Moment-equation Methods for Calculating Neoclassical Transport Coefficients in General Toroidal Plasmas

H. Sugama and S. Nishimura

(Received - Dec. 26, 2007)

NIFS-885

Jan. 2008
This report was prepared as a preprint of work performed as a collaboration research of the National Institute for Fusion Science (NIFS) of Japan. The views presented here are solely those of the authors. This document is intended for information only and may be published in a journal after some rearrangement of its contents in the future.

Inquiries about copyright should be addressed to the Research Information Office, National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.
E-mail: bunken@nifs.ac.jp

<Notice about photocopying>
In order to photocopy any work from this publication, you or your organization must obtain permission from the following organization which has been delegated for copyright for clearance by the copyright owner of this publication.

Except in the USA
Japan Academic Association for Copyright Clearance (JAACC)
6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan
Phone: 81-3-3475-5618 FAX: 81-3-3475-5619 E-mail: jaacc@mtd.biglobe.ne.jp

In the USA
Copyright Clearance Center, Inc.
222 Rosewood Drive, Danvers, MA 01923 USA
Phone: 1-978-750-8400 FAX: 1-978-646-8600
Moment-equation methods for calculating neoclassical transport coefficients in general toroidal plasmas

H. Sugama1,2 and S. Nishimura1

1National Institute for Fusion Science, Toki 509-5292, Japan
2The Graduate University for Advanced Studies, Toki 509-5292, Japan

(Dated: January 18, 2008)

A detailed comparison is made between moment-equation methods presented by Sugama and Nishimura [Phys. Plasmas 9, 4637 (2002)] and by Taguchi [Phys. Fluids B 4, 3638 (1992)] for calculating neoclassical transport coefficients in general toroidal plasmas including nonsymmetric systems. It is shown that these methods can be derived from the drift kinetic equation with the same collision model used for correctly taking account of collisional momentum conservation. In both methods, the Laguerre polynomials of the energy variable are employed to expand the guiding-center distribution function and to obtain the moment equations, by which the radial neoclassical transport fluxes and the parallel flows are related to the thermodynamic forces. The methods are given here in the forms applicable for an arbitrary truncation number of the Laguerre-polynomial expansion so that their accuracies can be improved by increasing the truncation number. Differences between results from the two methods appear when the Laguerre-polynomial expansion is truncated up to a finite order because different weight functions are used in them to derive the moment equations. At each order of the truncation, the neoclassical transport coefficients obtained from the Sugama-Nishimura method show the Onsager symmetry and satisfy the ambipolar-diffusion condition intrinsically for symmetric systems. Also, numerical examples are given to show how the transport coefficients converge with the truncation number increased for the two methods.

Keywords: neoclassical transport, collisional momentum conservation, moment-equation methods, Onsager symmetry, ambipolar diffusion

PACS numbers:

I. INTRODUCTION

Neoclassical transport is an important factor to determine plasma confinement especially in nonaxisymmetric toroidal systems such as heliotrons and stellarators [1]. For example, neoclassical transport fluxes due to particles trapped in helical ripples are expected to be significantly large for high temperature and play a key role in determining the radial electric field under the ambipolar-diffusion condition [2]. Also, quasisymmetric toroidal systems are attracting much attention as an advanced concept, in which configurations are optimized to nearly suppress the neoclassical ripple transport and the neoclassical viscosity against flows in the direction of quasisymmetry [3–7]. Furthermore, positive correlations between neoclassical and anomalous transport through generation of zonal flows in helical plasmas have been argued [8–12]. In addition, even in tokamak experiments, effects of the neoclassical toroidal viscosity due to the broken axisymmetry on the toroidal plasma rotation have recently been studied in relation to stability of the resistive wall mode [13]. Thus, it is demanded to do accurate and fast calculations of neoclassical transport coefficients, by which radial fluxes and tangential flows to flux surfaces are related to thermodynamic forces.

There are two methods known as moment-equation approaches to calculate the neoclassical transport coefficients in general toroidal systems with no symmetry. One is presented by Sugama and Nishimura [14] and the other by Taguchi [15]. Both methods show how to accurately take account of collisional momentum conservation in multispecies plasmas obtaining the transport coefficients from an output of commonly-used numerical codes such as the Drift Kinetic Equation Solver (DKES) [16, 17], in which the pitch-angle-scattering collision model is used. These methods are useful for determining profiles of the neoclassical radial fluxes, tangential flows, and radial electric fields in various types of nonaxisymmetric toroidal systems as demonstrated in Refs. [18] and [19] while it is still important to address the theoretical relation between the methods as well as their accuracies from the viewpoint of practical application [20, 21]. For this purpose, a detailed comparison between the two methods is made in the present paper. Also, the methods are written here for an arbitrary truncation number of the Laguerre-polynomial expansion of the guiding-center distribution function in order that one can increase the truncation number to improve the accuracies. This is contrast to the original papers by Sugama and Nishimura and by Taguchi, where the methods are explicitly shown only for the case of retaining the first two terms in the expansion.

We find in Sec. II how the Sugama-Nishimura and Taguchi’s methods are derived from the drift kinetic equation including the same collision model and where a cause of differences between them occurs. There, the two methods are compared with each other from the viewpoints of the intrinsic ambipolar diffusion in the symmetric limit and of the Onsager symmetry [22–24] of the transport coefficients. Furthermore, their different re-
results are illustrated by numerical examples in Sec. III, where the ion banana neoclassical transport for the axisymmetric case is considered in order to judge their applicabilities to quasiisymmetric systems by checking the accuracy of the results in the symmetric limit. Finally, conclusions are given in Sec. IV and dimensionless coefficients used for calculating the ion banana transport are shown in Appendix A.

II. DERIVATION OF TWO METHODS FOR CALCULATING NEOCLASSICAL TRANSPORT COEFFICIENTS

In this section, two methods for calculating neoclassical transport coefficients are derived from the drift kinetic equations and differences between their results are described in detail.

A. Basic equations

We consider toroidal configurations with the magnetic field written in terms of the flux coordinates \((s, \theta, \zeta) \) as

\[
B = \psi' \nabla s \times \nabla \theta + \chi' \nabla \zeta \times \nabla s = B_s \nabla s + B_\theta \nabla \theta + B_\zeta \nabla \zeta, \tag{1}
\]

where \(\theta \) and \(\zeta \) represent the poloidal and toroidal angles, respectively, \(s \) is an arbitrary label of a flux surface. The poloidal and toroidal fluxes are given by \(2\pi \chi(s) = (2\pi)^{-1} \int_{V(s)} d^3x \ B \cdot \nabla \theta \) and \(2\pi \psi(s) = (2\pi)^{-1} \int_{V(s)} d^3x \ B \cdot \nabla \zeta \), respectively, where \(V(s) \) is the volume enclosed by the flux surface with the label \(s \). The derivative with respect to \(s \) is denoted by \(\frac{d}{ds} \) so that \(\psi' = \frac{d\psi}{ds} \) and \(\chi' = \frac{d\chi}{ds} \). The covariant radial, poloidal, and toroidal components of the magnetic field \(B \) are written as \(B_s \equiv B \cdot \partial / \partial s \equiv \nabla B_s \cdot (\nabla \theta \times \nabla \zeta), \) \(B_\theta \equiv B \cdot \partial / \partial \theta \equiv \nabla B_\theta \cdot (\nabla \chi \times \nabla s), \) and \(B_\zeta \equiv B \cdot \partial / \partial \zeta \equiv \nabla B_\zeta \cdot (\nabla s \times \nabla \theta), \) respectively, where \(\nabla \equiv \{ \nabla_s \cdot (\nabla \theta \times \nabla \zeta) \}^{-1} \) represents the Jacobian for the coordinates \((s, \theta, \zeta) \). Here, we may regard \((s, \theta, \zeta) \) as either Boozer, [25] Hamada [26] coordinates, or arbitrary other flux coordinates.

