence of the CRM instability and the CIAD, when some electrons are 
free to gyrate and others are constrained because of the presence of the fixed boundaries at 
beam-vacuum interface. Figure 5 is the first example of an exact linear dispersion relation of CRM 
in which the numerical (unphysical) instability at zk  infinity observed in the conventional 
relations [5-8] is removed. These unphysical modes are now replaced by two neutral branches near 
the fast electron cyclotron mode z zk Vω = +Ω�  for 0bω =  in the slow wave regions, 

| / |zk cω < , as shown in right-top and left-bottom corners in Fig. 5(a).  
 

2.4 Numerical particle simulation for clarifying two principles of cyclotron emission 
In Figs 6-9, we carry out a particle simulation to elucidate the subtle distinction between the 

CRM instability and the CIAD [10].  
In Fig. 6, bunching of the 16 test electrons is tracked numerically by solving a relativistic 

equation of motion of electrons given by (D 1) in Appendix D for six typical cases of /ω Ω�  and 
beam density n. The 6th order Runge-Kutta method [16] is used to track the electron gyration in a 
right-hand circularly polarized plane electromagnetic field. Interactions among the electrons are 
ignored.  

Given parameters are as follows: A mildly relativistic case of initial electron energy 100bE =  

keV, pitch factor 1.0α =  and constant rf field 53 10rfE = ×  V/m. The amplitude rfE  of rf 
fields in (D 1) is a given parameter and assumed to be constant during the numerical simulation. 
Accordingly, the total energy in the interaction between the 16 electrons and rf field is not 
conserved. We do not intend to calculate exactly the equation at the nonlinear stage of the electron 
motion, because constant amplitude rfE  is assumed in (D 1). We mostly confine ourselves to the 
initial linear periods within 20 gyrations of the electrons, in order to investigate in detail the 
existence of the CIAD in addition to the CRM instability distinguished in [9]. After a number of 
rotations of the rf field, the average energy gain of all the 16 electrons, 0δγ γ γ〈 〉 = 〈 − 〉 , is 

calculated. Here, γ and 0γ  are, respectively, the relativistic factor after gyrations and its initial 
value. Radiation from gyrating electrons can be expected, if 0δγ〈 〉 < .  

In Fig. 6(a)-(f), thin circle in each figure is the LO circle on which 16 electrons are located with 
equal separation initially. The upward arrow at the center of each LO circle is the direction of the 
instantaneous rf electric field at the initial moment and after the rotations. The direction of magnetic 
field 0B  is from the sheet to our eyes in Fig. 6, namely the electrons and the rf field are rotating 

counterclockwise with angular frequency Ω�  and ω , respectively. In each figure, the uniform rf 
electric field in the upward direction as shown by the arrow exerts a force in downward direction to 
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every gyrating electron. Small black and white circles are, respectively, the locations of the 
electrons that lose and gain net kinetic energy against the rf field.  

A neutral bunching case of / 1.0ω Ω =�  and 1010n =  cm-3 of free gyration after 11 rotations 
of rf field is shown in Fig. 6(a). The value 31.2183 10 0γ −〈Δ 〉 = × >  suggests that the interaction is 
stable. Since there are no sufficient ions to prevent the radial displacements, free electron gyration is 
possible, and the electrons can deviate from the original LO circle freely. It should be noted that 
bunched electrons at right and left sides of the arrow are decelerated and accelerated, respectively, 
by the rf electric field, because the electrons are gyrating counterclockwise. So, the condition 

0γ〈Δ 〉 <  for instability is met, if the bunched electrons are located at the right side of the upward 
arrow and are decelerated secularly by the rf field both in free and constrained gyration models.  

In Fig. 6(a), the electrons are at rest initially in a rotating frame with ω , since ωΩ =� . After a 
number of rotations of rf field, the black electrons located at the right side of the upward arrow lose 
kinetic energy, and are found inside the LO, whereas the white electrons at the left side of the arrow 
gain kinetic energy from the rf field and are found outside the LO. This is because the Larmor 
radius / bv rθ Ω ≠  of each electron changes with change in the instantaneous kinetic energy, where 

0 /eB mγΩ =  is the changed electron cyclotron frequency, and br  is the initial radius of LO.  
In Fig. 6(a), the upward rf field accelerates the electrons downward at the left side of the arrow in 

the direction of gyration, and as a result, causes increase in vθ  and γ . Then, Ω  decreases from 

its initial value 0 0/eB mγΩ =� , namely Ω < Ω� . Since the free electrons gyrate with angular 

frequency / tθ θ∂ ∂ = = Ω� , the gyration of the electrons retard clockwise from the initial value of 
angular frequency Ω� , despite that vθ  also increases from the initial value. The retarded gyration 
through excursion on the detour path of the electrons from LO is the physical reason of CRM 
instability. On the other hand, the same upward rf field decelerates gyrating electrons located at the 
right side of the arrow, and as a result, Ω > Ω� . Since the angular frequency / tθ θ∂ ∂ = = Ω�  
increases, the positions of these electrons near the LO proceed counterclockwise and slide upwards 
after several rotations of rf field. In the case of free gyrations, key point for arising the azimuthal 
bunching after several rotations is not the change in the velocity vθ , but the change in Ω . The 
neutral bunching in Fig. 6(a) arises at the top of the LO, accordingly. Energy exchange between the 
electrons and the rf field is expected to be very small, because the bunching occurs near a neutral 
point where no rf field in azimuthal direction is present. This azimuthal bunching disappears in a 
non-relativistic beam, 0 1γ = . 

Another neutral bunching case of / 1.0ω Ω =�  for constrained electrons neutralized by ions with 
density 1410n =  cm-3 after 7 rotations of rf field is shown in Fig. 6(b). Other given parameters are 
identical to Fig. 6(a). The electrons are almost completely constrained on the original LO circle, and 
the value of 42.4091 10 0γ −〈Δ 〉 = × >  means again absence of instability. The bunching happened 
at the top of the LO circle in Fig. 6(a), whereas it takes place at the bottom of the LO circle in Fig. 
6(b). The constrained electrons circulate counterclockwise with angular frequency 

/ / bt v rθθ θ∂ ∂ = =� , where br  is constant in the case of constrained gyration. For constrained 

electrons in Fig. 6(b), angular frequency θ ≠ Ω�  in general. This is because the centrifugal force 
on the electrons must be balanced not only by the Lorentz force due to axial magnetic field 0B  but 
also by the restoring force from neutralizing ions against the deviation from the original LO.  

In the frame rotating with rf electric field, all the electrons are initially at rest, because ω = Ω�  
in Fig. 6(b). The electrons left to the upward arrow gain kinetic energy from the rf field, and their 
vθ  and γ  increase. Since the Larmor radius must remain to the initial value br  in the 
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constrained gyration model, an increase in vθ  causes an increase in θ� , and the increase in γ  

from 0γ  results in Ω < Ω� , namely, θ ω> Ω = > Ω� � . Thus, these electrons that were initially at 
rest in the rotating frame, start to proceed counterclockwise towards the bottom of the LO circle 
after several rotations of rf field.  

On the other hand, the electrons located at the right to the arrow lose kinetic energy, and their vθ  

and γ  decrease. The decrease in vθ  causes a decrease in the angular frequency θ� , and the 

decrease in γ  from 0γ  results in Ω > Ω� . These electrons start to retard clockwise towards the 

bottom of the LO after some rotations, because θ ω< Ω = < Ω� � . In the case of constrained 
gyration, key point for arising the azimuthal bunching after several rotations is not the change in Ω , 
but the change in the velocity vθ . Consequently, neutral bunching takes place at the bottom of the 
LO circle in Fig. 6(b). Energy exchange between the electrons and the rf field is again little, because 
the bunching occurs near a neutral point where no rf field in azimuthal direction is present. This 
bunching can exist even in the non-relativistic limit, 0 1γ = .  

The electron bunching near neutral point arises very differently in Fig. 6(a) and (b). The 
difference in locations of neutral bunching in Fig. 6(a) and (b) gives rise to the distinction between 
the CRM instability and the CIAD. 

Next, we consider the cases of / 1.0ω Ω ≠�  in which instability can occur. A free gyration case 
with 1010n =  cm-3, / 1.04ω Ω =�  and after 15 rotations of rf field is shown in Fig. 6(c). Other 
given parameters are identical to Fig. 6(a). The value of 35.5376 10 0γ −〈Δ 〉 = − × <  means the 

CRM instability. Because ω > Ω� , the rotating rf electric field shown by the upward arrow 
overtakes counterclockwise slowly the gyrating electrons. The neutral bunching at the top in Fig. 
6(a) retards clockwise to the right side of the arrow where the bunched electrons are decelerated, 
because the downward force is in opposite direction to the cyclotron motion. They secularly lose 
kinetic energy against the rf electric field so that well-known CRM instability takes place. This 
physical explanation is identical to that was correctly given by Sprangle and Drobot [5, Fig. 1].  

In Fig. 6(e), another free gyration case 1010n =  cm-3, / 0.96ω Ω =�  and after 14 rotations of 
rf field is shown. Other given parameters are identical to Fig. 6(a). The value of 

36.2625 10 0γ −〈Δ 〉 = × >  means that the interaction is stable. The neutral bunching at the top in Fig. 

