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Abstract. 
 

The interactions of Au ions with gas and plasma targets are described in details with 

account for ionization, electron capture and stripping processes for application to heavy ion 

beam plasma probes (HIBP). A series of the theoretical cross sections for these processes are 

calculated and are applied to optimize the charge fractions of multi-charged Au (and also Cu) 

ions at the exit of the tandem accelerator at MeV energy range. In the charge changing processes, 

the theoretical charge fractions of multi-charged Au ions have been found to behave similarly as 

the experimental charge fractions under the neutral target areal density of ~ 1x1015 cm-2.  These 

cross sections are also used for estimating the attenuation of MeV energy ion beams in core and 

edge plasmas of the Large Helical Device (LHD). The signal levels of Au+ and Au2+, which are 

detected at the primary beam monitor and the energy analyzer, are discussed quantitatively. 

These results give us some confidence to the enhanced availability of the HIBP system, leading 

to high precision diagnostics for plasma potentials, their fluctuations, and densities in a thermo-

nuclear plasma.  

  

 

Keywords: cross sections, tandem accelerator, charge changing process, negative ions, multi-

charged ions, heavy ions, plasma diagnostics 

 

 

1. Introduction 

 

In high-temperature thermo-nuclear fusion plasmas, their electrostatic potential and 

density fluctuations are believed to be the major factors which strongly influence the plasma 

confinement properties and stabilities and, thus, it is critically important to know the detailed 

variations (in time and location) of such parameters inside plasmas. A heavy ion beam probe 

(HIBP) system is one of the effective diagnostic techniques to measure simultaneously the 

plasma electrostatic potential, its fluctuations and density fluctuations at a particular plasma 

location.  The HIBP system of the Large Helical Device (LHD) was designed [1], and has been 

developed to measure LHD plasma potential distributions using the energy-analyzed ion beam 

passing through plasmas [2]. For the LHD-HIBP system, the negative gold ions (Au-) are 

injected into a gas target in a tandem accelerator with 3 MV terminal voltage where a part of 

negative gold ions is converted into Au+ beam [3]. Then, after further acceleration up to 6 MeV, 

Au+ ions are injected into the main LHD plasmas collisions with plasma particles, Au+ ions are 
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ionized into Au2+ ions which come out from the plasma. By measuring the variation of energy 

and intensities of Au2+ ions, one can estimate the plasma potential, plasma density and their 

variations at a particular location inside the plasmas which the ions collide with. Typical LHD 

plasma parameters are: the electron density Ne ~ 1013 - 1014 cm-3, electron temperature at the 

plasma edge Te
edge~ 1 - 100 eV and in the plasma core Te

core ~ 10 keV.  

In the present paper, in order to investigate interactions of Au ions with gas and plasma 

targets, basic data such as ionization, electron-capture and stripping cross sections are calculated 

in various gases over a wide range of ion energy. Besides, to know their transmission rates 

through plasmas, recombination rate coefficients of Au+ and Au2+ ions with plasma electrons are 

also calculated for the plasma electrons with Maxwellian velocity distributions at temperatures 

Te = 1 eV – 10 keV. Furthermore, for comparison, some similar cross sections are also calculated 

for Cu ions as another possible candidate for HIBP system.   

As we are interested maily in behavior of the projectile ions, following atomic processes 

are considered: 

1. Ionization of a projectile Xq+ by a target atom A: 

 

                                 Xq+ + A → X(q+m)+ + me + ΣΑ ,                                                          (1) 

 

where q denotes the charge of the projectile ion Xq+ including a negative ion (q = -1) and a 

neutral atom (q = 0), A the target atom, m the number of ejected electrons, and sum ΣΑ means 

all possible states of the target after collision including ionization and excitation processes. 

Single ionization (SI) corresponds to m =1, and multiple ionization (MI) to m > 1.  Sometimes, 

projectile ionization (1) is also called electron loss or electron stripping, since additional free 

electrons are involved after collisions. 

 

2. Electron capture (EC) by a projectile: 

  

                                          Xq+ + A → X(q-1)+ + A+                                                  (2) 

The reaction (2) is also called charge-exchange or charge-transfer. 

 

3. Ionization of a projectile via electron capture by a target  (IEC): 

 

                                  Xq+ + Aa+ → X(q+1)+ + A(a-1)+                                                             (3) 
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     The target Aa+ can be a neutral atom (a = 0) or an ion (a ≥ 1). The reaction (3) is the projectile 

ionization through capture of a projectile electron by the target which is an important ionization 

process, particularly in high temperature plasmas, and should be considered along with 

ionization, eq. (1). 

 

4.   Photorecombination (PR) of a free electron:  

                                          Xq+ + e → X(q-1)+ + hω ,                                                  (4) 

where hω represents a photon emitted. Capture of a free electron can occur via other processes 

(see section 6). 

A list of the calculated cross sections and rates for different processes involving Au ions 

is given in Table 1 together with energy and temperature range, methods and codes used.  

Similar cross sections were also calculated for Cu ions as an alternative candidate for the LHD-

HIBP system. Detailed description of the methods and codes used for the present calculations are 

given in the following sections. 

 

Table 1. List of calculated cross sections and rates for atomic processes involving projectile Au 

and Cu ions. 

 

Process, 

equation 

Calculated 

value 
Projectile Target 

Energy,  

MeV 

Method, 

code 

SI and MI 

(1) 

cross 

sections 

Au-, Auq+, 

0 ≤ q ≤ 2 

H, He, Ar, Xe 0.05 - 10 Firsov model 

[3] 

SI and MI 

(1) 

cross 

sections 

Cu-, Cuq+, 

0 ≤ q ≤ 2 

Ar 0.05 - 10 Firsov model 

[3] 

SI (1) 

 

cross 

sections 

Au+, Au2+ e, H+, H, He, 

He+, He2+ 

0.1 - 50 LOSS code 

[4] 

SI (1) 

 

cross 

sections 

Au+ Cq+ 

0 ≤ q ≤ 6 

0.3 - 50 LOSS code 

[4] 

EC (2) cross 

sections 

Auq+ 

0 ≤ q ≤ 4 

H, He, Ar 0.1 - 100 CAPTURE 

code [5] 

EC (2) cross 

sections 

Cuq+ 

0 ≤ q ≤ 4 

Ar 0.1 - 100 CAPTURE 

code [5] 

EC (2) cross 

sections 

Au+, Au2+ 

 

H, H2, He, He+ 0.1 - 100 CAPTURE 

code [5] 
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EC (2) cross 

sections 

Auq+ 

0 ≤ q ≤ 4 

Ar, Xe 0.1 - 10 CAPTURE 

code [5] 

EC (2) cross 

sections 

Cuq+ 

0 ≤ q ≤ 5 

Ar 0.1 - 20 CAPTURE 

code [5] 