The equilibrium distribution function for the particle species \(a \) with the mass \(m_a \) and the charge \(e_a \) is given in the local Maxwellian form \(f_{aM} \equiv \pi^{-3/2} m_a^{3/2} v_{Ta}^{-3} \exp(-x_a^2), \) where \(v_{Ta} \equiv (2T_a/m_a)^{1/2} \) denotes the thermal velocity, and \(x_a \equiv v/v_{Ta} \) represents the normalized velocity. The equilibrium density \(n_a \) and the temperature \(T_a \) are flux surface functions independent of \(\theta \) and \(\zeta \). The deviation \(f_{a1} \) from the local Maxwellian is determined by the linearized drift kinetic equation,

\[
V f_{a1} - C_a(f_{a1}) = \frac{1}{T_a} f_{aM} \left[-\sigma_1^+ X_{a1} + X_{a2} \left(x_a^2 - \frac{5}{2} \right) \right] + e_a \frac{B}{(B^2)^{1/2}} v \xi X_f, \tag{2}
\]

Here, \(f_{a1} \) is independent of the gyrophase and regarded as a function of the phase-space variables \((x, v, \xi) \), where \(x \) is the position of the particle’s guiding-center and \(\xi \) is defined by \(\xi \equiv v_{\parallel}/v \) with \(v_\parallel \equiv v \cdot b \) and \(b \equiv B/B \). Then, the operator \(V \) in the left-hand side of Eq. (2) is defined by

\[
V \equiv V_\parallel + V_E, \quad V_\parallel \equiv v_\parallel b \cdot \nabla - \frac{1}{2} v_\parallel (1 - \xi^2)(b \cdot \nabla \ln B) \frac{\partial}{\partial \xi}, \quad V_E \equiv \frac{c E_s}{(B^2)} \nabla s \times B \cdot \nabla. \tag{3}
\]

The above \(E \times B \) drift operator \(V_E \) associated with the radial electric field \(E_s = -\partial \Phi / \partial s \) (\(\Phi \) : The electrostatic potential) has the same form as employed in the DKES [16, 17] and by Taguchi [15], in which the compressional part of the \(E \times B \) drift velocity is removed. The thermodynamic forces \(X_{a1}, X_{a2}, \) and \(X_E \) in the right-hand side of Eq. (2) are defined by

\[
X_{a1} \equiv -\frac{1}{n_a} \frac{\partial p_a}{\partial s} - e_a \frac{\partial \Phi}{\partial s}, \quad X_{a2} \equiv -\frac{\partial T_a}{\partial s}, \quad X_E \equiv \langle B E_\parallel \rangle / (B^2)^{1/2} \tag{4}
\]

respectively, where \(p_a \equiv n_a T_a \) is the pressure, \(E_\parallel \equiv E \cdot b \) the parallel electric field, and \(\langle \cdots \rangle \equiv \oint d\theta \oint d\zeta \sqrt{\gamma} \cdots / \langle \gamma \rangle \) with \(\langle \gamma \rangle \equiv \oint d\theta \oint d\zeta \sqrt{\gamma} \) represents the flux surface average.

Now, it is convenient to consider the expansion of an arbitrary function \(F(x, v, \xi) \) by the Legendre polynomials \(P_l(\xi) \) \([P_0(\xi) = 1, P_1(\xi) = \xi, P_2(\xi) = \frac{3}{2} \xi^2 - \frac{1}{2} \xi \cdots] \) as

\[
F(x, v, \xi) = \sum_{l=0}^{\infty} F^{(l)}(x, v, \xi), \tag{5}
\]

Then, for the collision term \(C_a(f_{a1}) \) in the left-hand side of Eq. (2), we use the collision operator defined by

\[
C_a(f_{a1}) = \sum_b [C_{ab}(f_{b1}^{(l-1)}), f_{aM}] + C_{ab}(f_{aM}, f_{b1}^{(l-1)}) + v_{\beta} L(f_{a1} - f_{a1}^{(l-1)}), \tag{6}
\]

where \(C_{ab} \) is the Landau operator [27] for Coulomb collisions between species \(a \) and \(b \) and the pitch-angle-scattering collision operator is defined by

\[
\nu_{\beta} L \equiv \nu_{\beta} \frac{\partial}{\partial \xi} (1 - \xi^2) \frac{\partial}{\partial \xi}. \tag{7}
\]

The energy-dependent collision frequency \(\nu_{\beta} \) in Eq. (7) is given by \([28] \)

\[
\nu_{\beta} \equiv \sum_b \frac{3\sqrt{\pi}}{4} T_{ab}^{-1} x_a^{-3} H(x_b), \tag{8}
\]
where \((3\sqrt{\pi}/4)\tau_{ab}^{-1} \equiv 4\pi n_t v_b^2 e_{st}^2 \ln \Lambda / (m_b^2 v_b^2) \) (\(\ln \Lambda \): The Coulomb logarithm) and \(\mathcal{H}(x) \equiv [(2x^2 - 1)\Phi(x) + x\Phi'(x)]/(2x^2) \) \(\Phi(x) \equiv 2\pi^{-1/2} \int_0^x \exp(-t^2)dt \) (The error function). The collision model shown in Eq. (6) is equivalent to those in Refs. [14] and [15]. When using the collision operator shown in Eq. (6), \(C_a(f_{1a}) \) vanishes for \(f_{1a} \) being independent of \(\xi \) even though \(f_{1a} \) causes a far deviation from the local Maxwellian equilibrium. This collision model gives a better approximation in weakly-collisonal regimes. In order to correctly reproduce the viscosity coefficients for the Pfirsch-Schlüter regime, we should replace \(\nu_b^2 / 3 \) in Eq. (7) for that collisional region [28], where \(\nu_b^2(K) \) is given by \(\nu_b^2 \equiv 3\nu_b^2 + \nu_b^2 \equiv (3\sqrt{\pi}/4) \sum_b \tau_{ab}^{-1} [(\Phi(x_b) - 3G(x_b))/x_a^3 + 4(T_a/T_b)(1 + m_b/m_a)G(x_b)/x_a] \) with \(G(x) \equiv \Phi(x) - x\Phi'(x)/(2x^2) \).

The source functions \(\sigma_j^+ \) in Eq. (2) and \(\sigma_j^- \) used in Eq. (15) are defined by

\[
\sigma_j^+ \equiv -v_{da} \cdot \nabla s = \frac{2\nu_D}{3\Omega_c} \left[1 + \frac{1}{2} P_2(\xi) \right] b \times \nabla \ln B \cdot \nabla s, \\
\sigma_j^- \equiv V \left[\frac{B}{\nu_D v_b^2} \right].
\]

where \(v_{da} = (e/c_e B) b \times (m_a v_a^2 b \cdot \nabla b + \mu \nabla B + c_e \nabla \Phi) \) is the guiding-center drift velocity and \(\Omega_c \equiv c_e B/(m_a c) \) is the gyrofrequency. We note that the definition of \(\sigma_j^- \) in Eq. (9) follows from Rij and Hirshman [17] and differs from that in Ref. [16]. We now define the inner product \((\alpha, \beta) \) for arbitrary functions \(\alpha(\theta, \zeta, \xi, \eta) \) and \(\beta(\theta, \zeta, \xi, \eta) \) by using the \(\xi \)-integral and the flux surface average as

\[
(\alpha, \beta) \equiv \frac{1}{2} \int_{-1}^{1} d\xi \alpha(\xi, \beta).
\]

Then, we find that, with respect to this inner product, the operators \(V \) and \(\mathcal{L} \) are found to be antisymmetric and symmetric, respectively:

\[
(V \alpha, \beta) = -(\alpha, V \beta), \quad (\mathcal{L} \alpha, \beta) = (\alpha, \mathcal{L} \beta).
\]