6(a) slides counterclockwise towards left side of the upward arrow, because ω < Ω� . The bunched 
electrons at the left side of the arrow are accelerated downwards in the same direction as the 
gyration so that they get kinetic energy secularly from the rf electric field. This is a case of stable 
bunching.       

A constrained gyration case of  1410n =  cm-3, / 0.96ω Ω =�  and after 7 rotations of rf field 
is shown in Fig. 6(f). Other given parameters are identical to Fig. 6(a). The value of 

32.0818 10 0γ −〈Δ 〉 = − × <  reveals the presence of the CIAD. The gyrating electrons overtake 

slowly counterclockwise the rf field, because ω < Ω� . The neutral bunching at the bottom in Fig. 
6(b) proceeds counterclockwise toward the right side of the upward arrow. The bunched electrons 
are decelerated downwards in opposite direction to circulation so that they give energy secularly to 
the rf electric field. This is the physical reason of CIAD.  

Another constrained gyration case for 1410n =  cm-3, / 1.04ω Ω =�  and after 7 rotations of rf 
field is shown in Fig. 6(d). Other given parameters are identical to Fig. 6(a). The value of 

31.9157 10 0γ −〈Δ 〉 = × >  means that the interaction is stable. The neutral bunching at the bottom in 

Fig. 6(b) retards clockwise towards left side of the upward arrow, because ω > Ω� . The bunched 
electrons are accelerated downwards in the direction of circulation so that they get kinetic energy 
secularly from the rf electric field. This is another case of stable bunching. These are all the 
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explanations of the physical mechanism of the CRM instability and the CIAD. The former and the 
latter instabilities, respectively, disappears and survives in non-relativistic limit, 0 1γ = , as was 
clarified in the above physical explanations. 

Temporal changes in the relative energy gain 0/δγ γ< >  of the 128 electrons versus 

normalized time / 2tτ π= Ω� =0 to 15 are presented in Fig. 7, for various values of beam density n 
up to 1015 cm-3. Here, τ  is time normalized by time of gyration. Mildly relativistic beam energy 
Eb=100 keV, pitch factor / 1.0zV Vθα = =  and constant rf field Erf=3×105 V/m are assumed. 
Dashed and dotted curves are for the free gyration case n=0 and the constrained case n=1015 cm-3, 
respectively. Oscillation can occur, if 0<δγ . In Fig. 7(a), /ω Ω� =0.96 is given. The CIAD is 

observed for n>3×1012 cm-3, namely, bω >7.5×1010 Hz whereas Ω� =1.5×1011 Hz. This value of 
123 10n = ×  cm-3 does not change, when Erf= 3×104 V/m is given. In Fig. 7(b), /ω Ω�  =1.04 is 

chosen, and the CRM instability is observed for 0≤ n<2×1012 cm-3, namely bω <6.1×1010 Hz 

whereas Ω� =1.5×1011 Hz. It is shown in Fig. 7(a) and (b) that the CIAD and the CRM instability 
dominate, respectively, for 2 2

bω Ω��  and 2 2
bω Ω�� as are designated by the boldface letters. 

Relative energy gains 0/δγ γ< >  of the 128 electrons after normalized time τ = 10 of 

gyrations versus /ω Ω�  for the mildly and weakly relativistic cases, 100 keV and 10 keV, are 
depicted, respectively, in Fig. 8(a) and (b). A constant Erf=3×104 V/m and / 1.0zV Vθα = =  are 

given. Oscillation can occur for 0<δγ . In Fig. 8(a), mildly relativistic case Eb=100 keV is 

shown. The CIAD is observed for n>3×1012 cm-3, namely, bω >7.5×1010 Hz and for /ω Ω� <1, 

whereas Ω� =1.5×1011 Hz. The maximum decrease in 0/δγ γ< >  is observed near /ω Ω� =0.96. 

The CRM instability is found for n<3×1012 cm-3 and for /ω Ω� >1. The maximum decrease in 

0/δγ γ< >  is obtained near /ω Ω� =1.04. In Fig. 8(b), weakly relativistic case Eb=10 keV is 

shown. The CIAD is observed for n>1012 cm-3 and for /ω Ω� <1. The maximum decrease in 

0/δγ γ< >  is again obtained near /ω Ω� =0.96. The CRM instability is not observed for any 

density n and in vacuum near / 1.04ω Ω =� .  
Temporal changes in the relative energy gain 0/δγ γ< >  of the 128 electrons from τ = 0 to 15 

are shown in Fig. 9 for various values of beam energy Eb≤ 700 keV. A constant rf field amplitude 
Erf= 3×105 V/m and / 1.0zV Vθα = =  are assumed. Oscillation can occur, if 0<δγ . In Fig. 

9(a), /ω Ω� =0.96 and 1410n = cm-3 are assumed. The CIAD is observed for Eb< 500 keV, and this 
upper limit of Eb for CIAD is found to increase for 1410n >  cm-3. The strength of restoring force 
that is proportional to n shown in (D 1) becomes insufficient to constrain the gyration of electrons 
for extremely large values of Eb. In other words, the CIAD disappears for ultra-relativistic electron 
beams. On the other hand, in Fig. 9(b), /ω Ω� =1.04 and 1010n = cm-3 are assumed. The CRM 
instability is enhanced unlimitedly with increase in Eb.  

Numerical results shown from Figs 6-9 are summarized as follows. First of all, the CIAD and the 
CRM instability are observed exclusively for ω < Ω�  andω > Ω� , respectively. The maximum 
decreases in average energy of the electrons are found, respectively, near /ω Ω� =0.96 and 1.04 for 
these two instabilities as shown in Fig. 8. These values of /ω Ω�  at the maximum decrease do not 
change appreciably for a variety of given parameters. For mildly relativistic beam of 100 keV, both 
the CIAD and the CRM instability are observed for various n as shown in Fig. 7(a). It is emphasized 
that the CIAD and the CRM instability are observed above and below beam density 1210n � cm-3, 
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respectively. Both instabilities are not observed at the same time for a given beam density. In other 
words, the radiation from the CRM instability (ω > Ω� ) ceases, and the CIAD (ω < Ω� ) takes turn 
to arise with gradual increase in the beam density across 1210n �  cm-3. The CIAD can be 
observed only for the cases roughly n>1012 cm-3 for a wide range of given parameters in our 
simulation. For a weakly relativistic beam of 10 keV, the CRM instability is altogether suppressed 
as shown in Fig. 8(b). The CRM instability is based on relativistic changes in mass of the electrons, 
and it disappears for low beam energies Eb ≤ 10 keV, whereas the CIAD is observed in 
non-relativistic limit, 0 1γ = , even for low energy Eb≤ 10 keV, if n>1012 cm-3. On the other hand, 
the CIAD is suppressed for large values of Eb, as shown in Fig. 9(a).   
 
3. Design Study of Plasma-Loaded CRM in TPD-II Machine 
 
3.1 Wiggler windings for creating 15 keV mono-energetic spiral electron beam 

Most common way to produce mono-energetic spiral electron beam is magnetron injection gun 
(MIG) utilized in gyrotrons [2]. However, the MIG is the one of the most elaborate issues in 
construction and operation of any gyrotron, and it is not easily available in our experiment using the 
TPD-II Machine. Moreover, we are going to construct a gyrotron itself, if we use MIG. Here, we 
follow a method of wiggler to create spiral beam by using a pair of helical windings and mirror 
magnetic field before the incidence on the cylindrical cavity [4, 17].  

We have assembled dc high-voltage source up to -20 kV for applying a typical voltage of -15 kV 
to the flowing plasma from TPD-II. The accelerated beam-plasma by a pair of mesh electrodes has 
thermal broadening at a temperature of a few eV and we must assume 0Vθ �  initially. To produce 
mono-energetic spiral beam, a wiggler with bifilar helical windings is designed.  

The relativistic factor in case of beam energy 15bE =  keV is given by 
2

0 1 / 1 15/511 1.03beE mcγ = + = + =  and 0Vθ � . Then, 77.11 10zV cβ= = ×  m/s. Accordingly, 
the electrons execute right-hand spiral motions of infinitely small Larmor radii with axial pitch 
length /z cV f . Here, cf  is the cyclotron frequency at the location of wiggler windings. If the pitch 

length wλ  of the right-hand circularly polarized dc magnetic field tb  generated by the wiggler is 
equal to /z cV f , the electrons are accelerated in azimuthal direction secularly by the Lorentz force 

z tev b− ×
G G

 at the expense of their axial velocity. The amplitude of the helical magnetic field tb  is 
roughly evaluated as follows. The relativistic motion of an electron is given by,  

0

z t
v e v b
t mγ
⊥∂
= − ×

∂

G G G
,                                       (1) 

where 0γ  is kept constant. Integrating the equation (1) in time, one obtains 0( / ) tv e m b Lγ⊥ � , 

where zL V dt= ∫  is total length of the wiggler. We assume typical values of 0.4L =  m and 

/ 4zv V⊥ =  from our experimental view point. The required tb  is calculated to be 2.6 Gauss. It is 

noted that the value of tb  can be quite small to increase / zV Vθα =  significantly, because no 

energy exchange is present between the helical magnetic field tb  and the electrons.  