IEC (3) cross 

sections 

Au+, Au2+ H+, He+, He2+ 0.1 – 200 CAPTURE 

code [5] 

PR (4) cross 

sections 

Au+ e 0.1 - 10 formula [6] 

PR (4) rate  

coefficients 

Au+, Au2+ e Te = 0.3 eV 

– 10 keV 

formula [6] 

 

 

 

2. Atom-atom interaction potential 

 

For solving many problems in atomic and plasma physics, e.g., to determine  elastic 

scattering cross sections, stopping power, energy straggling, energy transfer, distance of closest 

approach between two colliding particles, etc., one has to use a proper atom-atom (or ion-atom) 

interaction potential V(r) given as a function of the inter-nuclear separation r. A survey of how to 

construct such a potential using two charge densities of each colliding atomic particle is given in 

[4]. Authors analyzed the potentials V(r) calculated for a number of atom-atom collision systems 

and found a scaling potential which provides the best fit to all calculated ones in a universal form 

(the so-called Biersack-Ziegler universal potential): 

)/()(
2

21 ar
R

eZZrV φ=                                                                                  (5) 

with the screening function )(xφ given by 

arxxx
xxx

/),2016.0exp(02817.0)4028.0exp(2802.0
)9423.0exp(5099.0)2.3exp(1818.0)(

=−⋅+−⋅+
+−⋅+−⋅=φ

     (6) 

where Z1 and Z2 denote the nuclear charges of the colliding particles, respectively, e the electron 

charge, and a constant depending upon the colliding particles given as follows: 

)/(8854.0 23.0
2

23.0
1 ZZa += ,                                         (7) 

if r is in the atomic units of a0 (a0 = 0.529 · 10-8 cm = 0.529 Å), or 
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)/(529.08854.0 23.0
2

23.0
1 ZZa +⋅= ,                           (8) 

if r is in Å. If V(r) is in eV and r in Å, then V(r) should be multiplied by 14.42 eV ·Å. 

 Figure 1 displays examples of the interatomic potentials V(r) calculated using eqs. (5), 

(6), and (8) for Au-Ar as well as for Kr-C colliding systems in comparison with that in a free-

electron model [5]. 

Let us now estimate the scattering cross section which can be lost in the experimental 

setup due to its limited geometry. In our setup, the largest scattering angle acceptable in the 

laboratory system with the radius of a diaphragm of gas target, the radius (half-width) of the 

Faraday cup, and the length of the gas cell being as 5.0, 7.5, and 706 mm, respectively, is given 

by:  

radsetup 0177.00177.0arctan
706

5.12arctanmax ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ .                               (9) 

 

 
Fig. 1.  Calculated interatomic potentials for Au-Ar and Kr-C systems, eqs. (5), (6), and (8), as a 

function of the inter-nuclear distance r.  Dotted curve corresponds to a calculated potential for 

Kr-C interaction in a free-electron model [5].  
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Then the total maximum angle which can be use for observations is (in the center-of-mass (c.m.) 

system): 

.105.0
94.39

1970177.0arcsin0177.0sinarcsin maxmaxmax rad
M
M

T

Psetuptot =⎟
⎠
⎞

⎜
⎝
⎛ ⋅+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Θ+Θ=Θ      (10)     

where MP and MT are the masses of projectile and target atoms, respectively. Taking into account 

the dependence between the scattering angle and the impact parameter b in the c.m. system, it is 

possible to find the minimum impact parameter bmin which can be detected in our setup. One can 

use the following relation between the scattering angle and impact parameter given in [6] 

[ ]∫
∞

−−
−=Θ

0

2/1222 //)(1
2

r c rbErVr
drbπ

                             (11) 

where Ec is the c.m. energy of the system, and r0 is the distance of the closest approach which is 

found from the following equation: 

 

0//)(1 2
0

2
0 =−− rbErV c .                         (12) 

 

Equation (11) can be represented in other forms suitable for integration. Using the scaling 

parameters   

)//(,/,/ 2
21 aeZZEabparx c=== ε ,                                     (13) 

then one has 

[ ] 2/1222 /)/()(1
2

0
xpxxx

pdx

x
−Φ−

−=Θ ∫
∞

ε
π

     (14) 

 

where  

                 0/)/()(1 2
0

2
00 =−Φ− xpxx ε .                   (15) 

One can also use a ‘trigonometric’ form with a substitution x = x0/cosθ  in eq. (14) (see [7]):  

2/1
2

2

0

0

2/

00
cos

)cos/(
)cos/(1

sin2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Φ
−

−=Θ ∫
θ

εθ
θ

θθπ
π

x
p

x
x

d
x
p

     .                  (16) 
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At 2/πθ = , the integrand in eq. (16) is equal to unity.  

In the case of Au+ ions with the energy of Ep = 3 MeV incident on Ar atoms, one has 

47.2,100.0,506330 ===
+

= εaeVE
MM

ME P
PT

T
c  ,                (17) 

where a is defined in eq. (8). Using eqs. (5) - (6) for Au-Ar potential with Z1=79 and Z2=18, and 

solving eq. (12), one get the minimum impact parameter of 

                                           bmin = 0.2 Å.                     (18) 

This means that all particles under collisions with impact parameters b < bmin are scattered away 

and can not be detected by our detector setup, and the corresponding scattering cross section at 

Au projectile energy of 3 MeV can be estimated as 

 

                                        π bmin
2 = 1.3 x 10-17 cm2.                                                      (19) 

Below we will see that this is small compared to ionization and electron capture cross sections 

which are of the order of 10-16 – 10-15 cm2 in our conditions. Thus, it is believed that, in principle, 

no experimental geometries should influence comparison between the present calculations and 

observation.  

 

 

3. Ionization of Au ions in collisions with gases at low energies. The Firsov model 

 

Theoretical treatments of collision processes of atom-atom collisions at relatively low 

energies (relative velocity v = 5 x 106 – 108 cm/s ~ 0.02 – 0.5 a.u., 1 a.u. of velocity corresponds 

to ~ 2.2 x 108 cm/s, which corresponds to the kinetic energy of ~ 25 keV/u) are quite 

complicated due to formation of so-called quasi-molecules which play a critical role. Therefore, 

only limited theoretical as well as experimental investigations have been reported so far. Among 

them, Firsov [7] treated them and developed relatively simple formulations for calculating the 

many-electron ionization (often called differently such as stripping, loss or detachment 

particularly for negative ions) cross sections of the projectile, eq. (1), applicable up to ionization 

of m = 4 electrons. The model is based on the classical treatment provided that the distance 

between neighboring energy levels of a quasi-united system of colliding atoms is smaller than 

the energy transferred to the projectile during collisions. The model uses the Thomas-Fermi 

potential for interactions between two colliding atoms with nuclear charges, Z1 and Z2, and has 

the following expression for ionization cross section [7]:   
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( ) ( )( ) 25/183/5
21

3/2
21

215 1/v103.4103.3)v( ⎥⎦
⎤

⎢⎣
⎡ −××++×= −−−

mIZZZZcmσ   (20) 

where v is the relative velocity in cm/s and Im is the total ionization energy (in eV ) required for 

removing m outmost electrons: 

                                ∑
+−

=
+=

i

i

qm

qq
qqm II

1

1,   .                                             (21) 

Here Iq,q+1 is the single ionization energy from the charge q to q+1; for negative ions, summation 

on q starts from qi = -1. For example, the total minimal energy I4 required for the ionization of 

four electrons in Au- ion is estimated to be: 

 
I4 = I-1,3= I-1,0(Au-) + I0,1(Au0) + I1,2(Au+) + I2,3(Au2+)  

=  2.28 + 9.23 + 20.5 + 37.4 = 69.4 eV. 
 
