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We report the prediction of quasi-bound states (resonant states with very long lifetimes) that
occur in the eigenvalue continuum of propagating states for a wide region of parameter space.
These quasi-bound states are generated in a quantum wire with two channels and an adatom, when
the energy bands of the two channels overlap. A would-be bound state that lays just below the
upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant
state with a very long lifetime (a second QBIC lays above the lower energy band).
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Since the bound state in continuum (BIC) was first
proposed in 1929 by von Neumann and Wigner [1], var-
ious researchers have reported its existence [2–9]. All
studies agree that the phenomenon can only occur at
discrete points of parameter space (i.e., the BIC is a zero-
measure effect).

We here report the existence of a quasi -bound state in
continuum that exists over a wide region of parameter
space (finite measure). By quasi-bound state, we mean
a resonant state with a very long lifetime, so long that it
appears to be a bound state in space and hardly decays
in time. The quasi-bound state emerges when the system
has an impurity level coupled to two overlapping energy
bands with divergent van Hove singularities at the band
edges. If there were just one energy band, a bound state
would appear just outside the edge (due to the singular-
ity). This would-be bound state is slightly destabilized
by the other energy band, forming a quasi-bound state.
Since the quasi-bound state is virtually a bound state
in continuum, it may be useful as a high-energy excited
level of a carrier as a quantum device application.

The Hamiltonian for our system is a tight-binding
model on a ladder with an adatom (Fig. 1(a)):

H = − th
2

∑
y=1,2

∞∑
x=−∞

(
c†x+1,ycx,y + c†x,ycx+1,y

)
−t′h

∞∑
x=−∞

(
c†x,2cx,1 + c†x,1cx,2

)
+g

(
d†c0,1 + c†0,1d

)
+ Edd†d. (1)

Here, c†x,y and cx,y are the creation and annihilation op-
erators of a spinless fermion at the site (x, y) with integer
x (−∞ < x < ∞) and y = 1, 2, whereas d† and d repre-
sent a dot, or an adatom, attached to the (0, 1) site of the
ladder. The first line of Eq. (1) gives the hopping matrix
elements along the ladder, the second line the hopping
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FIG. 1: (a) An adatom, or a dot, attached to a ladder. (b)
After diagonalizing the ladder, the system is composed of a
dot coupled to two independent channels.

elements across the ladder and the third line gives the
hopping elements to and from the one-particle level of
the dot.

The ladder has two eigenmodes cx,± ≡ (cx,1±cx,2)/
√

2,
which transform the Hamiltonian (1) to

H = − th
2

∑
σ=±

∞∑
x=−∞

(
c†x+1,σcx,σ + c†x,σcx+1,σ

)
−t′h

∑
σ=±

∞∑
x=∞

σc†x,σcx,σ

+
g√
2

∑
σ=±

(
d†c0,σ + c†0,σd

)
+ Edd†d; (2)
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see Fig. 1(b). The system has two conduction channels

c†k±,± =
1√
2π

∞∑
x=−∞

eik±xc†x,± (3)

with −π ≤ k± ≤ π, each of which forms an energy band

ε±(k±) = −th cos k± ∓ t′h. (4)

Two divergent van Hove singularities occur in the den-
sity of states function at the edges of both bands [14].
The two bands overlap (with one of the singularities of
one band embedded within the continuum of the other)
whenever |t′h| < |th|. The dot level couples to both chan-
nels as can be seen in Eq. (2). Incidentally, we can also
regard the Hamiltonian (2) as conducting electrons with
spin σ on a tight-binding chain under a magnetic field
proportional to t′h.

In terms of the new operators for the wave number k
in Eq. (3), the Hamiltonian (2) takes the form of the cou-
pled Friedrichs-Fano (Newns-Anderson) model Hamilto-
nian [10–13], which has been thoroughly studied. Using
the standard argument for this model, we obtain the dis-
persion equation for this coupled system:

z − Ed − g2

2

[
1√

(z+t′h)2−t2h
− 1√

(z−t′h)2−t2h

]
= 0. (5)

This is equivalent to a twelfth order polynomial equation
for z. The complex solutions of this equation correspond
to the complex energy eigenvalues of the resonance states,
with the decay rate given by the imaginary part.