Exact value of required tb  is evaluated by numerically tracking the motions of 16 electrons 
initially located on a circle of Larmor radius with equal separation by using the equation (1). 
Wiggler is designed to be immersed in the axial magnetic field 0.03268sB =  T that corresponds 

to 88.89 10cf = ×  Hz for the 15 keV beam without gyration from TPD-II. Here, the value of sB  

is chosen so that the pitch length / 8w z cV fλ = =  cm is available, that is a convenient value from 
experimental point of view. 
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In Fig. 10, the transverse circularly polarized magnetic field tb  is produced on the axis by the 

bifilar helical windings with dc current totI  in opposite direction with each other. In (a), the 

windings create tb
G

 denoted by short thick arrows on the z axis. In (b), the change in tb
G

 in the 
axial direction is explained. The points P, Q and R in (b) correspond, respectively, to the short 
vectors in (a). The electron beam propagates from left to right sides with velocity 77.11 10zV = ×  

m/s, and accelerated by Lorentz force tzev b− ×
JJG G

 secularly in the azimuthal direction.  

The relation between tb  (Gauss) on the axis and the current totI (A) in the double helixes is 
formulated by Kincaid [18] as, 

[ ]0 1
0.8 ( ) ( )tot

t
w

Ib kaK ka K kaπ
λ

= + ,                               (2) 

where 2 / wk π λ= , wλ  is pitch length of the windings in cm, a  is the radius of the helix in 
cm, 0K  and 1K  are modified Bessel functions in the second kind. Here, the cross-sectional area 
of the conductor of windings has been assumed to be infinitely small. It is generally shown from (2) 
that tb  is large for w aλ � , and it becomes small for w aλ �  and w aλ � .  

The numerical results of tb  versus wλ  are calculated from (2) as shown in Fig. 11 for three 
values of outer radius a  of quartz pipe and for the current 60totI =  A. This value of totI  is the 
maximum value of the dc current source available in our experiment. Here, Q-24, Q-30 and Q-36 
are candidates of product number of quartz pipe through which the beam-plasma column from the 
TPD-II Machine with typical radius 0.5 cm penetrates on the axis and enter into the cylindrical 
cavity. The white circle on the pipe Q-30 with 1.775a =  cm is the best choice in our experiment. 
The helical magnetic field 12.55tb =  Gauss is obtained by 60totI = A, when the pitch length 

8wλ =  cm of wiggler is chosen.  
 In Fig. 12, changes in pitch factor / zV Vθα =  versus axial position z (m) are calculated for 

various values of helical magnetic field bt (Gauss). Other given parameters are beam energy Eb=15 
keV, helix pitch 8.0wλ =  cm, axial magnetic field Bs=0.03268 T and α (initial)=0.001. Here, 

motion of 16 electrons on the initial Larmor radius /br Vθ= Ω�  with equal separation is calculated 
numerically by using 6th order Runge-Kutta method [16].  The averaged value α  is plotted in Fig. 
12. The reason why we calculate the average value of trajectories of 16 electrons is that different 
initial positions and the velocities of an electron result in different trajectories. It is found, however, 
that the trajectories are not very different from each other, because 0Vθ �  initially, and the 

original Larmor radius is quite small. White circle is our chosen parameters. To produce 8tb =  

Gauss on the axis, current 40totI =  A is enough as shown in Fig. 12. The designed value of tb  is 

very small such as / 0.024t sb B = . Because of this large difference between tb  and sB , the 
temporal ripples in the coil currents for the latter may cause a trouble in the operation of our 
plasma-loaded CRM. 

The designed wiggler is a pair of four turn bifilar conductors with pitch length 8.0wλ =  cm, 

radius 1.775a =  cm and total length 32L =  cm. The larger the value of tb , the better to attain 

a large value of pitch factor α  as shown in Fig. 12. However, the peak of α  for tb  larger than 
8 Gauss in Fig. 12 arises at a shorter axial position than 32L =  cm. The design will become less 
reliable, if turn numbers less than four is chosen. So, pitch factor / 0.65zV Vθα = =  will be an 
upper limit in our design of wiggler.  

It may be possible, in principle, to increase further the value of α , if a tapered wiggler were 
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designed. It is found, however, that gradual changes in wλ  or in sB  in axial direction result in 
quite complicated performances of attainable larger α  values. In our experiment, we limit 
ourselves to use the uniform wiggler, and no further efforts have been made. Instead, the obtained 
α  can be increased further, by transmitting the beam through the mirror field shown in Fig. 1(c) 
from sB =0.03268 T at the wiggler to another axial field 0B =0.1268 T at the cylindrical cavity. 
The mirror ratio is 0 / 3.88sB B = , and α =1.28 will be obtained at the cavity, accordingly. 

Erroneous changes in α  from the designed value α =0.65 are examined, when one of wλ , 

sB , α (initial) and bE  is deviated from the designed value in Figs 13-16.  
In Fig. 13, erroneous changes in attainable pitch factor α  versus axial position are calculated for 

various values of helical pitch length 7 9wλ = ∼  cm. Other given parameters are: Helical magnetic 

field 8tb =  Gauss, beam energy 15bE =  keV, 0.03268sB =  T and α (initial)=0.001. Thick 
dashed curve 8wλ =  cm is our choice. We have assumed that the cross section of the winding is 
infinitely small, however, practically a copper conductor with diameter 4 mm is used for the helical 
windings. Errors in axial location of current flow would be 2±  mm, and 7.8 8.2wλ = −  cm and 

0.58 0.73α = −  indicated by two horizontal dashed lines in Fig. 13 would be unavoidable 
experimentally. On the other hand, axial length 0.32L =  m includes errors on the order of the 
radius 1.775a =  cm of the helical windings that is shown by two vertical dashed lines. The 
square shaped region formed by four dashed lines in Fig. 13 would be a range of errors in the 
chosen parameters in our experiment.  

In Fig. 14, erroneous changes in pitch factor α  versus axial position are calculated for various 
values of axial magnetic field sB . Other given parameters are: Helical magnetic field 8tb =  

Gauss, beam energy 15bE =  keV, helical pitch length 8wλ =  cm and α (initial)=0.001. Thick 

dashed curve is chosen. Local inhomogeneity in axial magnetic field sB  from the designed value 

0.03268sB =  T would be a serious problem expected in our experiment. Erroneous changes in 
attained pitch factor 0.52 0.83α = −  would be unavoidable experimentally caused by errors in 

0.031 0.034sB = −  T indicated by two horizontal dashed lines in Fig. 14. On the other hand, axial 
length 0.32L =  m includes errors on the order of 1.775a =  cm that is shown by two vertical 
dashed lines. The square region formed by four dashed lines in Fig. 14 would be the range of errors 
in the chosen parameters in our experiment. This square is adopted to be the region of errors in the 
designed parameters in Table 1 afterward, since it is larger than that in Fig. 13.  

In Fig. 15, increase in pitch factor α  versus axial position is calculated for various initial values 
of α . Other given parameters are indicated in the figure. The attained α  is found to become 
independent from the initial values after a few gyrations, if α (initial)� 1. The production of 
mono-energetic spiral electron beam by means of the present helical wiggler windings has an 
outstanding advantage that attainable α  is free from initial velocity distribution of incident beam.  

In Fig. 16, erroneous changes in pitch factor α  versus axial position are calculated for three 
values of beam energy bE . Other given parameters are: Helical magnetic field 8tb =  Gauss, 

helical pitch length 8wλ =  cm, magnetic field 0.03268sB = T and α (initial)=0.001. Thick 
dashed curve is chosen, and white circle is chosen parameters. Since the dc high-voltage source has 
a large power capacity larger than 100 W, no serious ripples in the dc voltage is expected. However, 
we have no experience to accelerate the beam up to 15bE = −  keV, especially high-density beams 

such as 1210n ≥  (cm-3), and attained value of beam energy is unknown at this moment.  
Blewett and Chasman [19] derived an expression the magnetic field ( )tb r  as a function of 

radial position off axis as, 
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2
0 1( ) ( ) ( ) / 1 (3/8)( ) 1tb r I kr I kr kr kr∝ − = + � .                         (3) 

Because 2 / 0.79wk π λ= =  cm-1, 0.7r ≤  cm and 2( ) 0.3kr ≤ , the radial changes in tb  
would not be a serious problem in our experiment with beam-plasma column from the TPD-II 
Machine. 

Designed beam parameters versus axial position are summarized in Fig. 17. Wiggler windings are 
installed in the axial position 0 0.32z≤ ≤  m. Pitch length of spiraling electrons decreases from the 
initial value 8.0 cm. The Larmor radius increases up to 0.7 cm at z=0.32 m. 
 