Introducing the scaled cross section and velocity parameters 

       ( )[ ] ( )[ ] scmZZIucmZZ m //1023,/103.3 3/5
21

6
0

23/2
21

15
0 +×=+×= −σ ,      (22) 

eq. (20) can be written in the following closed form: 

                    ( )[ ]25/1
00 1/v/ −= uσσ    .                                                   (23) 

This dependence in eq. (23) is reproduced in Fig. 2. Using eq. (23) and knowing a relative 

velocity of colliding particles v and the energy Im required for removing m electrons, one can get 

the ionization cross sections at relatively low energies. The model can be applied for slow 

collisions (v < 1 a.u.) between heavy ions in low charge states with ejection up to four electrons 

(m ≤  4). The uncertainty of the Firsov model is about a factor of 2. 
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Fig. 2.   Firsov universal curve to calculate ionization cross sections at low collision energies 

based upon eq. (23). The scaling parameters σ0 and u0 are given in eq. (22). 

 

Single- and multiple-electron ionization cross sections calculated by the Firsov model for 

3 MeV Au and Cu ions colliding with H and various noble-gas atoms are given in Table 2 and 

Fig. 3. It is interesting to note that the ionization cross sections, defined by eqs. (22) - (23), do 

not change very much and are nearly independent (within 10 - 15 %) of the target atoms because 

the Au projectiles are heavier than any target considered here. These data (together with electron 

capture cross sections) will be used in section 5 for estimation of charge-state fraction 

distributions of ions created in collisions of negative Au- and Cu- ions with gaseous targets.  

 

Table 2. Single- and multiple-ionization cross sections (10-16 cm2) for Au and Cu ions colliding 

with different gases at energy of E = 3 MeV, based upon the Firsov model, eqs. (22) - (23).  

 

 Au + H Au + He Au + Ar Au + Xe Cu + Ar 

σ−1,0  34.8 34.9 35.8 39.4 59.8 
σ−1,1 15.2 15.3 15.9 16.9 21.9 
σ−1,2 8.6 8.63 9.1 9.9 11.3 
σ−1,3 5.4 5.42 5.8 6.42 6.9 
σ0,1 17.1 17.2 17.8 18.9 23.7 
σ0,2 9.0 9.01 9.5 10.3 11.6 
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σ0,3 5.5 5.54 5.9 6.5 6.9 
σ0,4 3.44 3.46 3.8 4.3 4.6 
σ1,2 11.1 11.1 11.7 12.6 14.0 
σ1,3 6.05 6.07 6.5 7.13 7.5 
σ1,4 3.96 3.98 4.3 4.85 4.8 
σ2,3 7.9 7.9 8.3 9.1 9.9 
σ2,4 4.53  4.55  4.9  5.47  5.52  
σ2,5 3.1  3.1 3.37   3.86 3.6  
σ3,4 6.3 6.3 6.7 7.4 4.2 
σ3,5 3.7 3.7 4.0 4.54 59.8 
σ4,5 5.32 5.35 5.7 6.35 6.1 
σ4,6 3.12 3.14 3.4 3.91 3.4 
 

 

 
Fig. 3.  Calculated single and multiple ionization cross sections of Au ions by Ar impact using 

the Firsov model, eqs. (22) - (23). Notations of ion charge before and after collision q, q+ m are 

given in the right-hand side of the figure, e.g., -1,1 means double ionization of Au- ions. 
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Table 3. The total ionization energies Iq,q+m (in eV) for Au and Cu ions taken from [8]). q is the 

initial ion charge and m denotes the number of electrons to be ejected.  

 

Au ions Cu ions 

q, q+m Iq,q+m 

(eV) 

q, q+m Iq,q+m 

(eV) 

q, q+m Iq,q+m 

(eV) 

q, q+m Iq,q+m 

(eV) 

-1,0 2.28 1,2 20.5 -1,0 1.24 1,2 20.29 

-1,1 11.52 1,3 57.9 -1,1 8.97 1,3 57.1 

-1,2 32.12 1,4 112.1 -1,2 29.3 1,4 112.0 

-1,3 69.49 2,3 37.4 -1,3 66.1 2,3 36.83 

0,1 9.23 2,4 91.6 0,1 7.73 2,4 92.0 

0,2 29.83 2,5 162.6 0,2 28.0 2,5 172.0 

0,3 67.23 3,4 54.2 0,3 64.8 3,4 55.2 

0,4 138.2 3,5 125.2 0,4 120.0 3,5 135.0 

  4,5 71.0   4,5 79.9 

  4,6 158.8   4,6 183.0 

 

It is interesting to compare the Firsov model calculations with experimental data for 

ionization of negative ions by neutrals at low collision energies. There are several data on single 

(σ-1,0), double (σ-1,1), triple (σ-1,2) ionization cross sections, and the sum (so-called detachment) 

ionization cross sections σD = σ-1,0 + σ-1,1  for negative ions colliding with atomic and molecular 

targets (see, e.g., [9]).  The electron affinities I-1,0 (the first ionization potential) of negative ions 

for which experiments have been carried out are given in Table 4 for comparison.  

 

Table 4.  Electron affinities I-1,0 (eV) for negative ions (from [8]). 
 

Ion I-1,0  
B- 0.277 
C- 1.26 
O- 1.46 
F- 3.40 
Cl- 3.61 
Al- 0.441 
Si- 1.389 
S- 2.08 

Cu- 1.235 
Au- 2.28 
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In Fig. 4, the experimental data on single-, double- and triple-ionization cross sections in 

C- + Ar collisions are given as a function of relative velocity in comparison with the Firsov-

model calculations. In the range of validity v < 0.5 a.u., the Firsov model predicts cross sections 

to be larger than the experimental data. Unfortunately, available experimental data obtained by 

different methods are not consistent. Therefore, it is quite difficult to make a reasonable 

comparison with the Firsov theory, though it is surely required to be improved extensively, for 

instance, using a more sophisticated atom-atom potential like the Biersack-Ziegler type (see 

section 2). Furthermore, more accurate experimental data should be pursued. 