Here, we focus on the numerical solution of this equa-
tion, using t′h = 0.345th and g = 0.1th for our demonstra-
tion. The twelve eigenvalues for Ed = 0.3th are listed in
Table I, as an example. Each discrete eigenvalue can be
distinguished by its position on the complex K+ surface,
the complex K− surface and the complex energy surface,
where the three quantities are related by

E = −th cos K+ − t′h = −th cos K− + t′h. (6)

The corresponding eigenfunction is given in the form(
Ψ(x, 1; t)
Ψ(x, 2; t)

)
=

e−iEt/h̄

(
A+eiK+|x|

(
1
1

)
+ A−eiK−|x|

(
1
−1

))
(7)

with appropriate constants A±.
The complex energy surface is composed of four Rie-

mann sheets. It is a physical requirement [15] that a
resonant state decays in time but diverges in space. The
resonant state, therefore, has a negative imaginary part
for its energy and a negative imaginary part for one or
both of the wave numbers K+ and K−. An eigenvalue
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FIG. 2: (a) The wave function modulus |ψ(x, y)| of the state
Q2 around the origin. (b) The same but away from the origin
on the logarithmic scale. The plots for y = 1 (the upper
leg) and y = 2 (the lower leg) are almost indiscernible. The
parameters are set to t′h = 0.345th, g = 0.1th and Ed = 0.3th.

in the upper K+ plane and in the upper K− plane is de-
fined to lay on Riemann sheet I and is a complete bound
state; the states P1 and P2 in Table I are such states.
An eigenvalue in the lower K+ plane and in the lower
K− plane is defined to lay on Riemann sheet IV and is a
complete resonant state; the state S1 in Table I is such a
state. (A state with a positive imaginary part of the en-
ergy is a so-called anti-resonant state, which is the time
reversal of a resonant state and hence grows in time; S2
is the time reversal state of S1.)

An eigenvalue in the lower K+ plane but in the upper
K− plane is defined to lay on Riemann sheet II, while
one in the upper K+ plane but in the lower K− plane is
defined to lay on Riemann sheet III. The resonant states
on these two sheets (states Q2, Q4, and R2 in Table I)
are the main focus of the present paper.

The resonant states in sheets II and III are resonant
states because they diverge in space due to the negative
imaginary part of only one of the wave numbers; see Eq.
(7). Some of them, however, diverge in space very slowly
and decay in time very slowly (the latter is demonstrated
in Table I). The state Q2, for example, appears to be a
localized state around the x-axis origin (Fig. 2(a)) and
exponentially diverges only far away (Fig. 2(b)). Indeed,
solving the dispersion relation (5) by perturbation ex-
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TABLE I: The twelve discrete eigenvalues for t′h = 0.345th, g = 0.1th and Ed = 0.3th.

state E/th K+ K− Riemann Sheet

P1(0.3) 1.34501152 3.14159265 +i 1.11593256 3.14159265 +i 0.00480148 I

P2(0.3) −1.34500463 +i 0.00304629 +i 1.11592751 I

Q1(0.3) 1.34501136 3.14159265 −i 1.11593245 3.14159265 +i 0.00476787 II

Q2(0.3) −0.65501370 −i 1.5093 ×10−7 1.25558888 −i 1.5875 ×10−7 −0.00002882 +i 0.00523534 II

Q3(0.3) −0.65501370 +i 1.5093 ×10−7 −1.25558888 −i 1.5875 ×10−7 0.00002882 +i 0.00523534 II

Q4(0.3) 0.29998854 −i 0.00153774 2.27180290 −i 0.00201224 −1.52576970 +i 0.00153930 II

Q5(0.3) 0.29998854 +i 0.00153774 −2.27180290 −i 0.00201224 1.52576970 +i 0.00153930 II

R1(0.3) −1.34500459 +i 0.00303273 −i 1.11592748 III

R2(0.3) 0.65509906 −i 2.9331 ×10−6 −3.14138429 +i 0.01407702 1.88609355 −i 3.0852 ×10−6 III

R3(0.3) 0.65509906 +i 2.9331 ×10−6 3.14138429 +i 0.01407702 −1.88609355 −i 3.0852 ×10−6 III

S1(0.3) 0.29991927 −i 0.01154476 2.27161773 −i 0.01510419 1.52570333 −i 0.01155625 IV

S2(0.3) 0.29991927 +i 0.01154476 −2.27161773 −i 0.01510419 −1.52570333 −i 0.01155625 IV

pansion in g, we can show that the imaginary part of the
energy of state Q2 is proportional to g6 (extremely small
for g ≪ 1) due to the interaction between the divergent
van Hove singularity in the upper energy band and the
continuum of the lower band. Since the real part of the
energy lays within the lower energy band, we refer to this
state as a quasi-bound state in continuum (QBIC).