3.2 Microwave circuits including cavity 
3.2.1 Interpretation for detected negative absorption in a cavity [4] 
  Our experiment in plasma-loaded CRM-CIAD is motivated by the classic experiment of 
Hirshfield and Wachtel [4] half a century ago for detecting negative absorption in a cavity caused by 
CRM instability due to low-current spiraling beams in vacuum. We try to extend their experiment to 
plasma environment. The purpose of our experiment is that, in high density neutralized electron 
beams such as 2 2

bω Ω�� , the CIAD with z zV kω < Ω +�  may be observed instead of the CRM 

instability with z zV kω > Ω +� . 
  In Fig. 18, an oscilloscope trace in Fig. 2(a) in [4] is quoted that was believed to be the evidence 
of negative absorption in a microwave cavity caused by CRM instability. However, the principle and 
result of their microwave measurement in Fig. 18 were not described in detail. In fact, their 
ingenious and pioneering letter paper [4] is too short for me to follow up the experimental procedure, 
and I only can understand in some detail what they observed after referring the Ph. D. thesis of 
Wachtel [20] and references therein. Let me try to summarize my limited understanding shortly. 
Note that the vertical axis in Fig. 18 is reflected power 2| | 0R >  from the one-port cavity in upward 

direction. The levels 2| | 0R =  and 1 of the detected power were not indicated. The zero level is 
supposed to be somewhere below the trace in Fig. 18.  

The frequency of input microwave from cw klystron was adjusted at the center of resonance of 
the empty cavity at 5.8 GHz, so that 2

max| |R  was minimized, and axial magnetic field was swept 

in the horizontal axis. Here, maxR  is the reflection coefficient at the peak of the resonance of the 
cavity. They limited themselves to the incident beam currents sufficiently small so that the resonant 
frequency did not change appreciably from the value of empty cavity. When the beam without 
proper wiggler current was incident, only positive absorption at right-side denoted by P was 
observed. No cyclotron resonance was observed, since transit time of the electrons through the 
cavity was too short.  

As will be shown in Fig. 21 afterward, 2
max| |R  increases with increase in the round-trip 

attenuation α  of microwave inside the cavity with under-coupling 0 1s< < , because of 
additional loss by cold electrons. Here, / 1/u es Q Q α= ∝  is the coupling factor between the 

cavity and the microwave circuits, uQ  and eQ  are, respectively, the unloaded Q value and the 

external Q value, as will be defined afterward. The latter eQ  is a constant of empty cavity. 

Decreased positive absorption results in a decrease in α  and an increase in s . So, 2
max| |R  

decreases, if 0 1s< < . It is assumed that the verification of their negative absorption (exactly, 
decreased positive absorption) in Fig. 18 was made under the region 0.15 1.0s< < . 

In Fig. 18, both the negative absorption denoted at N due to energetic spiraling electrons and the 
positive absorption P due to cold electrons were observed only when the beam with wiggler currents 
within a small appropriate range was incident. There are electrons with two energies in the cavity at 
the same time, cold ones Eb=0 and energetic ones Eb=5 keV. The former results in positive 
absorption at the peak P, and the latter causes negative absorption N.  
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The authors indicated that, in Fig. 18, the coupling factor of the cavity was 0.15s = . 
Resultantly, max 0.74R = −  in Fig. 21 that will appears afterward. The horizontal line extending 

toward both left and right sides in Fig. 18 was the level of signal 2
max| | 0.55R =  that was reflected 

power when no beam is incident. The peak value of their positive absorption at P and negative 
absorption at N will be, respectively, within the ranges 2

max0.55 | |R<  and 2
max0 | | 0.55R< < . 

Exactly speaking, the point N is not the negative absorption in our terminology shown afterward in 
Figs 20 and 21, but a “decreased positive absorption” caused by a decrease in positive attenuation 
α  due to spiraling energetic electrons.  

In Fig. 18, the magnetic field for ω = Ω�  at 5.8 GHz was 0 0.2091B =  T for their 5 keV beam, 
and the negative absorption (namely, decreased positive absorption) N was observed at the low-field 
side. Namely, observed negative absorption for ω > Ω�  was the evidence of the CRM instability. If 
the CIAD were detected, the negative absorption would have been observed at high-field side 
ω < Ω� . In principle, there are no other means to distinguish the CRM instability and the CIAD, but 
to distinguish ω > Ω�  and ω < Ω� . This is because the two instabilities are very similar to each 
other as shown in Fig. 6.  

The authors [4] assumed an analogy that the signal in Fig. 18 measured by the power sensitive 
crystal detector was proportional to the real part of plasma conductivity. Namely, the detected signal 
was proportional to the collision frequency cν  of electrons in discharge plasmas, if the change in 

2
max| |R  due to the cyclotron resonance was much smaller than 2

max| | 0.55R =  [21, Fig. 3]. The 
trace in Fig. 18 was assumed to be directly proportional to the theoretical expression for power of 
the positive and negative absorptions [3, eq. 8]. Since the authors [4] did not indicate the scale of 

2| | 0R =  and 1 in the vertical axis for the trace in Fig. 18, the readers cannot confirm how their 
assumption was satisfied. Their assumption is valid, if and only if the coupling factor s  is within a 
range 0 1.0s< < . In general, their small change approximation is unnecessary, if an analysis on 
the relationship between the cavity and the external circuit shown in the next sub-section 3.2.2 is 
made. In general, however, the relationship between α  and 2

max| |R  is complicated.  
Although Fig. 18 seems to detect the CRM instability, questions still arise. The trace in Fig. 18 

without scale in vertical axis was only one result they showed for the evidence of negative 
absorption. Question arises: “Is the waveform near N in Fig. 18 somewhat similar to phase sensitive 
pattern [21, Fig. 2(b)] rather than power sensitive pattern [3, Fig. 1], because the trace is roughly 
symmetrical to horizontal line?” “How does change the trace, when the reference signal from the 
arm of matched load is changed?” In order to understand Fig. 18 more exactly, we need to see a few 
more examples with scale in vertical axis of negative absorption obtained under different conditions. 
The present experimental program will respond to such questions or necessities. 

Unfortunately, the authors [4] did not publish any full paper to explain the details of their 
experiment. The letter paper did not arouse further efforts by other researchers to extend the subject 
of CRM toward high power microwave sources. The present report seems to be the first attempt to 
explore an extension of the experiment in vacuum to plasma circumstance.   
 
3.2.2 Analysis of one-port cavity including negative absorption caused by CRM or CIAD 

Scattering matrix for one-port cavity shown in Fig. 19 was given by a classic textbook by Altman 
[22] as, 
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Here, we assume that the cavity is straight and the cross section is uniform, for simplicity. We limit 
ourselves to the fundamental mode in the axial and transverse directions. The analytical results such 
as reflection coefficient R derived here are found to be applicable to other modes and various shapes 
of cavity with appropriate corrections. The present model of one-port cavity is directly applicable to 
our experiment carried out in a two-port cavity [23], if input and output coupling constants are the 
same.  

The axial length l is nearly equal to one half of waveguide wavelength in the cavity. Planes 1, 2 
and 3 mean, respectively, the planes of detuned short. The planes 1 and 2 coincide with the end wall 
of the cavity, when the coupling constant h  between the cavity and the input cable tends to zero. 
Notation h  is a given dimensionless constant of the coupling antenna, and we assume that 

2 1h � , since we consider a high Q cavity. Notation α  is a round-trip attenuation at the wall of 
the cavity or amplification that means a production of rf energy by the CRM instability or the CIAD, 
and / 2θ π�  is phase shift between the planes 2 and 3 in Fig. 19. We assume that 1α �  for 
the high Q cavity. 
  From the equations (4), one obtains the reflection coefficient R  of the one-port cavity as, 
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                          (5) 

Assuming 2 1h �  and 1α � , Taylor expansions are executed, and (5) is simplified to, 
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where 0ω ω ωΔ = − , and 0 'λ  and cλ  are, respectively, the free space wavelength and cutoff 

waveguide wavelength for a microwave frequency ω  near the resonant frequency 0ω  of the 
cavity. The factor G means the difference of waveguide wavelength from that in free space, and in 
our designed cavity 25.G �  We introduce three Q factors as follows, 

Unloaded Q factor  /uQ Gπ α=                                        (7) 

External Q factor 22 /eQ G hπ=                                        (8) 

Loaded Q factor  
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Using (7)-(9), (6) is rewritten as, 
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where B0 is the half half-width of the resonant curve of the cavity. The coupling factor s is defined 
as, 

2

2
u

e

Q hs
Q α

= = .                                                    (11) 

It is noted that the coupling factor s  defined in (11) includes the effect of beam inside the cavity 
and can be positive and negative values, whereas the coupling constant h  defined in Fig. 19 is a 
positive constant of empty cavity. 

Using (10), the squared reflection coefficient 2| |R  versus frequency to be measured by a crystal 
detector is calculated for various values of the coupling factor s in Fig. 20, where Qe=6000 and 

0 / 2 3.45ω π =  GHz have been assumed. The region of positive absorption 0< 2| |R <1 
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corresponds to s>0, 0α >  and Qu>0. The loss in the cavity including beam-plasma is positive. On 
the other hand, the region of negative absorption 1< 2| |R  corresponds to s<0, 0α <  and Qu<0. 
The amplification of the microwave surpasses the losses at the metal wall and in cold plasma in the 
cavity.  