It should be pointed out that, in principle, one can also estimate single- and multiple-

ionization cross sections of negative ions, neutrals and positive ions using semiempirical scaling 

laws [10] which have claimed a similar uncertainty of a factor of ~ 2 at high energy region. 

However, this scaling seems to be much more uncertain at low energy region.  

 
Fig. 4. Comparison of experimental data with the Firsov-model calculations for single-, double- 

and triple-ionization cross sections in C- + Ar collisions: solid and open squares – experiment 

[11]; solid, open circles and open triangles – experiment [9]; solid curves – the Firsov model, eqs. 

(22) - (23). 
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4. Electron capture of Au ions in collisions with neutral atoms and ions.  The CAPTURE 

code 

 

In this work, the one-electron capture (EC) cross sections of ions colliding with neutral 

atoms and ions, eqs. (2) - (3), were calculated using the CAPTURE code described in [12,13]. 

Note that under the present collision situations where we estimate the charge changing processes 

in a tandem accelerator and beam attenuation in a plasma, multiple electron capture is not 

expected to be important and therefore is neglected.  

Briefly, the CAPTURE code aims for calculating the probabilities P(b,v) and cross 

sections σ(v) for single-electron capture in ion-atom and ion-ion collisions, eqs. (2) - (3), as a 

function of the impact parameter b and the collision velocity v. It is based on normalized 

Brinkman-Kramers (BK) approximation in the impact parameter representation (see [14]). A 

total cross section is given by the sum of partial cross sections σn for all possible states with the 

principal quantum numbers n as a function of collision velocity v: 

       

 ,                             (24) 

     

 

where Pγn(b,v) denotes the electron capture probability from the target shell γ into the n-state of 

the resulting ion, including the ground state n0, at the impact parameter (b) and the collision 

velocity (v) in the BK approximation, nmax the maximum principal quantum number taken into 

account for the probability. The summation is also made over all shells of the target γ.  Here N 

refers to the normalized probability and ncut is a parameter depending on target density: for low-

dense targets it is infinity while in a dense target it is strongly reduced due to the so-called 

target-density effects (see [13]). 

In the CAPTURE code, the hydrogenic wave functions Pnl
H are used for a particle with a 

charge q: 

 

                 )(2),()( 2/1 qInZrZPZrP nlscrscr
H

nlscr
q

nl ==                          (25) 

 

,v),(2v)(v),(v)(
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n
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where Zscr is an effective charge to take account of the screening effects for the nl shell and Inl 

denotes a binding energy of the target atom (ion), or the resulting ion X(q-1)+. The hydrogenic 

wave functions here are used because of three main reasons as following: 

 

1. At relatively low energies, the role of excited hydrogenic states is very large, 

2. At high energies, the inner-shell target electrons close to nuclei are mainly captured and, 

therefore, can be described by the hydrogenic functions, 

3. It is possible to get the capture probabilities in a closed analytical form expressed in 

terms of the McDonald functions Kn(x) and to include excited states with nmax up to very 

high n ~1000. 

 

The capture cross sections calculated by the CAPTURE code for reactions of interest at 3 MeV 

are presented in Table 5 and Figs. 5 – 8. In the case of H2 targets, the cross sections were 

evaluated by using the semi-empirical law [15] obtained on the basis of numerous experimental 

data for electron capture in H and H2 targets which reads: 

 

                   (26) 

      
7/4)/( −⋅= qamukeVEX  

where E and q denote the kinetic energy and charge of the projectile ion. The capture cross 

sections of highly charged ions on hydrogen atoms can be estimated by using a ‘universal’ curve 

also given in [15] which was obtained by using the Bohr-Lindhard [16] model for electron 

capture.  

 

Table 5. Electron capture cross sections (10-16 cm2) at the projectile energy of 3 MeV (calculated 

by the CAPTURE code). 

 Au + H Au + He Au + Ar Au + Xe Cu + Ar 

σ0,−1  4.6 1.3 6.3 5.8 1.6 
σ1,0 19.0 9.0 24.0 30.0 9.0 
σ2,1 20.0 14.0 28.0 30.0 12.0 
σ3,2 13.0 18.0 21.0 15.0 17.0 
σ4,3 6.0 16.0 12.0 5.3 13.0 
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We note that 3 MeV energy corresponds to 15.2 keV/amu (v = 0.3 a.u.) for Au ions. This 

is a region of quite low energies where the capture cross sections strongly depend on energy 

defects ΔE, i.e., differences in binding energies of the captured electron before and after 

collision: the lower ΔE value has the larger cross section. For example, the ΔE values for capture 

reactions of Au+ ions on various atoms (the second row of Table 5) are, respectively, ΔE1,0(H) = 

13.6 – 9.23 = 4.37, ΔE1,0(He) = 11.0, ΔE1,0(Ar) = 2.2, and ΔE1,0(Xe) = 1.5 eV. That is why the 

cross sections are largest for Xe target, a little bit smaller for Ar, and the smallest for He target. 

At relatively high collision energies Ec >> ΔE, capture cross sections do not depend on the 

energy defect ΔE but, instead, on the binding energies of the target inner-shell electrons (see, e.g., 

[14]).  

Figure 5 shows a comparison of the capture cross sections for C+ + H collisions 

calculated by the CAPTURE code with recommended data presented in [14]; there is a 

reasonable agreement in the whole energy range. 

 
Fig. 5.  Capture cross sections for C+ + H collisions: solid curve – recommended data [14]; curve 

with solid circles – the CAPTURE code. 

 

 Calculated cross sections for electron capture of Auq+ and Cuq+ ions from Ar and Xe 

targets are given in Figs. 7 – 8. We note that the cross sections σ0,-1 for reactions X0+ + A → X- + 
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A+ forming negative ions should also be accounted for in treating the charge fraction 

distributions because they are quite large and comparable with other cross sections (see sections 

2 and 3) 

Calculated one-electron capture cross sections for Au+ and Au2+ ions from heavy 

particles such as H, H2, He and He+, which are important components of H and He plasmas, are 

given in Figs. 9 and 10. Again, the largest capture cross section corresponds to the reaction with 

the minimum energy defect ΔE, e.g., among collisions of Au+ ions the cross sections for reaction 

Au+ + H → Au + H+ are the largest as it has the minimum energy defect ΔE1,0(H) = 4.4 eV. 

. 

 
Fig. 6. Electron capture (EC) cross sections for Auq + Ar collisions (q = 0 - 4) as a function of 

Au ion energy (CAPTURE code).  
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Fig. 7. Electron capture (EC) cross sections for Auq + Xe collisions (q = 0 - 4) as a function of 

Au ion energy (CAPTURE code).  