We should note that energy integral (or integral in \(v \)) is not included in the inner product defined by Eq. (10) in contrast to that in Refs. [16] and [17] and that the energy integral is not necessary for the symmetry properties in Eq. (11) to hold. Also, it is useful to define the operators \(\mathcal{P}_{\xi E} \) and \(\mathcal{P}_{\theta \zeta} \) which act on an arbitrary function \(f(\theta, \zeta, \xi, \eta, s) \) by

\[
(\mathcal{P}_{\xi E} f)(\theta, \zeta, \xi, \eta, s) \equiv f(\theta, \zeta, -\xi, -\eta, s), \\
(\mathcal{P}_{\theta \zeta} f)(\theta, \zeta, \xi, \eta, s) \equiv f(-\theta, -\zeta, \xi, \eta, s).
\]

where \(\mathcal{P}_{\xi E} \) represents the time-reversal operation [17]. Then, we obtain the following relations,

\[
\mathcal{P}_{\xi E} V = -V \mathcal{P}_{\xi E}, \quad \mathcal{P}_{\xi E} \mathcal{L} = \mathcal{L} \mathcal{P}_{\xi E}, \\
\mathcal{P}_{\theta \zeta} \sigma_j^+ = \sigma_j^+, \quad \mathcal{P}_{\theta \zeta} \sigma_j^- = \sigma_j^-.
\]

Similarly, for toroidal systems in which the stellarator symmetry [17] is satisfied, we can derive the following relations,

\[
\mathcal{P}_{\theta \zeta} V = -V \mathcal{P}_{\theta \zeta}, \quad \mathcal{P}_{\theta \zeta} \mathcal{L} = \mathcal{L} \mathcal{P}_{\theta \zeta}, \\
\mathcal{P}_{\theta \zeta} \sigma_j^+ = -\sigma_j^+, \quad \mathcal{P}_{\theta \zeta} \sigma_j^- = -\sigma_j^-,
\]

\[
(\mathcal{P}_{\theta \zeta} F, G) = (F, \mathcal{P}_{\theta \zeta} G).
\]

For simplicity, we hereafter assume the stellarator symmetry to hold although the results in the present work can be straightforwardly generalized to systems without the stellarator symmetry. Then, we see from Eqs. (13) and (14) that the two operations \(\mathcal{P}_{\xi E} \) and \(-\mathcal{P}_{\theta \zeta} \) have the same properties with respect to \(V, \mathcal{L} \), and \(\sigma_j^+ \) \((j = 1, 3) \).

In Ref. [17], the response functions \(F_j^+ \) and \(F_j^- \) \((j = 1, 3) \) associated with the source terms \(\sigma_j^+ \) \((j = 1, 3) \) are defined by

\[
V F_j^- - \nu_D^2 \mathcal{L} F_j^+ = \sigma_j^+, \\
V F_j^- - \nu_D^2 \mathcal{L} F_j^- = 0 \quad (j = 1, 3),
\]

and the monoenergetic transport coefficients \(D_{jk}(K) \) \((j, k = 1, 3) \) are defined by

\[
D_{jk}(K) \equiv (\sigma_j^+ F_k^+, \sigma_j^- F_k^-), \quad (j, k = 1, 3),
\]

where \(K \equiv x_a^2 \equiv m_a v_a^2/2T_a \) represents the normalized kinetic energy. We find from Eqs. (13)–(16) that

\[
\mathcal{P}_{\xi E} F_j^+ = -\mathcal{P}_{\theta \zeta} F_j^+ = F_j^+, \\
\mathcal{P}_{\xi E} F_j^- = -\mathcal{P}_{\theta \zeta} F_j^- = -F_j^-,
\]

\[
\sigma_j^+, \sigma_j^- = 0,
\]

and that \(D_{jk}(j, k = 1, 3) \) are even functions of \(E_a \).

In Ref. [15], other response functions \(g_a^{(j)} \) \((j = 1, 2) \) are defined by Taguchi as

\[
(V + \nu_D^2) g_a^{(1)} = f_{aM} B v \xi, \\
(V + \nu_D^2) g_a^{(2)} = -f_{aM} \sigma_j^+ \quad (j = 1, 3).
\]

Comparing Eq. (15) with Eq. (18) and using Eqs. (9), (13), and (14), we find that \(g_a^{(j)} \) \((j = 1, 2) \) can be expressed in terms of \(F_j^+ \) and \(F_j^- \) \((j = 1, 3) \) as

\[
g_a^{(1)} = f_{aM}[\mathcal{P}_{\xi E}(F_3^+ + F_3^-) - B v \xi / (\nu_D^2)],
\]

\[
g_a^{(2)} = f_{aM}[\mathcal{P}_{\xi E}(F_1^+ + F_1^-) - B v \xi / (\nu_D^2)],
\]

\[
g_a^{(2)} = f_{aM} \mathcal{P}_{\xi E}(F_1^+ + F_1^-),
\]

which can be combined with Eq. (16) to derive

\[
(B v \xi, g_a^{(1)}) = f_{aM} \left[D_{13}(K) - \frac{\sigma_j^2(B)}{3\nu_D^2} \right],
\]

\[
(\sigma_j^+, g_a^{(2)}) = (B v \xi, g_a^{(2)}) = -f_{aM} D_{13}(K),
\]

\[
(\sigma_j^+, g_a^{(2)}) = f_{aM} D_{11}(K).
\]
Now, let us expand the \(l = 1 \) Legendre component \(f_{a1}^{(1)} \) of the distribution function \(f_{a1} \) in terms of the Laguerre polynomials \(L_{j}^{(3/2)}(x_{a}^{2}) = 1, L_{1}^{(3/2)}(x_{a}^{2}) = \frac{5}{2} - x_{a}^{2}, \cdots \) as
\[
f_{a1}^{(1)} = \frac{2}{v_{Ta}} \xi_{a} f_{aM} \left[u_{a} + \frac{2}{5} q_{a} \frac{5}{2} x_{a}^{2} - \frac{5}{2} \right] + \cdots
\]
where
\[
u_{a} = \frac{2}{v_{Ta}} \xi_{a} f_{aM} \sum_{j=0}^{\infty} u_{aj} L_{j}^{(3/2)}(x_{a}^{2}),
\]
\[
u_{a} = \frac{2}{v_{Ta}} \xi_{a} f_{aM} \sum_{j=0}^{\infty} C_{aj} L_{j}^{(3/2)}(x_{a}^{2}),
\]
where
\[
C_{aj} = \frac{c_{j}}{n_{a} m_{a}} \sum_{b} \sum_{k=0}^{\infty} l_{aj}^{b+1,k+1} u_{bk}.
\]
Here, the first two-order parallel friction forces are written as
\[
F_{a1} = n_{a} m_{a} C_{a0} \int d^{3}v f_{a1}(x_{a}^{2}) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} C_{aj} L_{j}^{(3/2)}(x_{a}^{2})
\]
The friction coefficients \(l_{aj}^{b+1,k+1} \) are defined by [28]
\[
l_{aj}^{b+1,k+1} = \int d^{3}v m_{a} v_{j} L_{j}^{(3/2)}(x_{a}^{2})
\]
where \(\delta_{ab} \) denotes the Kronecker delta (\(\delta_{ab} = 1 \) for \(a = b \) and \(\delta_{ab} = 0 \) for \(a \neq b \)). The self-adjointness of the collision operator \(C_{ab} \) and the momentum-conservation property \(\sum_{a} F_{a1} = 0 \) are written in terms of the friction coefficients as
\[
l_{aj}^{b+1,k+1} = l_{aj}^{b+1,k+1} = 0.
\]
Averaging Eq. (18) with respect to \(\xi \) yields
\[
B \cdot \nabla \left(\frac{v}{B} \int_{-1}^{1} \frac{dq_{a}}{2} g_{a}(\xi) \right) + V_{E} \left(\int_{-1}^{1} \frac{dq_{a}}{2} g_{a}(\xi) \right) = 0,
\]
Following Refs. [14] and [15] to neglect terms operated with \(V_{E} \) in Eq. (27), we obtain
\[
v \int_{-1}^{1} \frac{dq}{2} g_{a}(\xi) = \frac{B}{(B^{2})^{2}} (g_{a}^{(1)}, Bv\xi), \quad \quad \quad v \int_{-1}^{1} \frac{dq}{2} g_{a}(\xi) = \frac{B}{(B^{2})^{2}} (g_{a}^{(2)}, Bv\xi) + f_{aM} \frac{v^{2} B}{3 \Omega_{a}}, (28)
\]
where \(\dot{U} \) is defined as a solution of
\[
B \cdot \nabla \left(\frac{\dot{U}}{B} \right) = B \cdot \nabla s \cdot \nabla \left(\frac{1}{B^{2}} \right), \quad \langle B\dot{U} \rangle = 0. (29)
\]
Similarly, averaging Eq. (2) with respect to \(\xi \) and taking its Laguerre component of the order \(j = 0, 1, 2, \cdots \) lead to
\[
u_{a0} = u_{a} = \frac{B}{(B^{2})^{2}} (B^{2} u_{a}) + \frac{c_{Xa}}{e_{a}} U,
\]
\[
u_{a1} = \frac{2}{5} \frac{q_{a}}{p_{a}} = \frac{2}{5} \frac{B}{(B^{2})^{2}} (B^{2} q_{a}) + \frac{c_{Xa}}{e_{a}} U,
\]
\[
u_{a} = \frac{B}{(B^{2})^{2}} \langle B^{2} u_{a} \rangle \quad (j \geq 2). (30)
\]
Now, we take inner products between \(g_{a}^{(j)} \) (\(j = 1, 2 \)) and Eq. (2) and use Eqs. (11) and (18) to derive
\[
\langle g_{a}^{(1)}, v_{b} \rangle L_{a} - C_{a}(f_{a1}) - f_{aM}(B v_{b} \xi, f_{a1}) = \frac{1}{T_{a}} f_{aM} \left[-(g_{a}^{(1)}, \sigma_{1}) (X_{a1} - X_{a2} L_{3/2}^{(1)} (K)) \right]
\]
\[
+ \frac{(g_{a}^{(1)}, B v_{b} \xi)}{(B^{2})^{1/2}} \frac{e_{a} X_{E}}{(B^{2})^{1/2}}, (31)
\]
and
\[
\langle g_{a}^{(2)}, v_{b} \rangle L_{a} - C_{a}(f_{a1}) + f_{aM}(\sigma_{1}^{2} f_{a1}) = \frac{1}{T_{a}} f_{aM} \left[-(g_{a}^{(2)}, \sigma_{1}^{2}) (X_{a1} - X_{a2} L_{3/2}^{(1)} (K)) \right]
\]
\[
+ \frac{(g_{a}^{(2)}, B v_{b} \xi)}{(B^{2})^{1/2}} \frac{e_{a} X_{E}}{(B^{2})^{1/2}}, (32)
\]
Using Eqs. (20) and (24), we can rewrite Eq. (31) as