Negative absorption will be verified, if the value of 2
max| | 1R >  is observed, where Rmax is the 

maximum value of the reflection coefficient at the resonance 0ω ω= . However, the decreased 

positive absorption 0< 2
max| |R <1 can be another way of verification of the CIAD in our experiment, 

in which a decrease in 2
max| |R  from the value without beam is observed, when spiraling electron 

beam is incident, if 0 1s< < , as in Fig. 18. 
  From (10) and (11), Rmax is given by Rmax=(s-1)/(s+1). In Fig. 21, Rmax versus the coupling factor s 
is plotted. Notation CC at s=1 means the critical coupling, |R|2=0, of the cavity, namely, no signal of 
reflection b1 in Fig. 19 is present at 0ω ω=  as shown in (10). The reflection at the plane of 
detuned short 1-1’ and backward radiation from the cavity cancel out each other, since their 
amplitudes are equal and their phases are 180°  out of phase.  

Cavity without incident beam has always a positive value of s. The regions 0<s<1 and 1<s are, 
respectively, under-coupling and over-coupling regions. NC at s=0 and s = ±∞  mean that no 
coupling between the input cable and the cavity is present, namely, h=0. NL at s=-1 means that 
infinitely large values of reflected signal is expected for an infinitely small value of input signal. 
Namely, self oscillation arises without input microwave on the cavity. Here, loaded Q-value, Q0, and 
the time constant 0 02 /Qτ ω=  become infinity. The cavity is ideally superconducting and injected 
microwave power is accumulated unlimitedly theoretically.  

Correspondence between Figs 20 and 21 is explained as follows: Four white circles in Fig. 21 are 
values of s shown by the curves in Fig. 20. The border line 2| | 1R =  between positive and negative 
absorptions is not s=0, but s = ±∞  in Fig. 21 experimentally. If amplification by spiraling beam 
arises in the cavity, 2 / 2s h α=  given by (11) increases because of decrease in α . At s = ±∞  
in Fig. 21, one obtains 2

max| | 1R =  that means no coupling between the cavity and the external 
circuit, namely h=0, in Fig. 19 and this is the border line between positive and negative absorptions. 

The region s<-1 means low Qe case in which gyrotrons with end reflections are operated. It is the 
purpose of our experiment to observe reflected signal 2

max| | 1R >  for 1s −� in Figs 20 and 21 
that is the direct evidence of negative absorption of the CIAD or the CRM instability by gyrating 
beam in the cavity.  

When s<0 as in the cases of s=-10, -3 and -0.2 in Fig. 20, we will observe 2
max| | 1R > . The 

observation 2
max| | 1R >  at ω < Ω�  in a case of 2 2

bω Ω�� is the purpose of this experimental 
program to detect the CIAD. An experimental demonstration of the expected signals of the negative 
absorption in the cavity will be shown afterward in Fig. 25. 

 
3.2.3 Signals required for detecting negative absorption due to CIAD 

Fabricated cylindrical stainless-steel cavity works at TE011 mode with resonant frequency 3.5 
GHz. Its sizes are inner radius a=0.05415 m and variable length l=0.17-0.21 m with adjustable 
shorting circular disk.  

Figure 22 shows the calculated curves of positive and negative absorptions as a function of axial 
magnetic field 0B . Here, the frequency of incident microwave is adjusted to 3.5 GHz at the 

resonance in empty cavity to observe the minimum 2
max| |R . The vertical axis 2| |R  is assumed to 

be proportional to attenuation constant α  defined in Fig. 19 as, [3, 4, 21], 
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where 1ω , 1B  and p  are given numerical constants to fit the positive and negative absorptions. 
In Fig. 22, coupling factor s=0.15 and other parameters shown in the figure are assumed. The given 
numerical parameters are somewhat different from real experimental values. Negative absorption 
arises for | | 1p >  [3]. The resonant curve of the CRM instability for p=1.5 is depicted by solid 
curve, whereas the case of the CIAD for p=-1.5 is shown by dashed curve.  

Negative absorption of the CRM instability and the CIAD could be observed, respectively, for 
ω > Ω�  and ω < Ω� as shown in Fig. 22. In other words, the CRM and the CIAD are expected for 
low-field and high-field sides of ω = Ω�  that corresponds to the axial magnetic field 0B = 0.3106 
T for our 15 keV beam. According as beam current increases, the region of the negative absorption 
is expected to move from left-hand side (solid curve) to right-hand side (dashed curve) of 

0 0.1306B =  T. Or, probably we may observe both negative absorptions at the same time for the 

incidence of high density beam such as 111.5 10n ≥ ×  cm-3, where 111.5 10n = ×  cm-3 
corresponds to bω ω= Ω =� . 

The physical meaning of | | 1.0p >  for negative absorption is physically analogous to 
2( / ) 1N V cθ >  that many gyrations in the cavity are required for detecting the resonant curves 

correctly, where 1N � is number of gyrations in the cavity. The transit time of spiraling electrons 
is analogous to the momentum transfer collision time 1

cν
−  in rf oscillation of the electrons in 

discharge plasmas. Unless the collision time is sufficiently longer than the time of gyration, namely 

cνΩ� � , no cyclotron resonance can be observed [4, 20]. 
 

3.2.4 Fabricated cavity and microwave circuits for plasma-loaded CRM  
The TPD-II Machine in NIFS [12, 13] has been a facility for testing the characteristics of various 

materials for diverters in fusion reactors with magnetic confinement. Schematic view of the TPD-II 
Machine and constructed plasma-loaded CRM is shown in Fig. 1. In (a), total view of the apparatus 
is depicted. Plasma is produced by dc helium gas discharge between a hot cathode made of LaB6 
and grounded anode of TPD-II at the right-side. Plasma is spouted out from an orifice in the anode 
into left-side plasma container made of quartz pipe with inner diameter 0.14 m surrounded by 
solenoid coils where the plasma loaded CRM is installed. This portion is evacuated by two 10 inch 
high speed turbo-molecular pumps to remove neutral gases for attaining fully ionized plasma. The 
plasma column has density up to 1014 cm-3, temperature of a few eV and beam diameter 10 mm.  

Exactly speaking, the plasma-loaded CRM consists of three different portions: (1) A pair of 
stainless steel mesh electrodes to apply high voltage of -15 kV for obtaining beam plasma, followed 
by three metal disks with pin hole to limit the beam diameter less than 10 mm, (2) a pair of helical 
windings of wiggler to create transverse velocity in the beam, and (3) the cylindrical cavity of TE011 
mode to detect negative absorption of incident cw microwave near 3.45 GHz.  

The principle of our plasma-loaded CRM is shown in Fig. 1(b). Beam of 15 keV with 0Vθ �  
from TPD-II is incident into the wiggler from right-hand side. Here, the beam gets a pitch factor 

0.65α � . The wiggler and the cavity are located, respectively, in the axial magnetic field of 

sB = 0.03268 T and 0 0.1268B =  T. The mirror ratio between both of them is 3.88 and the beam 
obtains increased pitch factor α  above unity. The cavity region is immersed in a uniform axial 
magnetic field created by a pair of iron plates with thickness 20 mm. In Fig. 1(c), the calculated 
distribution of axial magnetic field in the portion of the plasma-loaded CRM is shown. The 
locations of 16 coils are adjusted, try and errors, so that they give the uniform fields within 3 % 
spatial non-uniformity. The coil currents for both fields are 72.3 A and 240 A, respectively. We 
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adjust the values of sB  and 0B  to attain the best performance of the plasma-loaded CRM. 
Each of 16 coils consists of 30 turns water-cooled hollow conductors with cross section 1.4 1.4×  

mm2. The sizes of a coil are inner and outer diameters of 21 cm and 65 cm, respectively, and the 
thickness is 3.5 cm. The magnetic field on the axis is calculated by Biot-Savart’s law, where the 
hollow conductor is approximated by line current with infinitesimal cross section at the center of the 
conductor.  

Picture of fabricated plasma-loaded CRM is shown in Fig. 23. In (a), cylindrical TE011 cavity 
made of stainless steel with movable disk inside is shown. Inner diameter of the cavity is 0.1083 m, 
and the length is varied from 0.17 to 0.21 m by the adjustable shorting disk. Two identical loop 
antennas with magnetic coupling are inserted into the side wall of the cavity, one is to feed 
microwave and the other is to detect the transmitted signal. The beam enters into a hole of diameter 
15 mm on the axis and goes toward end target downstream, although it is not shown.  

In Fig. 23(b), a pair of mesh electrodes to apply dc -15 kV high-voltage (left) and a loop antenna 
(right) to insert into the cavity are shown. After the pair of mesh electrodes, three stainless steel 
plate disks with pin hole are installed to discriminate the beam diameter less than 10 mm. The 
diameter of the pin hole must be adjusted, try and errors, to have the optimum signal of negative 
absorption due to gyrating electrons without changing appreciably the resonant frequency of the 
cavity as shown in Fig. 22.    