 

 
Fig. 8.  Electron capture cross sections for Cuq + Ar (q = 0 - 5) collisions as a function of Cu ion 

energy (CAPTURE code).  
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Fig. 9.  Electron capture cross sections for Au+ + H, H2, He and He+ collisions as a function of 

Au ion energy (CAPTURE code). For H2 target, the cross section was estimated using eq. (26).  

 
Fig. 10.  Electron capture cross sections for Au2+ + H, H2, He and He+ collisions as a function of 

Au ion energy (CAPTURE code). For H2 target, the cross section was estimated using eq. (26).  
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5. Optimization of Au+ fractions in Au- collisions with gases: application to HIBP 

 
 To optimize a fraction of exit Au+ ions at 3 MeV, namely, to find the best target gas and 

areal gas density, one has to solve a set of differential equations describing rates of the exit Au 

ions in different charge states (see, e.g., [17]). We note that such differential equations were 

solved in the earlier paper [18] but without taking account of the electron capture cross sections. 

To make diagnostics of H and He plasmas with the HIBP technique, a beam of heavy 

Au+ ions, obtained after Au- ions passing through a gas cell, are accelerated up to 6 MeV and 

then injected into the plasma region.  To estimate possible ion fractions after the gas cell, a six 

charge-state model was used in the present work, i.e., taking six fractions Fq+ of the exit ions into 

account, namely Au-, Au0+, Au+, Au2+, Au3+ and Au4+, which can be obtained by solving six 

coupled differential rate equations including the electron-capture cross sections:  
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Here x = NL is the areal density with N being the target particle density (in particles/cm3) and L 

the length of the gas cell (in cm).  

 Using the ionization and electron-capture cross sections calculated in the previous 

sections, the set of eqs. (27) - (32) were solved for different colliding systems using the Runge-

Kutta method. Typical examples for Au- - Ar and Cu- - Ar collisions at 3 MeV are shown in Figs. 
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11 and 12 where calculated charge-state fractions are shown as a function of the areal density of 

target atoms.  

Figure 11 clearly shows that, at higher gas pressures, the fraction of higher charge states 

increases steadily due to multiple collisions and may approach a real charge equilibrium at 

sufficiently high densities. Figure 11 also shows that at the present energy of 3 MeV the most 

favorable range of Ar atom density for production of Au+ ions is around (4 – 5) × 1014 cm-2. 

Similar trends can be seen in Fig. 12 for Cu ion collisions.   

 

 
Fig. 11.  Calculated charge-state fractions Fq+ of Auq+ ions created in collisions of 3 MeV Au- 

ions with Ar gas as a function of the gas areal density. 
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Fig.  12.  Calculated charge-state fractions Fq+ of Cuq+ ions created in collisions of 3 MeV Cu- 

ions with Ar gas as a function of the gas areal density. 

 
Fig. 13.  Calculated charge-state fractions F+ of singly charged ions in collisions of 3 MeV Au- 

and Cu- ions with noble gases as a function of the gas areal density. 
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Figure 13 shows the dependence of the optimum F1+ fractions of Au ions for different gas 

targets as a function of the target density calculated in the present work. According to Fig. 13, 

the best gas target to efficiently create singly charged Au+ ions in Au- - gas collisions at 3 MeV 

seems to be He at an areal density of about 5.0 x 1014 cm-2, though th difference among gases is 

not so significant. Another candidate is Cu- ion colliding with Ar atoms as also shown in Fig. 13. 

The highest fraction of Cu+ ions can be reached at slightly lower gas pressures than for Au+ ion. 

 As seen in Figs. 11 and 12, it is expected that 10 % fractions of total ion beam at the 

optimum gas pressures are missing mainly due to the omission of higher charge states (q ≥ 5). 

This is not serious for the present analysis as we do not intend to go to higher gas pressures. But 

we have to note that, in principle, we need to include q = 10 - 15 fractions into the differential 

rate equations (27) - (32) to provide more adequate conditions of particle conservation: 

                               1)( =∑
q

qF  .                           (33) 

However, we had to limit ourselves to only six fractions because it was not possible to calculate 

ionization cross sections by the Firsov model which is valid for ionization of only m ≤ 4 

electrons. It should also be noted that the Firsov model can not be applied for highly charged 

ions (q >>1) as it uses the Thomas-Fermi potential between two neutral atoms (see section 2). 

The limited number of the charge fractions can lead to a partial loss of the projectile ions at 

higher target densities.  For example, for Au- - Ar collisions at 3 MeV, the sum 1
4

1

)(∑
=

−=

≈
q

q

qF   at  

NL < 5 × 1014 which is roughly optimum for Au+ ion production. However, for NL = 1.4 × 1015 

and 2.5 × 1015 cm-2, the sum equals 0.8 and 0.6, respectively. The reason of this violation is that 

fractions with higher charge states (q > 5) are not accounted for in eqs. (27) – (32). Fortunately, 

in the region of maximum of F1+ fraction (Figs. 13 – 15), the sum, eq. (33), is close to unity and 

one can neglect the influence of higher charge-state fractions. This clearly shows a limitation of 

the present six-charge-state component model. 

 
6. Ionization of Au ions by light low-charged ions (plasma constituents). The LOSS code 
 

          Now Au+ ions accelerated up to 6 MeV are injected into the main plasmas to measure the 

plasma potential inside, as explained above, and then encounter with the plasma constituent 

particles.  

For ionization of heavy Au and Cu ions by low-charged few-electron light ions in H- and 

He-plasmas (protons, He+ and He++), the Firsov model, described in the section 3, can not be 
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used. In such cases, the LOSS code [12] was used in the present work. In short, the LOSS code 

aims for calculating the single-ionization (SI, eq. (1)) cross sections of projectiles by target 

atoms and ions. It is based on the first non-relativistic Born approximation by using the 

Schrödinger radial wave functions calculated numerically with the ATOM code [19]. In the 

present work, ionization cross sections by electron impact were also calculated by the ATOM 

code.  

In the LOSS code, the ionization cross section in the partial-wave representation is 

written as, 

,)(),,(
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where Q denotes the momentum transfer, ε and λ the energy and orbital momentum of an ejected 

electron, IP the binding energy of the projectile electron shell, Qmin = (IP + ε)/2v. The projectile 

form-factor is given by 
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Here ZT and N denote the nuclear charge and number of electrons of the target, respectively. In 

the LOSS code, the factor FT(Q) is calculated by using the nodeless Slater wave functions. 