\[-m_a\nu_\alpha^2(K)D_{33}(K)\sum_{j=0}^{\infty} L^{(3/2)}_j(K)(Bu_{ijkl})/(B^2)\]

\[-m_a\left[D_{33}(K) - \frac{2T_a K(B^2)}{3m_a\nu_\alpha^2(K)}\right] \sum_{j=0}^{\infty} c_j L^{(3/2)}_j(K)\]

\[\times \sum_{b} \sum_{k=0}^{\infty} \frac{\nu_{b}^4}{n_a m_a} (Bu_{bkk})/(B^2)\]

= \[D_{13}(K) \left[X_{a1} - X_{a2}L_1^{(3/2)}(K)\right]\]

+ \[D_{33}(K) - \frac{2T_a K(B^2)}{3m_a\nu_\alpha^2(K)}\] \[e_a X_E/B^{2.1/2}\] (33)

When we truncate the Laguerre-polynomial expansion up to the finite order of \(j = j_{\text{max}}\), we can derive the expressions which relate the averaged parallel flows, \(\langle Bu_{ijkl}\rangle\), \(\langle Bu_{ijkl}\rangle\), \(\langle Bu_{ijkl}\rangle\) to the thermodynamic forces \(X_{a1}, X_{a2}\) and \(X_E\) from the moment equations given by multiplying Eq. (33) with appropriate weight functions of \(K\) and taking the integral in \(K\). As shown in the next subsections, the difference between the Sugama-Nishimura method and Taguchi’s method results from using different weight functions to derive these moment equations.

Using Eqs. (20) and (24), we can rewrite Eq. (32) as a useful expression to derive the radial transport fluxes,

\[(\mathbf{v}_a \cdot \nabla) s, f_{a1} = f_{aM}[\mathcal{F}^{\text{PS}}_a(K) + \mathcal{F}^{\text{bn}}_a(K)],\] (34)

where \(\mathcal{F}^{\text{PS}}_a(K)\) represents the monoenergetic contribution to the Pfirsch-Schlüter particle flux defined by

\[\mathcal{F}^{\text{PS}}_a(K) = \frac{-2K}{3n_a} \langle \mathcal{U}^2 \rangle \sum_{j=0}^{\infty} c_j L^{(3/2)}_j(K)\]

\[\times \sum_{b} \sum_{j=1}^{\infty} e_a e_b \nu_{b}^4 (l_{b}^{ab} X_{b1} - l_{b}^{ab} X_{b2}),\] (35)

and the other part \(\mathcal{F}^{\text{bn}}_a(K)\) of the monoenergetic particle flux is defined by

\[\mathcal{F}^{\text{bn}}_a(K) = \frac{m_a}{T_a} D_{13}(K) \sum_{j=0}^{\infty} L^{(3/2)}_j(K) \left[\nu_\alpha^2(K)(Bu_{ijkl})/(B^2)\right]\]

\[+ \frac{c_j}{n_a m_a} \sum_{k=0}^{\infty} \nu_{b}^4 (Bu_{bkk})/(B^2)\]

\[\times \frac{T_a}{D_{11}(K) - \frac{2c^2 m_a T_a K\nu_\alpha^2(K)}{3e_a^2}} \langle \mathcal{U}^2 \rangle\]

\[\times \left[X_{a1} - X_{a2}L_1^{(3/2)}(K)\right] + \frac{D_{13}}{T_a} \frac{e_a X_E}{(B^2)^{1/2}}.\] (36)

The radial particle, heat, and other higher-order-moment fluxes can be obtained by multiplying Eq. (34) with \(L^{(3/2)}_j(K)\) \((j = 0, 1, 2, \cdots)\) and taking the \(K\)-integrals. Defining the average operator \(\{\cdots\}\) for an arbitrary function \(A(K)\) by

\[\langle A(K) \rangle = \frac{4}{3\sqrt{\pi}} \int_0^{\infty} dK K^{3/2} e^{-K} A(K)\] (37)

we obtain the orthogonality relation,

\[\langle L^{(3/2)}_j(K)L^{(3/2)}_k(K)\rangle = \delta_{jk} (j, k = 0, 1, 2, \cdots).\] (38)

Then, the Pfirsch-Schlüter particle and heat fluxes are immediately calculated from Eq. (35) as

\[\frac{r_{\text{PS}}}{T_a} = \frac{n_a}{T_a} \int_0^{\infty} dK K^{3/2} e^{-K} \mathcal{F}^{\text{PS}}_a(K)\]

\[\frac{L^{(3/2)}_j(K)}{T_a} = \frac{n_a}{T_a} \int_0^{\infty} dK K^{3/2} e^{-K} \mathcal{F}^{\text{PS}}_a(K)\]

\[= -n_a \frac{3K^{-1} \mathcal{F}^{\text{PS}}_a(K) L^{(3/2)}_j(K)}{2}\] (39)

(36), while no other higher-order \((j \geq 2)\) Pfirsch-Schlüter fluxes don’t appear. Similarly, using Eq. (36), we obtain the radial neoclassical fluxes,

\[\Gamma_{\text{bn}} = \frac{n_a}{T_a} \int_0^{\infty} dK K^{3/2} e^{-K} \mathcal{F}^{\text{bn}}_a(K)\]

\[= \frac{3}{2} K^{-1} \mathcal{F}^{\text{bn}}_a(K) L^{(3/2)}_j(K)\] (40)

where the \(j = 0\) and \(j = 1\) cases give the radial particle and heat fluxes, respectively, as \(\Gamma_{\text{bn}} = \Gamma_{\text{bn}}^p a\) and \(\Gamma_{\text{bn}}^p a = -\Gamma_{\text{bn}}^p a\). Here, \(\Gamma_{\text{bn}}\) can be written as the sum of the banana-plateau and the nonsymmetric parts [23, 31], in which the banana-plateau part of the radial particle flux is intrinsically ambipolar and proportional to the neoclassical viscosity in the direction of the magnetic field while the neoclassical ripple diffusion is given by the nonsymmetric part that is proportional to the viscosity in the nonsymmetric direction.