Diagram of constructed microwave interferometer including the TE011 plasma cavity is shown in 
Fig. 24. We use semi-rigid cables to compose the interferometer circuits. Two-port cavity is used 
instead of one-port cavity analyzed in the previous sub-section 3.2.2. The two-port cavity analyzed 
in [23] is identical to the one-port cavity shown in Fig. 19, if the two coupling constants are the 
same. The frequency of the microwave from Gunn oscillator (50 mW) is swept by an amount of 
0.3 % without changing the power level. Since the cavity has loaded Q value 0Q  larger than 6000, 
the properties of other components in the microwave circuit do not change appreciably within the 
range of frequency modulation. We will change the axial magnetic field 0B  in Fig. 22 at the cavity 
as was done in [4]. An advantage to use two-port cavity is that we can insert microwave amplifier 
(AMP) up to 40 dB, Model-APA0204 (ALC microwave Ltd.) for 2-4 GHz that enables us to change 
incident power to the cavity from 10-5 to 1 W.  

In near future, the measurements of negative absorption caused by the CRM instability and the 
CIAD will be conducted for both regions s>1 and s<0.  

Transmitted signal |T|2 to observe instability in the cavity is simulated by the AMP after the cavity. 
In Fig. 25, the maser action is demonstrated that is to compare with calculated ones in Fig. 20. The 
positive direction of the traces on the oscilloscope is downward, because the detector HP432B with 
negative polarity is used. The zero level of the transmission and reflection coefficients, 2| |R  and 

2| |T are at the top of the traces. In Fig. 25(a) and (b), the transmission signal |T|2 through the empty 
cavity is demonstrated as positive and negative absorptions, respectively. In (a), positive absorption 
is obtained, when the gain of AMP in Fig. 24 is small, 0 dB. In (b), on the other hand, negative 
absorption is simulated, when the gain of AMP in Fig. 24 is large, 7.5 dB. Simulated negative 
absorption to compare with Fig. 20 is demonstrated, since equivalently rf power is created inside the 
cavity at resonant frequency 3.454 GHz. 

The designed parameters and evaluated errors in the respective portion of the apparatus of the 
plasma-loaded CRM are listed in the Table 1 in page 45. 
 
4. Discussion and Conclusion 

 
For the first time in literature, we analyze a dispersion relation including two mechanisms of 

cyclotron emission from finite thickness annular beam where some electrons are free and the others 
are constrained in motions of gyration. The unphysical unstable modes at infinite values of axial 
wavenumber in slow wave region in conventional dispersion relations of the CRM instability 
bothered researchers for many decades are replaced by stable physical modes near the fast cyclotron 
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mode in our exact analysis shown in Fig. 5. 
The CIAD and the CRM instability in Fig. 5 are probably coexisting mechanisms of cyclotron 

emission from various gyro-devices and from astrophysical plasmas. 
Shefer and Bekefi measured the frequency of cyclotron emission from IREBs in uniform and 

rippled magnetic fields [24]. They concluded that the dominant emission was not due to collective 
free electron laser instability but due to the CRM instability at ω Ω�� . For low frequencies less 
than 10 GHz, however, only two points were shown in their Fig. 6 in which observed ω  versus 
Ω�  were plotted. We imagine that these two data might be CIAD with ω < Ω�  for 2 2

bω Ω�� .  
Currently, it may not be a fashionable subject of research to discuss which oscillation frequency 

ω > Ω�  or ω < Ω�  is observed in real gyrotrons. This is partly because ω  is almost a fixed 
quantity given by the sizes of a cavity. Moreover, the distinction between ω > Ω�  and ω < Ω�  is 
practically difficult from experimental point of view, because Ω�  is a quantity spatially 
non-uniform, whereas ω  can be measured very precisely. Note that difference between ω  and 
Ω�  can be observed, only when a device to fit the particular purpose were carefully designed [4]. 

Furthermore, questions may arise: “Why is the author of this report interested in the detailed 
distinction between the CRM instability and the CIAD that has practically little influence on the 
performance of the gyrotrons?” “Do gyrotrons stop to work, if the authors’ new theory is correct?” 
However, it should be emphasized that, sometimes, physics requires a stringent accuracy for better 
understandings, even though such accuracy may not be required from engineering point of view.  

The CRM instability (ω > Ω� ) may not be the exclusive principle of gyrotron oscillation, because 
there has been no experimental verification to be ω > Ω�  in gyrotrons. It is quite important to  
distinguish between ω > Ω�  and ω < Ω�  in cyclotron emissions in plasma physics and in 
gyrotron research, since physical reasons are different.   

I would emphasize that the gyrotron community over the world is partly spoiled by the defect of 
unphysical solutions as shown in Fig. 2. We regret that fundamental understandings of physics of 
gyrotrons are not very firm yet, although there exist huge amount of research reports for technical 
and hardware developments.  

No linear dispersion relation of CRM instability has been reported that the finite Larmor radius 
effect of gyrating relativistic electrons at the beam-vacuum interface is correctly analyzed. Our 
relations described in 2.2 and 2.3 are exceptions that have overcome the difficulty in a case of LO 
electron beams for the first time in physics of gyrotrons.  

The relativistic Vlasov-Maxwell equations dealing with many electrons with different velocities 
that the previous researchers [5, 6] founded to analyze the CRM instability will not be Lorentz 
invariant. Generally speaking, electro-dynamic phenomena of relativistic electrons predicted by 
these equations have not been confirmed by any experimental data quantitatively for decades. 

In conclusion, we have designed and fabricated a microwave interferometer circuit to detect the 
CIAD in addition to conventional CRM instability in plasma-loaded cylindrical cavity at 3.45 GHz. 
With increase in beam density, the CRM instability may be suppressed and the CIAD may take turn. 
In other words, frequency of negative absorption in the plasma-loaded cavity may change from 
above to below the relativistic electron cyclotron frequency with increase in the beam density such 
that 111.5 10n ≥ ×  cm-3. Or, we may observe both negative absorptions at the same time for high 
density beam, because both free and constrained electrons may be present. To attain the purpose, a 
wiggler consisting of bifilar helical windings to create a spiraling beam in the TPD-II Machine with 
energy 15 keV and pitch factor / 1.28zV Vθ �  has been designed. 

The constrained gyration model and the resultant CIAD described in this report remains only a 
proposal at this moment, until the physical existence is verified experimentally. In this experimental 
program, we try to observe the new principle of cyclotron emission different from the CRM 
instability. The present experimental study contributes to a deeper understanding and a widened 
future prospect in gyrotron research. 
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Appendix A: The physical reason of constrained gyration model.  
Traditionally, cyclotron emission has been analyzed under the assumption that beam electrons 

are tenuous enough to neglect the effects of neutralizing ions [24]. This conventional assumption 
is named “free gyration model” in this report. Previous researchers [3-8] of CRM instability have 
followed this model applicable for tenuous beams such as 2 2

bω Ω�� .  
Moreover, there can exist an extended free gyration model for cyclotron emission where the 

free gyration of mobile electrons is always possible in the presence or absence of uniform 
immobile ions, regardless of the ion density. Free gyration may be allowed even in high density 
neutralized electron beams.  

On the other hand, there can be another extreme model for the electron gyration. In some 
occasions, free gyration may be prevented by a restoring force caused by the charge separation 
between dislocated electrons and localized immobile ions, if 2 2

bω Ω�� . We assume that the 
localized ions are cold and their Larmor radii are much smaller than that of the energetic electrons. 
This model adopted in this report is called “constrained gyration model.”  

The free gyration model applicable for 2 2
bω Ω�� results in the conventional understanding 

that the CRM instability is the unique principle of cyclotron emission from the electrons.  
On the other hand, the constrained gyration model for 2 2

bω Ω�� yields prediction that the  
CIAD can be another principle of cyclotron emission in addition to the CRM instability. How 
adequate are the both models in practical physical situations realized experimentally has not been 
clarified thoroughly yet and is left as an open question. The constrained gyration model which 
prohibits radial displacement of electrons in infinitely thin annular beam may be somewhat too 
strange for the readers to trust as a real physical situation. Here, we clarify the reason why the 
constrained gyration model can be a logical existence. 

We consider a cylindrical waveguide with radius cavr  shown in Fig. 3, including infinitely thin 

thickness mono-energetic LO electron beam with radius br . The beam is guided by a uniform axial 

magnetic field of strength ( )0 00,0,B=B  and ion background is assumed to entirely neutralize 
static space charge electric field in the beam. In equilibrium state, an electron fluid element has 
velocity ( )0 0, , zV Vθ=V , where the guiding centers are assumed to lie on the center axis of the 

waveguide. Relativistic factor 0γ  can be expressed as ( ) 1 22
0 0 01 cγ

−
= − ⋅V V . We assume 

0 / 0rγ∂ ∂ = for brevity.  

A spatial and temporal perturbation in the fluid element in the form ( )exp - zi t k z lω θ− −⎡ ⎤⎣ ⎦  

is assumed, where l is azimuthal mode number. First order perturbations in velocity, induced rf 
electric and magnetic fields are denoted, respectively as, ( ), ,r zv v vθ=v , ( ), ,r zE E Eθ=E  and 

( ), ,r zB B Bθ=B . Their practical forms are listed in [9] by solving a system of fluid equation of 
motion, equation of continuity and Maxwell equations. The first order perturbation in relativistic 
factor 1γ  is expressed as ( ) 3 2

1 0 /z zV v V v cθ θγ γ= + . Surface charge density in unperturbed state 

is denoted as 0 0enσ ε= − , where the beam thickness ε  tends to zero. Quantities enclosed by 

brackets  signify their value at the center of the thin beam thicknessε . For an infinitely thin 

thickness, 
dE
dr

θ  and zdE
dr

 vanish because Eθ and zE are continuous across the beam 

thickness. The value of rE  is originally undetermined.  