 The results of calculated ionization cross sections of Au ions by electrons, protons, H, He 

atoms and their ions (He+ and He2+: the main components in He plasmas), as well as by carbon 

atoms and ions (the main impurities in plasmas)) are given in Figs. 14 – 16 as functions of Au 

ion energy. Calculated single-ionization cross sections of Au+ ions by protons and Cq+ ions as 

functions of Au ion energy are given in Fig. 15 to show possible influence of impurity carbon 

ions on the overall effective ionization cross sections. Note that the ionization cross sections are 

more than one order of magnitude larger in C6+ ion collisions than in protons, indicating that 

even a small fraction of such impurity ions are important in hot plasmas. 
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Fig. 14.  Calculated single-ionization cross sections of Au+ ions by electrons, H atoms, protons, 

He atoms and its (He+ and He2+) ions as a function of Au ions (LOSS code). The electron impact 

ionization cross section is plotted in the scale of equivalent Au energy. 

 
Fig. 15. Calculated single-ionization cross sections of Au+ ions by protons and Cq+ (q = 0 – 6) 

ions as a function of Au ion energy (LOSS code). 
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Fig. 16. Calculated single-ionization cross sections of Au2+ ions by electrons, protons, H, He 

atoms and their ions (LOSS code). The electron-impact ionization cross section is plotted as a 

function of the equivalent electron energy. 

 

 

For ionization of Au ions by H and He atoms, the LOSS code gives results close to the 

Firsov model within a factor of 2 at velocities v = 0.75 – 1.1 a.u. (the velocity range of the 

present LHD-HIBP setup corresponding to the energy range of 1.5 – 6 MeV) as it is shown in 

Fig. 19 (left panel) for ionization of Au+ ions by He atoms.  On the other hand, in the case of 

heavy targets and low energies, the LOSS code can not be applied because it is based on the first 

Born approximation which fails to reproduce the observed data (see, e.g., [20]). This feature is 

clearly demonstrated on the right panel in Fig. 17 for ionization of Au+ ions by Ar atoms.  
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Fig. 17.  Calculated single-ionization cross sections of Au+ ions by He and Ar atoms as a 

function of Au ion velocity: labels Firsov and LOSS refer to the Firsov model, eqs. (22) - (23), 

and the LOSS code (see text). Exp. range is the ion energy range of 1.5 – 6 MeV (v = 0.55 – 1.1 

a.u.) presently used at LHD-HIBP setup. 

 

 

Finally, we have to consider ionization of Au+ and Au2+ projectiles through electron 

capture by H+, He+ and He2+ (the main H- and He-plasma particles) (eq. (3), IEC). The 

corresponding cross sections, calculated by the CAPTURE code, are shown in Figs. 18 – 19. It is 

seen that at the present energy (6 MeV) this channel of ionization of Au ions (by the target-ion 

electron capture) is even more effective than the direct ionization process, eq. (1), (c.f. Figs. 14 - 

16) and should be taken into account in analysis of the losses of the injected Au+ ions into 

plasmas. 
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Fig. 18.  Ionization of Au+ projectiles through electron capture by H+, He+, and He2+ (the main 

H- and He-plasma particles)  (eq. (3), IEC), calculated by the CAPTURE code. 

 

 

7. Recombination of Au ions in plasmas. Dependence on electron temperature  

 

In plasmas, recombination of projectile ions occurs not only through capture of the bound 

electrons belonging to atoms, ions and molecules, but also by capture of free electrons. 

Recombination of a free electron takes place mainly via the following three processes: 

 

a) Photorecombination (radiative recombination: RR) 

       ωh+→+ +−+ )()1( nlXeX qq
                                                          (37) 

An electron is captured into an nl-state of ion, meanwhile excess energy is emitted as a photon 

(hω). 

b) Three-body (or ternary) recombination which is an inverse process to  ionization: 
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Fig. 19. Ionization of Au2+ projectiles through electron capture by H+ and He+ and He2+ (the 

main H- and He- plasma particles)  (eq. (3), IEC), calculated by the CAPTURE code. 

 

 

 

          enlXeeX qq +→++ +−+ )()1(
  ,                                       (38) 

and 

c) Dielectronic recombination (DR): 

 

           [ ] ωh+→→+ +−+−+ )()1(**)1( nlXXeX qqq
  ,                             (39) 

where an incident ion captures a free electron and simultaneously one of inner-shell electrons in 

the ion is resonantly excited into higher states, forming intermediate doubly excited states X(q-

1)+**. Then, the intermediate state is stabilized to the ground state via photon emission (hω). The 

DR peak cross sections, eq. (39), are generally very large, compared with those for the RR. 

However, integrated cross sections are much smaller due to the resonance features, except for 

very heavy, highly charged ions. 
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The ternary process (38) is important only in high-density, low-temperature plasmas.  

The DR is an important recombination process for highly charged ions if the relative velocity vr 

is high enough to excite an inner-shell projectile electron (see, e.g., [21]).  

 The monoenergetic free-electron recombination cross section, eq. (37), into a specific 

state with the principal quantum number n is well described by the semiempirical formula [22] 

obtained on the basis of numerical calculations and the Kramers formula: 
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where Z and q denote the nuclear charge and ion charges of the incident projectile ion, and Ee the 

incident electron kinetic energy in Rydberg units (= 13.606 eV). In the case when resulting ions 

X(q-1)+ are not hydrogenic, the cross section, eq. (40), should be multiplied by a statistical weight 

W(n) of the n shell, i.e., on ratio between the number of unoccupied states and the total number 

2n2 of possible states for a given n. For the hydrogenic states, W(n) = 1. 

The total recombination cross section in collisions at the relative electron energy Ee is 

then given by 
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where n0 denotes the ground state of  the product X(q-1)+ ion. Here the first term is concerned with 

the ground state and the second term to those for higher (excited) n-states which are treated as 

hydrogenic ones. 

The sum over these hydrogenic states in eq. (41) is also well described by another 

formula [21]: 
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If an ion with velocity vP passes through a plasma with electron temperature Te, the relative 

electron energy Ee can be estimated by (see, e.g., [21]):   

                      2/)vv(2/v 2
th

2
P

2
r +== mmEe                                          (43) 

where m is the electron mass and vth is the thermal electron velocity 
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If vP >> vth, the corresponding total recombination rate coefficient can be calculated 

straightforward: 

                  ]/[)v(v)( 3
rr scmT toteRR σκ =       .               (45) 

However, in general cases, in calculating the rate coefficient of a certain elementary process one 

has to take into account a Maxwellian velocity distribution of plasma electrons. Thus, the 

Maxwellian-averaged rate coefficient is given: 
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Introducing the relative velocity vector v = ve – vP, where ve is the velocity vector of a plasma 

electron, and taking into account that d3ve = d3v, the rate coefficient can be written in a more 

general form: 

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=>< ∫

∞

vvv P 3
2

0

2/3

2
)(expv)(v

2
(v)v d

T
m

T
m

ee
σ

π
σ  

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫∫

∞

eeee T
m

d
T

md
T

m
T

m θ
θθσπ

π

π cosvv
expsin

2
vexpv)(v2v

2
v

exp
2

P

0

2

0

3
2
P

2/3

 

v
2

vexpvvsinhv)(v
2

vexp
v
12 2

P

0

2
2
P

P

2/1

d
T

m
T

m
T

m
T
m

eeee
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫

∞

σ
π           (48) 

where sinh is a hyperbolic sinus: 
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In Fig. 20  the total calculated rate coefficients for recombination of Au+ ions on free 

electrons as a function of the plasma electron temperature Te are given at projectile energy of 6 
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MeV, i.e., vP = 1.1 a.u. using eq. (45) and exact one (48) with radiative recombination cross 

sections σ(v) from eqs. (41) - (42). One can see that at electron temperatures Te > 200 eV, the 

exact formula (48) gives values more than a factor of 2 larger than those from eq. (45). 