We find from Eqs. (36) and (40) that the radial neoclassical fluxes \(\Gamma_{\text{bn}}^p a (a = e, i, \cdots, j = 0, 1, 2, \cdots)\) are written as linear combinations of the averaged flows \(\langle Bu_{ijkl}\rangle\) and the thermodynamic forces \((X_{a1}, X_{a2}, X_E)\) \((a = e, i, \cdots)\). As mentioned after Eq. (33), when the Laguerre-polynomial expansion is truncated up to the order of \(j = j_{\text{max}}\), we can solve some appropriate energy-moment equations to express \(\langle Bu_{ijkl}\rangle\) in terms of \((X_{a1}, X_{a2}, X_E)\). Then, substituting these expressions for \(\langle Bu_{ijkl}\rangle\) into \(\Gamma_{\text{bn}}^p a\), we can finally obtain the neoclassical transport equations which represent \(\Gamma_{\text{bn}}^p a\) by \((X_{a1}, X_{a2}, X_E)\). Here, it should be emphasized again that the expressions, which relate \(\langle Bu_{ijkl}\rangle\) to \((X_{a1}, X_{a2}, X_E)\), and accordingly the transport equations
depend on what weight functions of K are used in the energy integrals to derive the moment equations. This point will be further discussed in the following subsections.

B. Sugama-Nishimura Method

In Sugama and Nishimura [14], the coefficients $[M_a(K), N_a(K), L_a(K)]$ are defined by

\[
M_a(K) = \frac{m_a^2}{T_a} [\nu_D^a(K)]^2 D_{33}(K) \left[1 - \frac{3m_a \nu_D^a(K) D_{33}(K)}{2T_a K (B^2)} \right]^{-1},
\]

\[
N_a(K) = \frac{m_a}{T_a} \nu_D^a(K) D_{13}(K) \left[1 - \frac{3m_a \nu_D^a(K) D_{33}(K)}{2T_a K (B^2)} \right]^{-1},
\]

\[
L_a(K) = \frac{1}{T_a} \left(D_{11}(K) - \frac{B^2 \nu_D^a(K)}{3T_a^2} \right) + \frac{3m_a \nu_D^a(K) [D_{13}(K)]^2}{2T_a K (B^2)} \times \left[1 - \frac{3m_a \nu_D^a(K) D_{33}(K)}{2T_a K (B^2)} \right]^{-1}.
\]

Then, by multiplication with $(m_a/T_a) \nu_D^a(K) [1 - 3m_a \nu_D^a(K) D_{33}(K)/(2T_a K (B^2))]^{-1}$, Eq. (33) is rewritten as

\[
M_a(K) \sum_{j=0}^{\infty} L_j^{(3/2)}(K) \langle Bu_{\|ak} \rangle / (B^2)
+ N_a(K) [X_{a1} - X_{a2} L_j^{(3/2)}(K)]
+ \frac{2}{3} K \sum_{j=0}^{\infty} c_j L_j^{(3/2)}(K) \sum_{b} \sum_{k=0}^{j+1,k+1} \langle Bu_{\|bk} \rangle
+ n_a e_a \langle B^2 \rangle^{1/2} X_E
\]

Next, using Eq. (42) to remove X_E from Eq. (36), another expression for $\mathcal{F}_{a}^{bn}(K)$ is obtained with the aid of Eq. (41) as

\[
\mathcal{F}_{a}^{bn}(K) = N_a(K) \sum_{j=0}^{\infty} L_j^{(3/2)}(K) \langle Bu_{\|aj} \rangle / (B^2)
+ L_a(K) [X_{a1} - X_{a2} L_j^{(3/2)}(K)].
\]

Now, let us truncate the Laguerre-polynomial expansion up to the order of $j = j_{max}$. Then, in the Sugama-Nishimura method, Eqs. (42) and (43) are multiplied with $n_a (2/\sqrt{\pi}) \sqrt{K} e^{-K} L_j^{(3/2)}(K) (j = 0, 1, \cdots, j_{max})$ and they are integrated in K to yield

\[
\sum_{k=0}^{j_{max}} M_{j+1,k+1}^a (Bu_{\|ak}) / (B^2)
+ N_{j+1,1}^a X_{a1} - N_{j+1,2}^a X_{a2}
= \sum_{b} \sum_{k=0}^{j_{max}} I_{j+1,k+1}^{ab} (Bu_{\|bk}) + \delta_{j,j_{max}} n_a e_a (B^2)^{1/2} X_E
\]

and

\[
\Gamma_{aj}^{bn} = \sum_{k=0}^{j_{max}} N_{j+1,k+1}^a (Bu_{\|ak}) / (B^2)
+ L_{j+1,1}^a X_{a1} - L_{j+1,2}^a X_{a2}
\]

where

\[
[M_{j+1,k+1}^a, N_{j+1,k+1}^a, L_{j+1,k+1}^a]
= n_a 2 \sqrt{\pi} \int_{0}^{\infty} dK \sqrt{K} e^{-K} L_j^{(3/2)}(K) L_k^{(3/2)}(K)
\times [M_a(K), N_a(K), L_a(K)].
\]

As seen from Ref. [14], the left-hand side of Eq. (44) equals the neoclassical parallel viscosities so that we can write

\[
\Pi_{\|aj} \equiv \left\langle \int d^3 v f_a \sigma_{Ua} L_j^{(3/2)}(K) \right\rangle
= \sum_{k=0}^{j_{max}} M_{j+1,k+1}^a (Bu_{\|aj}) / (B^2)
+ N_{j+1,1}^a X_{a1} - N_{j+1,2}^a X_{a2},
\]

with $\sigma_{Ua} \equiv -V(n_a \nu \xi B)$. We find that $\Pi_{\|aj}$, Γ_{aj}^{bn}, and $d_a^{bn}/T_a = -\Gamma_{aj}^{bn}$ are regarded as fluxes conjugate to driving forces represented by $(Bu_{\|aj})/(B^2)$, X_{a1}, and X_{a2}, respectively [14], and that these fluxes and forces are connected by the Onsager-symmetric coefficients as seen from Eqs. (45) and (47).

Equations (44) and (45) are the basic equations in the Sugama-Nishimura method to determine the neoclassical transport coefficients. Solving Eq. (44), the averaged flows $(Bu_{\|aj}) (j = 0, 1, \cdots, j_{max})$ are expressed by linear combinations of the thermodynamic forces X_{a1}, X_{a2}, and X_E. Then, substituting these expressions into Eq. (45) and

\[
J_E \equiv \sum_{a} n_a e_a (Bu_{\|aj}) / (B^2)^{1/2},
\]

we finally obtain the neoclassical transport equations which relate the radial transport fluxes F_{aj}^{bn} and the parallel electric current J_E to the thermodynamic forces.
As shown in Appendix D of Ref. [14], for symmetric cases, the Sugama-Nishimura method guarantees the intrinsic ambipolarity condition, which is equivalent to the parallel friction forces written by

\[
\sum_a n_a \nu_a^d = 0, \quad \text{taking the sum over all species.}
\]

where the Laguerre-polynomial expansion is truncated up to the order of \(j = j_{\text{max}} \). Here, the coefficients \(A_{j+1,k+1}^c, B_{j+1,k+1}^c, \) and \(Z_{j+1,k+1}^c \) are defined by

\[
\begin{bmatrix}
A_{j+1,k+1}^c \\
B_{j+1,k+1}^c \\
Z_{j+1,k+1}^c
\end{bmatrix}
= n_a \frac{2}{\sqrt{\pi}} \int_0^\infty dK \sqrt{Ke^{-K}L^{(3/2)}_j(K)}L^{(3/2)}_K(K)
\times
\begin{bmatrix}
m_a \nu_a^d(K)D_{33}(K) \\
D_{13}(K) \\
-D_{33}(K) + 2T_aK(B^2)/3m_a\nu_a^f(B)
\end{bmatrix}.
\]