The perturbed current density, ( )0 1 0r e n n= − +j v V , is integrated across the beam thickness ε  
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to give the following expression for the surface current density κ : 
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Here, l z zV k lω ω= − − Ω� , 1σ  is the first order surface charge density at br r=  derived in [9]. 
We have taken a limit of the thickness 0ε →  that was not executed in the previous analyses [7, 8]. 
In this limit, the radial component of (A 1) is proved to be zero as follows. The radial component of 
the Maxwell equation, 2

0 1/B i E c jω μ∇× + =
G G G

, is expressed as,  

02z z r r
il iB ik B E j
r cθ

ω μ− + =                                           (A 4) 

where, 0μ  is the permeability in vacuum. Multiplying rdr  to (A 4) and integration across the 

beam thickness is made. Here, ,rE Bθ  and Bz at br r=  are discontinuous and unknown yet at this 
moment. However, they have anyway finite values inside the beam thickness ε  from 

/ 2br r ε= −  to / 2br r ε= + . Each term at left-hand side after the integration is zero in the limit 
of 0ε → , and the following expression is derived as, 

/ 2

/ 2

1 0b

b

r

r rr
b

j rdr
r

ε

ε
κ

+

−
= =∫ .                                                (A 5) 

Accordingly, one obtains from eq. (1) in [9],  

 ( )2r b z z
l b

lE i r E V E
r θω
Ω

= − Ω +
� � ,                           (A 6) 

( )
2

2 2
0 1

0l
r r r

l

iev E E
m

ω
γ ω ω ω

⎡ ⎤= − − =⎣ ⎦−
,                                (A 7)  

confirming that the motion of electron fluid is constrained in radial direction. The electrons must 
stay on the original LO at any moment. This model of constrained gyration is quite different from 
the previous analyses [3-8], where non-zero rf velocity in the radial direction was assumed 
beforehand. In other words, the electrons can dislocate from the LO in their free gyration model that 
results in CRM instability. Note that the annular beam cannot be infinitely thin thickness, if the 
radial excursion of the electrons is allowed.  

Constrained gyrations happen in case of infinitely thin thickness high-density annular beam 
neutralized by localized cold ions [9]. In such case, the CRM instability is suppressed, and another 
instability for cyclotron emission, namely the CIAD, arises. One needs to assume a non-zero 
thickness 0ε ≠  to have a quantitative relationship of the CRM instability taking into account the 
finite Larmor radius effect at the beam-vacuum interface.  
 
Appendix B: Derivation of an exact dispersion relation for infinitely thin thickness  

annular beam (Fig. 4) 
The derivation of our exact linear dispersion relation for infinitely thin-thickness beam in the 

cylindrical waveguide shown in Fig. 3 is here summarized. The following six boundary conditions 
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are chosen. The boundary conditions at br r=  of the infinitely thin-thickness beam are, 

0II IE Eθ θ− = , 0II I
z zE E− = , 0

II I
zB Bθ θ μ κ −− =  and 0

II I
z zB B θμ κ −− = − . The boundary 

conditions at the surface of cylindrical waveguide at cavr r=  are, 0IIEθ =  and 0II
zE = .  

In regions I (0 )br r≤ ≤  and III ( )b cavr r r≤ ≤  in Fig. 3, the distributions of rf electric and  
magnetic fields in vacuum are derived for Q-TE11 mode by solving the conventional Bessel-type 
differential equations. Joining these six conditions and using the expressions for surface current 
density given by (A 2) and (A 3), one gets the following dispersion relation of the system in a form 
of the 6×6 determinant that must be zero: 
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                                                                      (B 1) 
where, 

31 23 33

34 23

41 22 23

44 22
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Here, the azimuthal mode number 1l =  is chosen in numerical calculation shown in Fig, 4, and 
2 2 1/ 20.117 | ( ) | / , (1 / ) ,b z b z zg I kA r V cβ β −= = −  

2 2 2 1/ 2( / )zc kβ ω= − , 

'( ) ( / ) ( ), '( ) ( / ) ( ).l b l b l b l bJ r d d r J r Y r d d r Y rβ β β β β β= =  
 
Appendix C: Derivation of an exact dispersion relations for finite thickness annular beam  

(Fig. 5)  
In this case, the derivation is somewhat more complicated than the previous case described in the 

Appendix B, because of an increase in number of boundaries from three to four in Fig. 3. 
The ten boundary conditions are chosen as follows: At the inner boundary of the beam br r−= : 

0II IE Eθ θ− = , 0II I
z zE E− = , 0

II I
zB Bθ θ μ κ −− =  and 0

II I
z zB B θμ κ −− = − . At the outer 

boundary of the beam br r+= : 0III IIE Eθ θ− = , 0III II
z zE E− = , 0

III II
zB Bθ θ μ κ +− =  and 

0
III II
z zB B θμ κ +− = − . At the boundary of the waveguide cavr r= : 0IIIEθ =  and 0III

zE = . Here, 

2κ
±  and 3κ

±  are, respectively, the surface current densities similar to (A 3) at the beam-vacuum 
interfaces. The above set of ten relations yields the following dispersion relation: 

det[D]=0,                            (C 1) 
where the practical forms of the elements Dij, i,j=1-10, are under submission elsewhere. 
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Appendix D: The equations used in the particle simulation (Figs 6-9) 
The constraint is modeled by a restoring force towards the original LO circle as follows. The 

phenomenological potential well U in the radial direction for the gyrating electrons toward the 
original LO circle is expressed as 2

0( / 2 )( )bU ne r rε= − − . The resultant restoring electric field 

for the displacement ˆ br r rrΔ = −
G G

of the electrons from the LO circle is given by 

0 ˆ/ ( / )( )bE U r ne r rrε= −∂ ∂ = −
G G G

, where r̂  is the unit vector in the radial direction. 
The following relations obtained from the relativistic equation of motion of an electron are solved 

numerically. 
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                               (D 1) 

Here, sε  is specific dielectric constant within the scope of linear treatment. The first and the 
second terms in Dx and Dy are, respectively, the circularly polarized rf electric field and the restoring 
electric field due to the charge separation. Equations (D 1) are solved numerically in sub-section 2.4. 
In our model, the beam current is included through the beam density n in the potential well with a 
given constant 0/ne ε  in (D 1). 
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(a)      
  

    
  (b) 
 

  
 

(c) 

    
 

Fig. 1 Plasma-loaded CRM installed inside the TPD-II Machine, NIFS, Japan. (a) Total view. 
(b) Principle of operation of plasma-loaded CRM. (c) Distribution of axial magnetic field 
in the wiggler and the cavity. Bar code at the top shows the locations of 16 pancake coils. 
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Fig. 2 Numerical example of conventional linear dispersion relation for CRM instability [5]. 
 
 
 

      
 

Fig. 3 Model of our exact linear dispersion relation for CRM instability and CIAD.      
Cross-sectional view of circular waveguide including large orbit beam in region II is 
shown. Regions I and III are in vacuum. Circular arrow means the counterclockwise 
rotations of electrons and electromagnetic field. 
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Fig. 4  Dispersion curves of CIAD (not CRM instability) for the parameters bE =100 kV, 

bI =10 A, α =3.0, 0B =0.2 T, h=0 and cavr =1.445 cm [9]. In (a) and (b), all the terms 
are retained. In (c) and (d), only non-relativistic terms are retained by assuming c → ∞ , 
while in (e) and (f), all the non-relativistic terms are dropped without legitimacy by 
assuming 0c → . Frequency Re(ω )/2π  vs. real wavenumber kz, are depicted in (a), 
(c), and (e). Corresponding temporal growth rate Im(ω ) vs. real kz is shown in (b), (d), 
and (f), respectively. In (a), (c) and (e), the thin dotted lines denote 2zf k c π= ± , 
while dashed lines denoted by FCM are fast cyclotron mode when space charges are 
ignored.  
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Fig. 5  Numerical example of our new linear dispersion relation (C 1) for quasi-TE11 mode with 

large orbit annular beam with finite-thickness. Given parameters are shown in the figure. 
(a) Oscillation frequency f (GHz) vs. kz (cm-1). Two negative energy waves, namely CIAD 
with Re( )ω < Ω�  and CRM instability with Re( )ω > Ω�  denoted, respectively, by S 
and T, are observed at the same time. (b) Temporal growth rate Im( )ω  (ns-1) vs. kz (cm-1). 
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Fig. 6  Bunching of 16 test electrons after 7-15 rotations of rf field for six typical cases. Physical 

mechanisms of CRM instability and CIAD are clearly distinguished. The axial magnetic 
field 0B =1.0 T in the direction from the sheet to our eyes, the initial pitch angle of 

velocity of electrons / 1.0zV Vθα = = , initial electron energy Eb=100 keV, and constant 
rf field amplitude Erf=3×105 V/m are assumed. Electrons and rf electric field are rotating 
counterclockwise. Upward arrow in each LO circle shows the direction of rf electric field 
at initial moment and after the rotations. Small black and white circles are, respectively, 
the locations of the electrons that lose and gain net kinetic energy against the rf field, 
respectively. We find, in (c), cyclotron resonance maser (CRM) instability and, in (f), 
Cherenkov instability in azimuthal direction (CIAD). 
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Fig. 7  Temporal changes in relative energy gain 0/δγ γ< >  up to τ =15 of gyrations for 

initial electron energy Eb=100 keV and Erf=3×105 V/m. (a) /ω Ω� =0.96, and CIAD is 
observed for n>3×1012 cm-3. (b) /ω Ω� =1.04, and CRM instability is observed for 
n<3×1012 cm-3.  
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Fig. 8  Relative energy gain 0/δγ γ< >  of the 128 electrons vs. /ω Ω�  after 10 gyrations. 