 

 
Fig. 20. Comparison of recombination rates of 6 MeV Au+ ions (v = 1.1 a.u.) on plasma 

electrons as a function of the electron temperature: monoenergetic – eqs. (41), (42) and (45), 

Maxwellian – eqs. (41), (42) and (48).  At electron temperature Te > 100 eV, the difference 

between two curves becomes significant.  

 

It is important to note that recombination rates of projectile ions with plasma (free) 

electrons is much smaller compared with those of recombination (electron capture) of the bound 

atomic electrons (see eq. (4)).  A comparison of recombination of Au+ ions on free electrons of H 

plasma and the bound electrons of cold H atoms and H2 molecules is shown in Fig. 21. The 

difference is very large already at relative energies higher than 0.3 MeV (1.5 keV/amu), 

increasing drastically as the ion energy increases. In fact, the free electron recombination rates 

are completely negligible at 6 MeV Au+ ion collisions. 
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Fig. 21. Calculated total recombination cross sections of Au+ ions in H and H2 gases (H atoms - 

CAPTURE code, H2 molecules – eq. (23)) and those in H plasma under condition vr ~ vP  (eqs. 

(41), (42), (45)) as a function of relative energy Er = mvr
2, eq. (43).  

 

 

If the projectile velocity is higher than the thermal electron velocity, vP >> vth, the rate of three-

body (or ternary) recombination, eq. (38), can be estimated by the formula ([21]): 
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where q denotes the incident ion charge, Ne the electron density and vr the relative velocity given 

by eq. (43). In the case of low-charged ions colliding with the electron of density Ne = 1016 – 

1018 cm-3 like in typical Tokamak plasmas, the contribution of three-body recombination, eq. 

(38), is also negligible compared to photorecombination. 
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8. Beam attenuation dynamics in plasmas 

 

Figure 22 shows schematically the whole system including the ion production, ion beam 

transport and ion detection system of HIBP in LHD. Briefly, Au- ions produced in an ion source 

are transported into a 3 MV terminal voltage tandem accelerator, where they collide with gas target 

atoms at its positive voltage terminal and, then, after stripping off a few electrons, are further 

accelerated up to 3(q + 1) MeV energy (q: the ion charge after stripping). Among the ions, 6 MeV 

Au+ ions are charge-separated and focused through a series of the lens systems and then sent into 

the LHD plasma region. First, these primary Au+ ions, steered into the vacuum chamber of LHD, 

collide with relatively cold plasmas near the edge and, then, with a central plasma region to obtain 

information on the plasma parameters, where the main collisions of the primary Au+ ions with the 

hot, dense central plasmas occur and a small fraction of them are converted to Au2+. These 

secondary Au2+ ions are separated with the main magnetic field (~ 3 Tesla) and take their paths 

different from the primary Au+ ions into the energy analyzing system (tandem energy analyzer in 

Fig. 22) and finally reach a micro-channel plate (MCP) detector located in the energy analyzer. On 

the other hand, the non-interacted primary Au+ ions reach another detector whose current is used to 

normalize the secondary ion intensities.  

All the way from the injection to the plasma center, the injected primary Au+ ions collide 

with various plasma particles including H, H+, (He, He+ and He2+ in helium plasmas), electrons 

and may change their charge, energy and path and a fraction of them are lost. Furthermore, the 

charge-converted secondary Au2+ ions at the center plasma region encounter with similar plasmas 

down to the plasma edge region. To get the detailed information, such losses of the primary and 

also secondary ions have to be carefully taken into account. 

In the previous sections, the cross sections necessary to obtain such information on the 

plasmas have already been calculated and given in a series of Tables and Figures. 
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Fig. 22. Beam injection and detection system of HIBP in LHD. 

 

 

8.1. Charge distributions at the exit of the tandem accelerator 

 

So far only a limited experiments involving HIBP have been performed at LHD. One of 

them [23] is to investigate the charge fractions of Auq+ after Au- ions collide with Ar gas atoms at 

3 MeV at the accelerator terminal, which are shown in Fig. 23 as a function of the target thickness. 

It is clear that Au+ ions are the most dominant at the gas pressure of p ~ 7 – 8 (relative target 

thickness) and at higher gas pressures Au2+ ions become dominant. This feature has already been 

shown in Fig 11, where the expected charge fractions are demonstrated against the gas density. 

Note that the relative calculated fractions include the neutral beam fractions but not ions with 

higher charges (q ≥ 5), meanwhile the experiments do not all of them as well as Au4+ ions. The 

observed charge fractions generally show similar tendency as the calculated charge fractions. 

The maximum charge fraction of Au+ does not reach the calculated value of ~ 0.22. This is 

because the output beam focusing for passing through the tandem accelerator is not optimized 
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enough. In recent experiments, however we have confirmed that the beam fraction of Au+ 

reaches almost the theoretical value of about 0.2 by adjusting the beam optics. Therefore this 

difference in the charge fractions should not be taken too seriously as the detection efficiencies 

and others are not well established yet, and thus, it is believed that the present cross sections given 

in this paper are reasonably accurate and seem to be encouraging for further detailed investigations. 
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Fig. 23. Measured fractions of Auq+ ions after collisions with Ar gas atoms. The projectile Au- 

ion energy is 3 MeV. These fractions have been measured at the terminal of the accelerator. The 

general features are quite similar to each other. The target thickness is corrected by the reading 

of the vacuum pressure gauge at the exit of the tandem accelerator.  

 

 

 

 



 37

Au2+

Au+

Plasma

Au+

Plasma
 edge

l0

l1

l2

l3

δl

l4

l5

LHD vacuum vessel
From accelerator

Secondary ion
energy analyzer

Primary ion detectors
 

 

Fig. 24. Schematic geometry of the ion paths and their interacting lengths for estimation of the 

beam attenuation IB2/IB0 of Au ions taking into account various collision processes with plasma 

particles in the LHD plasmas. The primary Au+ ions collide, first, with relatively cold edge 

plasmas over the length of l0 and, then, with the main hot dense plasmas along l1. At the very 

plasma center, the primary Au+ ions interact with the main plasmas over a short length (δl) and a 

part of them are converted to Au2+ ions which, then, move through the main plasma over l2 and 

pass again through the edge plasmas (l3) before reaching a detector. The rest of the non-

interacted Au+ ions goes through different path (l4, l5) to reach a primary ion detector.  