It should be noted that, in the Sugama-Nishimura method, the additional factor \((m_a/T_a)\nu_a^f(K)[1 - 3m_a\nu_a^f(K)D_{33}(K)/(2T_aK(B^2))]^{-1}\) is multiplied for taking the energy integral to derive Eq. (44) so that it coincides with the same parallel momentum equations as used in the conventional moment approach for calculation of the neoclassical transport coefficients [28–31]. Next, we multiply Eq. (36) with \(n_a(2/\sqrt{\pi})\sqrt{Ke^{-K}L^{(3/2)}_j(K)}\) \((j = 0, 1, \cdots, j_{\text{max}})\) and take the energy integrals to get the radial neoclassical fluxes [see Eq. (40)],

\[
\Gamma_{\text{bn}}^{a_j} = \sum_{k=0}^{\max} N_j^{a_j+1,k+1}(Bu_{[ak]})/(B^2) + \frac{1}{n_aT_a} \sum_{m=0}^{\max} B_{j+1,m+1}^c
\times \epsilon_m \sum_{k=0}^{\max} \sum_{b} \frac{\mu_{mb}^{a_j+1,k+1}(Bu_{[bk]})/(B^2)}
+ \frac{\epsilon_a^{a_j+1}(X_{a_1} - X_{a_2}^c)}{(j = 0, 1, \cdots, j_{\text{max}})},
\]

where the coefficients \(N_j^{a_j+1,k+1}\) and \(\epsilon_a^{a_j+1,k+1}\) are defined by

\[
\begin{bmatrix}
N_j^{a_j+1,k+1} \\
\epsilon_a^{a_j+1,k+1}
\end{bmatrix}
= n_a \frac{2}{\sqrt{\pi}} \int_0^\infty dK \sqrt{Ke^{-K}L^{(3/2)}_j(K)}L^{(3/2)}_K(K)
\times
\begin{bmatrix}
(m_a/T_a)\nu_a^f(K)D_{33}(K) \\
(1/T_a)[D_{11}(K) - (B^2v_a^f/30\Omega_a^2)(\tilde{U}^2)]
\end{bmatrix}.
\]

Recall that the Eq. (45) is used in the Sugama-Nishimura method instead of Eq. (55) in order to retain the Onsager-symmetric relations of \(\Pi_{[a_j][a_j]} = \Gamma_{\text{bn}}^{a_j}[\nu_a/T_a = -\Gamma_{[a_j][a_j]}]\) to \([Bu_{[a_j]}]/(B^2), X_{a_1}, X_{a_2}\) as shown in Eqs. (45) and (47). Equations (53) and (55) form the basic equations in Taguchi’s method, from which the neoclassical transport coefficients are determined. Note that Eqs. (53) and (55) are equivalent to Eqs. (22)–(23) and Eqs. (40)–(46) in Ref. [15], respectively, although our notations used here are different from those by Taguchi [15]. Solving Eq. (53) gives expressions of the averaged flows \(Bu_{[a_j]}\)
In the present case, the basic equations of the Sugama-Nishimura and Taguchi’s methods are written here as

\[\sum_{k=0}^{j_{\text{max}}} \left[A_{j+1,k+1} \frac{B_{u_{jk}}}{(B^2)} - l_{\text{max}}^{\text{ii}} \right] \langle Bu_{jk} \rangle = -B_{j+1,1}X_1 + B_{j+1,2}X_2 \quad (j = 0, 1, \cdots, j_{\text{max}}), \]

and

\[\Gamma_{\text{b}}^j = \sum_{k=0}^{j_{\text{max}}} N_{j+1,k+1} \langle Bu_{jk} \rangle / (B^2) \]

\[+ L_{j+1,1}X_1 - L_{j+1,2}X_2 \quad (j = 0, 1, \cdots, j_{\text{max}}), \]

respectively, where the parallel flows \(u_{ji} \), the neoclassical banana fluxes \(\Gamma_{\text{b}}^j \), the thermodynamic forces \((X_1, X_2) \), and the matrix coefficients \((M_{j+1,k+1}, N_{j+1,k+1}, L_{j+1,k+1}) \) are all for ions although the ion-species subscript \(i \) is omitted. Values of the ion-ion collisional friction coefficients \(\mu_{ij+1,k+1} \) are shown in Appendix A. The momentum conservation in ion-ion collisions is represented by \(i_{\text{b}}^j = i_{\text{b}}^{k+1} = 0 \) \((k = 0, 1, 2, \cdots)\).

On the other hand, the basic equations of Taguchi’s method in Eqs. (53) and (55) are written here as

\[\sum_{k=0}^{j_{\text{max}}} \left[A_{j+1,k+1} \frac{B_{u_{jk}}}{(B^2)} - l_{\text{max}}^{\text{ii}} \right] \langle Bu_{jk} \rangle = -B_{j+1,1}X_1 + B_{j+1,2}X_2 \quad (j = 0, 1, \cdots, j_{\text{max}}), \]

and

\[\Gamma_{\text{b}}^j = \sum_{k=0}^{j_{\text{max}}} N_{j+1,k+1} \frac{1}{n_i} \sum_{m=0}^{j_{\text{max}}} B_{j+1,m+1} c_m l_{m+1,k+1}^\text{ii} \]

\[\times \langle Bu_{jk} \rangle + L_{j+1,1}X_1 - L_{j+1,2}X_2 \quad (j = 0, 1, \cdots, j_{\text{max}}). \]

When all ions are assumed to lie in the banana regime for the axisymmetric case, we can analytically express the coefficients \(D_{jk}(K) \) \((k, j = 1, 3) \) in Eq. (16) as \[\frac{f_t}{f_c} \]

\[D_{11}(K) = 2e^2 m_i T_i K \nu'_D(K) \left[\frac{f_t}{\chi} \left(\frac{I}{B} \right)^2 + \langle \tilde{U}^2 \rangle \right], \]

\[D_{13}(K) = -\frac{f_t}{2e^2 c_i I} K, \]

\[D_{33}(K) = f_t \left(\frac{2e^2}{3m_i} \right) K \]

(62)

Here, the fraction \(f_t \) of trapped particles is defined by

\[f_t \equiv 1 - f_c \]

\[f_c \equiv \frac{3}{4} (B^2) \left[\frac{1}{2} \right] \int_0^{B_{\text{max}}} \lambda d\lambda / (\lambda B_{\text{max}}) \left(1 - \lambda B_{\text{max}}^2 \right)^{1/2} \],

(63)

where \(B_{\text{max}} \) is the maximum value of the field strength over the flux surface. Also, \(\tilde{U} \) and \(\langle \tilde{U}^2 \rangle \) are explicitly written for the axisymmetric case as

\[\tilde{U} = \frac{I}{\chi} \left(\frac{1}{B} - \frac{B}{(B^2)} \right), \]

\[\langle \tilde{U}^2 \rangle = \frac{I^2}{(\chi)^2} \left(\frac{1}{B} - \frac{B}{(B^2)} \right). \]

Now, substituting Eq. (62) into Eq. (41) yields

\[M(K) = \frac{2f_t}{3f_c} m_i (B^2) K \nu'_D(K), \]

\[N(K) = \frac{L(K)}{N(K)} = -\frac{eI}{c(\chi)^2}. \]

Using Eqs. (46) and (65), we obtain

\[M_{j+1,k+1} = \frac{f_t}{f_c} \frac{n_i}{\Gamma_{\text{b}}} \left(\frac{B^2}{(B^2)} \right) \tilde{u}_{j+1,k+1}, \]

\[N_{j+1,k+1} = \frac{f_t}{f_c} \frac{L_{j+1,k+1}}{N_{j+1,k+1}} = -\frac{eI}{c(\chi)^2}. \]
where the dimensionless viscosity coefficients $\hat{\mu}_{j+1,k+1}$ are defined by

$$\hat{\mu}_{j+1,k+1} \equiv \{\tau_{ii} \nu_D(K) L_{j+1}^{(3/2)}(K) L_k^{(3/2)}(K)\}. \quad (67)$$