In particular, the quasi-bound state Q2 has the real
part of the energy just below the lower edge of the upper
energy band ε−, which occurs at −th + t′h = −0.655th in
the present case. If we had only the upper channel, this
state would be a bound state (due to the van Hove sin-
gularity) [14]. In order to elucidate how the QBIC effect
appears, we compare the above result to that obtained
for the separate one-channel systems with the following
new Hamiltonians with a structure similar to Eq. (2):

H± = − th
2

∞∑
x=−∞

(
c†x+1cx + c†xcx+1

)
+

g√
2

(
d†c0 + c†0d

)
+ Edd†d ∓ t′h. (8)

Here we set the coupling between the site x = 0 and the
adatom to g/

√
2 for quantitative comparison with the

Hamiltonian (2). We have also added the energy offset
∓t′h so that the energy band of each Hamiltonian H±
may coincide with the energy bands ε± of the ladder
system. The Hamiltonian H− thus mimics the upper
energy band ε− of the − channel of the ladder system,
while the Hamiltonian H+ mimics the lower band ε+.

The bound state below the lower band edge of the
Hamiltonian H− for t′h = 0.345th, g = 0.1th and Ed =
0.3th has a pure real energy E/th = −0.65501371 and
a pure imaginary wave number K = i0.00523550. This
bound state of the one-channel system (Fig. 3(a)) indeed
closely resembles the eigenvalue and the wave number
K− of state Q2 of the two-channel system (see Table I).
When the second channel is attached to the one-channel
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FIG. 3: (a) A schematic view of the strongly bound state
(due to the van Hove singularity) of a one-channel system
with the eigenvalue just below the lower band edge. (b) Some
of the bound particles leak into the attached channel. (c)
The eigenfunction of the state Q2 for t′h = 0.345th, g = 0.1th
and Ed = 0.3th. The amplitude modulus of the − channel,
|ψ(x,−)|, that of the + channel, |ψ(x, +)|, and that of the
dot, |ψ(d)|, are indicated.
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FIG. 4: The imaginary part of the eigenvalues of the state Q2.
(a) The dependence on the dot energy Ed. The imaginary
part vanishes for Ed

<∼ −1.345th. (b) The dependence on the
real part of the eigenvalue. The arrow indicates the increasing
direction of Ed. The range of Ed is the same as in plot (a).
The parameters are set to t′h = 0.345th and g = 0.1th.

system (Fig. 3(b)), the energy is inside the conduction
band of the + channel so that a portion of the bound
particles outside the edge of the − channel leak into the
+ channel and escape to infinity. Notice ReK− < 0,
while Re K+ > 0; the particles on the channel − are suck
into the origin and spring out of the origin onto the +
channel. This leak makes the state Q2 a resonant state;
it can be generally shown [15] that the imaginary part of
the resonant eigenvalue arises due to the momentum flux
escaping from the scattering potential.

The actual eigenfunction of the state Q2 is exemplified
in Fig. 3(c). One can show that the amplitude at the
dot ψ(d) is order g smaller (g = 0.1th in this case) than
the amplitude of ψ(0,−) and the amplitude of ψ(0, +) is
order g smaller than ψ(d). Hence the amount of the leak
is small (∼ g2). The same analysis applies to the state
R2, which is also a quasi-bound state. Figure 4 shows
that the quasi-bound states survive over a wide range of
the parameter Ed.

To summarize, we have found quasi-bound states in
the continuum over a wide range of system parameters,

which is in striking contrast to the bound state in the
continuum. The quasi-bound states emerge in the system
with two overlapping eigenvalue continua when at least
one of the bands contains a divergent Van Hove singular-
ity. For instance, a would-be bound state just below the
upper continuum turns out to be a quasi-bound state in
the lower continuum. The simple picture of the mecha-
nism suggests that the quasi-bound state may be found
in various systems including a microwave tube with an
ion [14] and in the scattering of ions and nuclides.
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