 

 

8.2 Beam attenuation in plasmas 

  In the central plasmas, electrons, H+ ions, as well as C6+ (nC6+ ~ 1/30·ne in the LHD 

plasmas) exist, meanwhile neutral particles such as H and H2 (and possibly some hydrocarbon 

molecules) are present in the edge plasma region. Furthermore, He, He+ and He2+ ions have to be 

taken into account in a helium plasma. The exact knowledge of the beam attenuation of the 

injected primary Au+ and secondary product Au2+ ions through the main as well as the edge 

plasmas is essential to obtain accurate quantitative information on the plasma potential 

distributions, density and their variations of the central plasmas through the present HIBP method 

and, in its detailed analysis, we should include all the possible collision processes involving 

electrons, ions and neutral particles which are always present in the plasmas, as already pointed out 

previously.  

Now these cross sections obtained in the previous sections are applied to such analyses of 

the plasmas of LHD. The attenuation of the injected primary ion beam density, nB, due to the 
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ionization processes per unit path length l while passing through the central, hot plasma is given, 

assuming that their distributions are uniform along the ion paths, by 

,2,12,1
BlossBHeeiBe

B
B vnnvnn

dl
dn

v σσ +−−=                                (51) 

where vB is the ion velocity, nB, ne and nH+ represent the densities of Au+ ions, electrons, and 

protons, respectively. Here the first term on the right-hand side represents the attenuation of the 

primary Au+ ions due to collisions with electrons and the second term due to the collisions with 

protons. σei and σloss denote the ionization cross sections by electrons and protons (more generally 

we should include other heavy articles of ions, too), respectively.  

This rate equation (51) has to be integrated over the different path length l according to the 

ions considered. The path lengths marked with l0, l1, l4, and l5 in Fig. 24 correspond to that of the 

in-coming edge region, that in the main plasma before reaching the core plasma part, that of the 

main plasma after sensing the core part, and that of the out-going edge plasmas, respectively, while 

the primary Au+ ions have to pass. The main collisions for the plasma diagnostics of the central 

plasmas occur over a relatively short path length at the central plasma (δl). Then, the product 

secondary Au2+ ions pass through l2 and l3, respectively.  

 The attenuations of the primary Au+ ion beam current IB1 along l1 before reaching the core 

region of the main plasma is given by 
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where IB0 is the injected Au+ ion beam current at the injection port, where their attenuation in the 

plasma edge region (l0) is already taken into account. The superscript “1, 2”of σ denotes the charge 

variation of Au (this case corresponds to the ionization from Au+ to Au2+). As already pointed out 

in a previous work [24], the collisions with neutral particles in the edge region and impurity ions in 

the core region have to be taken into account to obtain more accurate information. Then, the 

secondary product Au2+ ion beam current IB2 reaching the plasma exit boundary is given by 

( )

,exp 2

3,2

2

3,2

2,12,11
2

⎟
⎟

⎠

⎞
−⎜

⎜

⎝

⎛
−×

+=

+

+

l
v

v
nl

v

v
n

vnvn
v

lI
I

B

Bloss

H
B

eei
e

BlossHeeie
B

Bmcp
B

σσ

σσ
δκ

       (53) 

where κmcp is the detection efficiency of the MCP and δ l is the effective observation length in the 

central plasmas. The first term on the right-hand side represents the secondary ion production at 
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the core along δl and the second term the ion attenuation along l2 before reaching the edge plasma 

region which has also to be corrected for similar ion loss, as mentioned before. 

Substituting Eq. (52) into Eq. (53), the ratio (IB2 / IB0)cal is calculated using the effective 

observation length δl = 0.6 mm [25], and the beam path lengths l0 = 3.0, l1 = 1.2,  l2 = 1.4 and l3 = 

3.0 m, respectively. These path lengths are estimated by the integration over the trajectories of the 

primary Au+ and secondary Au2+ ion beams. If we have taken into account the plasma ion collision 

processes, the calculated ratio (IB2 / IB0)cal decreases significantly and becomes closer to an 

experimental observation than that with the electron collision process alone.  Still the disagreement 

between calculated and measured signals remains large.  For the plasmas with ne = 1×1019 m-3 and 

Te = 1.5 keV, and Au+ ion energies of  1.62 MeV and 5.33 MeV (assuming κmcp = 0.3, extrapolated 

from that of the data sheet), the ratio χ ≡ (IB2 / IB0)exp / (IB2 / IB0)cal  were obtained to be 2×10-2 for 

both shots #67418 and #67035. In more recent experiments after a few modifications of the beam 

transport of the energy analyzer system, we have obtained the ratio χ = 0.1 under shot #76995 with 

ne = 0.5×1019 m-3 and Te = 2.0 keV. Still large difference in one order of magnitude would have 

been due to a number of reasons: 1) the not-established detection efficiencies of the MCP used, 

2) the errors of the calculated cross sections and 3) the plasma density profiles along the ion 

paths. So far we did not have the absolute detection efficiency in a MeV region of heavy ion 

beam. Soon we are planning to calibrate the MCP by comparing the Au+ and Au2+ ion beam 

current by a Faraday cup at the exit of the tandem accelerator.  

 

 

9. Conclusion 

 

The interactions between heavy ion beams and gas targets in the gas cell of the tandem 

accelerator have been studied to understand the charge changing processes, to optimize the 

charge fraction for the Au+ beams, and to improve the availability of the HIBP diagnostics.  

In the present model to predict the charge fractions from Au- to multi-charged Au ions, 

we have calculated the cross sections for the electron loss and the capture processes with the 

charge fractions of up to Au4+ ions. The electron ionization processes from Au- to multi-charged 

positive ions are treated theoretically by the Firsov model. On the other hand, the electron 

capture processes are calculated using the CAPTURE code. The present analyses based upon 

these calculated cross sections explain semi-qualitatively the experimental charge fractions at the 

beam energy of 3 MeV Au- colliding with neutral Ar gas.  

The above collision processes and their cross sections are also included to estimate the 

beam attenuation in plasmas at LHD. The signal level of the secondary beam is calculated using 
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the plasma parameters in a core plasma region and the gas densities in a peripheral region of 

LHD. We found that the heavy ion beam in the core plasma region is significantly attenuated due 

to the main H+ ions and the impurity C6+ ions in the plasmas.  The discrepancy of the signal level 

for the secondary beam is still one order of magnitude between our estimation and experiment. 

More careful analysis, i.e. calibration of MCP, and inclusion of core plasma and edge neutral 

profiles, would be required to establish the high performance diagnostics in addition to the basic 

function (plasma potential and fluctuation measurements) of the HIBP system. 
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