Substituting Eq. (62) into Eqs. (54) and (56) gives

$$A_{j+1,k+1} = f_t n_i T_i (B^2) \delta_{jk},$$

$$N_{j+1,k+1} = -f_t \frac{c I}{e \chi} \frac{n_i m_i}{\tau_{ii}} \hat{\mu}_{jk},$$

$$Z_{j+1,k+1} = f_t n_i T_i \tau_{ii} (B^2) \frac{\hat{n}_{jk}}{c_j c_k},$$

$$B_{j+1,k+1} = \frac{E_{j+1,k+1}}{N_{j+1,k+1}} = -\frac{f_t}{e \chi (B^2)}, \quad (68)$$

where the dimensionless coefficients $\hat{n}_{j+1,k+1}$ are defined by

$$\hat{n}_{j+1,k+1} \equiv c_j c_k \left\{ L_{j+1}^{(3/2)}(K) L_k^{(3/2)}(K) \right\}. \quad (69)$$

Here, we also define the dimensionless ion-ion friction coefficients $\hat{l}_{j+1,k+1}$ by

$$\hat{l}_{j+1,k+1} \equiv \frac{\tau_{ii}}{n_i m_i} \hat{\mu}_{j+1,k+1}. \quad (70)$$

Numerical values of the dimensionless coefficients $\hat{\mu}_{j+1,k+1}$, $\hat{n}_{j+1,k+1}$, and $\hat{l}_{j+1,k+1}$ are presented in Appendix A.

For axisymmetric systems, we can write the parallel flows $(B_{u_{||}}) (j = 0, 1, 2, \cdots)$ in the forms of

$$\langle B_{u_{||}} \rangle = \langle B_{u_{||}} \rangle = (B^2) u_{\theta} + \frac{c I}{e \chi} X_1,$$

$$\langle B_{q_{||}} \rangle = -\frac{5}{2} n_i \langle B_{u_{||}} \rangle = (B^2) q_{\theta} + \frac{5}{2} n_i \frac{c I}{e \chi} X_2,$$

$$\langle B_{u_{||}} \rangle = (B^2) u_{\theta} (j \geq 2), \quad (71)$$

where u_{θ} is expressed in terms of the poloidal component of the flow vector u as $u_{\theta} = (V^2 / 4 \pi^2 \chi) (u \cdot \nabla \theta)$ and similar expressions are given for q_{θ} and $u_{\theta} (j \geq 2)$.

Now, based on the Sugama-Nishimura method, we use Eqs. (58) and (59), into which Eq. (66) and (71) are substituted, to express the poloidal flows (instead of the parallel flows) and the radial transport fluxes in terms of the thermodynamic forces. First, it should be noted that, for any value of j_{max}, the radial ion particle flux vanishes:

$$\Gamma_b \equiv \Gamma_b^{(b)} = 0, \quad (72)$$

which corresponds to the intrinsic ambipolar condition in Eq. (52) for the case of the small-(m_e / m_i) limit. Also, the radial heat flux $q_b \equiv -\hat{T}_b \Gamma_b^{(b)}$ determined from Eqs. (58) and (59) is independent of X_1, which implies the Onsager symmetry. Recall that the radial fluxes $\Gamma_b^{(b)}$ and \hat{T}_b are conjugate to the forces X_1 and X_2, respectively, so that, from the Onsager symmetry, the coefficient connecting $\Gamma_b^{(b)}$ with X_1 should vanish when the coefficient connecting \hat{T}_b with X_2 vanishes. The results are written as

$$\left[\begin{array}{c} u_{\theta} \\ \frac{2}{c_p} q_{\theta} \end{array} \right] = -\frac{c I X_2}{e \chi (B^2)} \left(\begin{array}{cc} C_{0\theta} & 0 \\ C_{1\theta} & C_q \end{array} \right),$$

$$q_b \equiv -\hat{T}_b \Gamma_b^{(b)} = C_q \frac{f_t}{e \chi} \frac{n_i m_i T_i e^2 I^2}{\tau_{ii}} X_2, \quad (73)$$

where numerical values of the dimensionless coefficients $C_{0\theta}$, $C_{1\theta}$, and C_q obtained from the Sugama-Nishimura method are shown by solid curves in Fig. 1 for the cases of $j_{max} = 1, 2$, and 3 (referred to as the 13M, 21M and 29M approximations, respectively, in Ref. [29]). Here, we repeat that these results are equivalent to those from the conventional moment approach [28–30]. Especially, for the case of $j_{max} = 1$, we obtain

$$\left[\begin{array}{c} C_{0\theta} \\ 0 \\ C_{1\theta} \\ C_q \end{array} \right] = \left[\begin{array}{c} \hat{l}_{22} \\ \hat{l}_{22} \mu_{11} + (f_t / c) [\hat{\mu}_{11} \hat{\mu}_{22} - (\mu_{12})^2] \\ \hat{\mu}_{12} / \hat{\mu}_{11} \hat{\mu}_{22} - (\mu_{12})^2 \end{array} \right] \times \left[\begin{array}{c} \hat{\mu}_{11} \\ \hat{\mu}_{12} \\ \hat{\mu}_{22} \end{array} \right],$$

$$\approx \frac{1}{1 + 0.461474 (f_t / c)} \left[\begin{array}{c} 1.17295 \\ 0.652622 \end{array} \right], \quad (74)$$

Here, we should repeat that the Sugama-Nishimura method and the results shown in Eqs. (73) and (74) for the ion banana transport in the axisymmetric system are equivalent to those of the conventional moment approach [28–30].

On the other hand, Taguchi’s method lead us to substitute Eq. (68) into Eqs. (60) and (61), from which the ion poloidal flows and radial fluxes are derived as

$$\left[\begin{array}{c} u_{\theta} \\ \frac{2}{c_p} q_{\theta} \end{array} \right] = -\frac{c I X_2}{e \chi (B^2)} \left(\begin{array}{cc} C_{0\theta} & 0 \\ C_{1\theta} & C_q \end{array} \right),$$

$$\Gamma_b^{(b)} \equiv -\hat{T}_b \Gamma_b^{(b)} = C_q \frac{f_t}{e \chi} \frac{n_i m_i T_i e^2 I^2}{\tau_{ii}} X_2 \left[\begin{array}{c} C_{0\theta} \\ 0 \\ C_{1\theta} \\ C_q \end{array} \right], \quad (75)$$

where numerical values of the dimensionless coefficients $C_{0\theta}$, $C_{1\theta}$, $C_{b}^{(b)}$, and C_q are shown by dotted curves in Figs. 1 and 2 for the cases of $j_{max} = 1$ and 3. For the case of
$j_{\text{max}} = 1$, we have

$$
\begin{bmatrix}
C_{00}' \\
C_{10}' \\
C_{11}' \\
C_q'
\end{bmatrix} = \frac{\hat{l}_{22}}{\hat{l}_{22} \hat{n}_{22} + (f_t / f_c)} \begin{bmatrix}
-\hat{n}_{12} \\
\hat{n}_{22} \\
-f_c (\hat{\mu}_{11} \hat{n}_{12} + \hat{\mu}_{12} \hat{n}_{22}) \\
f_c (\hat{\mu}_{12} \hat{n}_{12} + \hat{\mu}_{22} \hat{n}_{22}) + f_t
\end{bmatrix}
\times \begin{bmatrix}
0.580094 \\
0.315896 f_c \\
-0.315896 f_c \\
1.02315 - 0.754204 f_t
\end{bmatrix}
$$

(76)

Here, the nonzero value of the coefficient C_0' for the fictitious radial particle flux Γ^b indicates that the ambipolar condition is violated and that the Onsager symmetry is broken because the reciprocal coefficient for C_0', which connects q^b with X_1, still vanishes as seen in Eq. (75). It should be recalled here that the above results are derived from the axisymmetric limit of Taguchi’s formulas for general toroidal systems (but not from his formulas given separately for the axisymmetric case) [15].