The constant amplitude of rf field is Erf=3×104 V/m. (a) Eb=100 keV. CIAD is observed 
for n>2×1012 cm-3 and for /ω Ω� <1, on the other hand, CRM instability is found for 
n<2×1012 cm-3 and for /ω Ω� >1. (b) Eb=10 keV, and CRM instability is not observed for 
any density n. CIAD is observed for n>1012 cm-3 and for 1ω Ω <� . 
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Fig. 9 Temporal changes in the relative energy gain 0/δγ γ< >  up to τ =15 of gyrations for 

various values of beam energy bE . Oscillation can occur, if 0<δγ . (a) /ω Ω� =0.96 

and 1410n = cm-3. The CIAD is observed only for Eb<500 keV. (b) /ω Ω� =1.04 and 
1010n = cm-3. The CRM instability is enhanced with increase in Eb. 
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Fig. 10  Configuration of wiggler. (a) Bifilar circularly polarized helical windings and 

generated magnetic field tb  on the z axis. (b) Changes in helical magnetic field 

xB  and yB  in axial direction. 
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Fig. 11  Design study of axial pitch length wλ  of wiggler for creating mono-energetic spiral 

electron beam. White circle indicates our chosen parameters.  
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Fig. 12  Changes in / zV Vθα =  vs. axial position are calculated for various values of helical 

magnetic field bt (Gauss) for beam energy Eb=15 keV, helix pitch length 8.0wλ = cm, 
Bs=0.03268 T and α (initial)=0.001. White circle is chosen parameters. Four turn 
helical windings with total length L=32 cm are designed. 
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Fig. 13  Erroneous changes in / zV Vθα =  vs. axial position are calculated for various values 

of helical pitch length wλ (cm) for beam energy 15bE =  keV, helical magnetic 

field 8tb =  Gauss, 0.03268sB =  T and α (initial)=0.001. The dashed curve is 
chosen. Square made by four dashed lines is a region of expected errors in our 
designed parameters. 
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Fig. 14  Erroneous changes in / zV Vθα =  vs. axial position are calculated for various values 

of axial magnetic field sB  for helical magnetic field 8tb =  Gauss, beam energy 

15bE =  keV, helical pitch length 8wλ =  cm and α (initial)=0.001. Thick dashed 
curve is chosen. Square made by four dashed lines is a region of expected errors in 
our designed parameters. 
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Fig. 15 Increase in / zV Vα ⊥=  for various initial values. 15bE =  keV and other 

parameters are given in the figure. The attained α  becomes independent from the 
initial values after a few gyrations, if α (initial)�  1. 
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Fig. 16   Erroneous changes in / zV Vθα =  vs. axial position are calculated for three values of 

beam energy bE  for α (initial)=0.001. Other parameters are given in the figure. 
Thick dashed curve and white circle are chosen parameters. 
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Fig. 17  Designed beam properties. 
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Fig. 18  Physical interpretation of Fig 2(a) in [4]. 
     
   

 
 
 
 
 

 
 
 
Fig. 19  Model of one-port cavity for analysis.  
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Fig. 20  Calculated reflection coefficient |R|2 vs. frequency from the one-port cavity for various 

coupling factors /u es Q Q= . The portions s>0 and s<0 correspond, respectively, to 
positive absorption and negative absorption by CRM instability or CIAD. 
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Fig. 21  Calculated maximum reflection coefficient |Rmax |2 vs. coupling factor /u es Q Q= . The 

portions s>0 and s<0 correspond, respectively, to positive and negative absorptions. White 
circles correspond to the curves in Fig. 20. 
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Fig. 22  Calculated curves of absorption expected for CRM (solid curve), p>1.0 in case of 
2 2
bω Ω�� , and for CIAD (dashed curve), p<-1.0 in case of 2 2

bω Ω�� . Parameters 
are chosen appropriately to see the schematic properties. Negative absorption is 
expected for | | 1p > . Regions of negative absorption are expected to arise, 
respectively, at low-field side for CRM instability and high-field side for CIAD of 
ω = Ω�  at 0 0.1306B = 0 T. The peak at 0 0.1268B =  T is positive absorption by 
cold plasma. 
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Fig. 23  Fabricated plasma-loaded CRM. (a) Cylindrical TE011 cavity with a movable disk 

inside with two loop antennas. (b) Pair of mesh electrodes to apply dc -15 kV 
high-voltage (left) and a loop antenna to insert into the cavity in radial direction 
(right). 

 
          
 

 
Fig. 24  Constructed microwave interferometer circuits including fabricated TE011 mode 

cylindrical two-port cavity with resonant frequency near 3.45 GHz. 
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Fig. 25  Transmission signal |T|2 through the empty two-port cavity demonstrating positive 
and negative absorptions. (a) Positive absorption, when the gain of AMP in Fig. 24 is 
small, 0 dB. (b) Negative absorption, when the gain of AMP in Fig. 24 is large, 7.5 
dB. Simulated negative absorption is observed, because rf power is created in the 
cavity at resonance 3.454 GHz. 

 
 
Table 1  Designed parameters 
 
 

No. Parts or Apparatus   Designed Value Estimated Errors Refer Text 
(1) Mesh Electrodes      SUS304     Fig. 23(b) 

 Diameter    70 mm   
 Thickness    0.2 mm     
 Interval    10 mm    
 Beam Energy

bE     15.0 keV   Unknown      Fig. 16 
(2) Pin Hole Aperture SUS304, 1 mm thickness disk    Fig. 23(b) 

 Hole diameter 1 ∼  10 mm Adjustable  
 Number of disks        3   

(3)  Wiggler Windings Double Helixes  3.1, Figs 1, 10∼ 17 
 Diameter 2a       36.5 mm  Figs 10 and 11 
 Pitch Length wλ       80 mm   ±  2 mm  

 Total Length L  320 mm (4 turns)   
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 Current totI         40 A Adjustable   Fig. 12 

 Magnetic Field tb   8.0 Gauss on the axis   Adjustable Eq. (2) 

 Conductors   4 mmφ  Copper Wire   
 Axial Magnetic Field 

sB  
 0.03268 T, 72.3 A 3 %  

 Pitch Factor / zV Vθ     0.65 0.52∼ 0.83    Fig. 14 
(4) Mirror Field  Fig. 1(c) 

 Mirror Ratio    3.88   Adjustable  
 Pitch Factor / zV Vθ     1.28 Adjustable  

(5)  TE011 Cavity 304 SUS, Emery Polished 3.2.2-3.2.4, Fig. 
23(a) 

 Diameter      108.3 mm   
 Axial Length l   170 ∼  210 mm Adjustable  
 Frequency  3.379∼ 3.454 GHz Adjustable  
 Pitch Factor / zV Vθ     1.28 1.02∼ 1.64  

 Axial Magnetic 
Field 0B  

 0.1268 T, 240 A    3 %  

 Number of Gyration 
N 

16  for l=200 mm 14∼ 19   

 2( / )N V cθ       0.6 0.4∼ 0.8  

(6) Coaxial Antennas 304 SUS and Machined Ceramic Insulator    Fig. 23(b) 
 Total Length  152 mm   
 Outer Diameter  15 mmφ    
 Center Conductor   1.6 mmφ  SUS Rod   
 Loop Size   5∼ 7 mm, Hemi-Circle Adjustable  
 Coupling Factor s    Unknown Loop size or 

rotation of 
antennas  are 
adjusted 

Eq. 11, Fig. 21 

(7) Gunn Oscillator Shimada Rika Co. 7K905 (D5497) Fig. 24 
 Frequency 2.0 ∼  4.0 GHz Adjustable  
 Power   0 ∼  50 mW  ± 1 %, 

Adjustable 
 

 Freq. Modulation   0.3 % Adjustable  
(8) Amplifier ALC microwave Ltd., Model-APA0204  Fig. 24 

 Amplification  0 ∼  40 dB Adjustable  
 Saturation  1.0 W   

(9) Crystal Detector  HP432B, Negative Polarity  Fig. 24 
(10) Oscilloscope  Tektronix, TDS2024  Fig. 24 
 Sensitivity  Max 2.0 mV/cm  Adjustable Fig. 25 
 Data Acquisition USB port to Excel or png picture files  
(11) System Controller Hand Made Source to Drive  (7)  
 Saw Tooth for FM 12 V(DC) +10 V(max), 

1 kHz 
  

 Oscillo. Trigger 
Signal 

150 V,  5 sμ  pulse   

     
 