It is claimed in Sec. II that results from the Sugama-Nishimura and Taguchi’s methods should be equivalent to each other in the limit of $j_{\text{max}} \to \infty$. This fact is directly proven for the present case by noting that

$$
\sum_{m=0}^{\infty} \hat{\mu}_{jm} \hat{n}_{mk} = \delta_{jk} \quad (j, k = 0, 1, 2, \ldots)
$$

(77)

However, as seen from Fig. 1, the coefficients $C_{00}, C_{10},$ and C_1 obtained from the Sugama-Nishimura method (or the conventional moment approach) give better convergence with increasing j_{max} than the corresponding coefficients $C_{00}', C_{10}',$ and C_1' from Taguchi’s. Especially, the moment approach shows the convergent results even for $j_{\text{max}} = 1$ in the limit of small f_t (or the large aspect ratio), in which Eq. (73) gives the radial neoclassical ion heat flux as

$$
\langle q_i \cdot \nabla r \rangle \simeq 0.477 \frac{\rho_{i}^{2} q_{i}^{2}}{c_{s}^{2} / \tau_{ii}} \cdot \frac{\partial T_i}{\partial r}.
$$

(78)

Here, $\rho_{i} \equiv c \sqrt{2 m_{i} T_{i}} / (e B_{0})$ represents the ion thermal gyroradius, q is the safety factor, and $\epsilon \equiv r / R_{0} (\ll 1)$ is the inverse aspect ratio for the toroid with the concentric circular cross section of the minor radius r, where the fraction f_t of trapped particles is given by Eq. (A4) in Appendix A. We also note that the ion-ion collision time τ_{ii} used here is related to the ion collision time τ_i of Braginskii [32] by $\tau_i = \sqrt{2} \tau_{ii}$. The result in Eq. (78) agrees with the one derived by Rosenbluth et al. [33] using the variational principle, in which the numerical coefficient is given as 0.48. On the other hand, Eq. (75) shows that the value of the coefficient is given as 0.748 from taguchi’s method for $j_{\text{max}} = 1$.

FIG. 1: Dimensionless neoclassical coefficients calculated as functions of f_t / f_c for $j_{\text{max}} = 1$ (13M), 2 (21M), and 3 (29M). The coefficients $C_{00}, C_{10},$ and C_1 in Eq. (73) obtained from the Sugama-Nishimura method are plotted by solid curves in (a), (b), and (c), respectively. For comparison, also plotted by dotted curves are $C_{00}', C_{10}',$ and C_1' in Eq. (75) obtained from Taguchi’s method.
methods are demonstrated by numerical examples for the properties are not retained exactly in results from Taguchi’s transport coefficients from their method satisfy the Onsager symmetry. On the other hand, the above properties are determined by the same momentum balance equations as used in the conventional moment approach so that the intrinsic ambipolarity of particle fluxes are exactly derived in the symmetric systems at each order of the truncation. Furthermore, the resultant neoclassical transport coefficients from their method satisfy the Onsager symmetry. The differences between results from the two methods are demonstrated by numerical examples for the ion banana neoclassical transport in the axisymmetric case, where a better convergence of the transport coefficients is also confirmed for a smaller truncation number of the Laguerre-polynomial expansion in the Sugama-Nishimura method. Thus, their method is considered to be appropriate especially for investigating the neoclassical transport in quasisymmetric systems and in tokamaks with the axisymmetry partially broken, where it is important to accurately evaluate how the transport differs from the exactly-symmetric limit.

Acknowledgments

The authors acknowledge stimulating discussion with Dr. D. A. Spong, Dr. C. D. Beidler, and Dr. M. Yokoyama. This work is supported in part by the Japanese Ministry of Education, Culture, Sports, Science, and Technology, Grant No. 16560727 and in part by the NIFS Collaborative Research Program, NIFS06KDAD006.

APPENDIX A: DIMENSIONLESS COEFFICIENTS IN SEC. III

Numerical values of the dimensionless coefficients \(\hat{\mu}_{j+1,k+1} \), \(\hat{\eta}_{j+1,k+1} \), and \(\hat{l}_{j+1,k+1} \equiv -\hat{\eta}_{j+1,k+1}/(\hat{\mu}_{j+1,k+1}) \) used in Sec. III for calculation of the ion neoclassical transport are given for \(j, k = 0, 1, 2, 3 \) by

\[
\begin{align*}
\hat{\mu}_{11} &= \sqrt{2} - \ln(1 + \sqrt{2}) \approx 0.53284, \\
\hat{\mu}_{12} &= \frac{1}{2} \left[4\sqrt{2} - 5 \ln(1 + \sqrt{2}) \right] \approx 0.624993, \\
\hat{\mu}_{13} &= \frac{1}{16} \left[51 \sqrt{2} - 70 \ln(1 + \sqrt{2}) \right] \approx 0.651796, \\
\hat{\mu}_{14} &= \frac{35}{192} \left[25\sqrt{2} - 36 \ln(1 + \sqrt{2}) \right] \approx 0.66097, \\
\hat{\mu}_{22} &= \frac{1}{8} \left[39\sqrt{2} - 50 \ln(1 + \sqrt{2}) \right] \approx 1.38571, \\
\hat{\mu}_{23} &= \frac{1}{64} \left[507\sqrt{2} - 700 \ln(1 + \sqrt{2}) \right] \approx 1.5632, \\
\hat{\mu}_{24} &= \frac{5}{768} \left[1747\sqrt{2} - 2520 \ln(1 + \sqrt{2}) \right] \approx 1.6248, \\
\hat{\mu}_{33} &= \frac{49}{512} \left[143\sqrt{2} - 200 \ln(1 + \sqrt{2}) \right] \approx 2.48424, \\
\hat{\mu}_{34} &= \frac{1}{644} \left[121837\sqrt{2} - 176400 \ln(1 + \sqrt{2}) \right] \approx 2.73913, \\
\hat{\mu}_{44} &= \frac{1}{24576} \left[725467\sqrt{2} - 1058400 \ln(1 + \sqrt{2}) \right] \approx 3.78904, \\
\end{align*}
\]

(A1)

\[
\begin{align*}
\hat{\eta}_{11} &\approx 4.04886, \quad \hat{\eta}_{12} \approx -2.15691, \quad \hat{\eta}_{13} \approx 0.266521, \\
\hat{\eta}_{14} &\approx 0.0217107, \quad \hat{\eta}_{22} \approx 3.7182, \quad \hat{\eta}_{23} \approx -2.11288, \\
\hat{\eta}_{24} &\approx 0.275357, \quad \hat{\eta}_{33} \approx 3.60993, \quad \hat{\eta}_{34} \approx -2.09256, \\
\hat{\eta}_{44} &\approx 3.55606, \\
\end{align*}
\]

(A2)
and
\[
\hat{l}_{22} = \sqrt{2}, \quad \hat{l}_{23} = \frac{3}{4} \sqrt{2}, \quad \hat{l}_{24} = \frac{15}{32} \sqrt{2}, \\
\hat{l}_{33} = \frac{45}{16} \sqrt{2}, \quad \hat{l}_{34} = \frac{421}{128} \sqrt{2}, \\
\hat{l}_{44} = \frac{45131}{3072} \sqrt{2},
\]
respectively. Here, we should recall that \(\hat{l}_{1,k+1} = 0\) is derived from collisional momentum conservation and that \(\hat{\mu}_{j+1,k+1}, \hat{\eta}_{j+1,k+1}\), and \(\hat{l}_{j+1,k+1}\) are all symmetric with respect to exchange of \(j\) and \(k\).

Also, when deriving Eq. (78) in Sec. III, we use the formula for the trapped particles’ fraction \(f_t\) in axisymmetric toroids [33] with the small inverse aspect ratio \(\epsilon \ll 1\),
\[
f_t = \frac{3}{\sqrt{2} \epsilon} \left[1 - \int_0^1 \frac{ds}{\kappa} \left(\frac{\pi}{2E(\kappa)} - 1 \right) \right] \approx 1.46242 \sqrt{\epsilon},
\]
where \(E(\kappa)\) denotes the complete elliptic integral of the second kind.