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Collisionless long-time responses of the zonal-flow potential to the initial condition and to the tur-
bulence source in helical systems with radial electric fields are theoretically derived. All classes of
particles in passing, toroidally-trapped, and helical-ripple-trapped states are considered and transi-
tions between toroidally-trapped and helical-ripple-trapped states are taken into account to analyt-
ically solve the gyrokinetic equation by taking its average along the particle orbits. The zonal-flow
responses are enhanced when the radial displacements of helical-ripple-trapped particles are reduced
by neoclassical optimization of the helical geometry to lower the radial drift or by strengthening the
radial electric field Er to boost the poloidal rotation. Under the same conditions on the geometry
and the magnitude of Er, using ions with a heavier mass gives rise to a higher zonal-flow response,
from which the turbulent transport is expected to show a more favorable ion-mass dependence than
the conventional gyro-Bohm scaling.
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I. INTRODUCTION

Zonal flows are now well known to play a critical role
in regulation of turbulent transport in plasmas [1, 2].
From the viewpoint of improving plasma confinement,
it is an important issue to investigate effects of mag-
netic configuration on zonal flows generated by turbu-
lence. Theoretical works on collisionless time evolution
of zonal flows in tokamaks [3–6] and in helical systems [7–
12] such as heliotrons and stellarators elucidated how the
zonal-flow response to a given turbulence source depends
on the toroidal magnetic geometry by which particle or-
bits are determined. It was predicted in our previous
works [7, 8] that the zonal-flow response can be increased
in helical systems by reducing radial drift velocities of
helical-ripple-trapped particles. This implies that helical
configurations optimized for reducing neoclassical ripple
transport [13–15] can simultaneously reduce the turbu-
lent transport with enhancing zonal-flow generation. In
fact, the theoretical prediction was confirmed by the ion
temperature gradient (ITG) turbulence simulation using
the gyrokinetic Vlasov (GKV) code [16–19] and it is con-
sistent with the confinement improvement observed ex-
perimentally in the inward-shifted plasma in the Large
Helical Device (LHD) [20, 21]. The reduction of anoma-
lous transport by neoclassical optimization provides an
attractive scenario for advanced concepts of helical de-
vices [22–26].

In helical systems, the radial electric field Er is pro-
duced from ambipolar particle fluxes [14] and it gives
rise to the macroscopic E × B rotation, which is dis-
tinguished from the microscopic sheared E × B zonal
flows. The E × B rotation driven by Er, which was
not taken into account in our original theory [7, 8], is
expected to reduce not only neoclassical ripple trans-
port but also turbulent transport through improving the
zonal-flow response [10, 18, 19]. In the zonal-flow theory

by Mynick and Boozer [10], the action-angle formalism
is used to treat poloidally-closed E × B-drift orbits of
helical-ripple-trapped particles as well as bounce orbits
of toroidally-trapped particles. However, for practical
cases, such as in the LHD configuration, some helical-
ripple-trapped particles cannot draw poloidally-closed
orbits and transitions between toroidally-trapped and
helical-ripple-trapped states can occur with some proba-
bility [14, 27]. Effects of these transitions are newly in-
cluded in the preset work to present a more complete the-
ory of zonal flows in helical system. This paper presents
new formulas, from which we find how the helical geom-
etry and Er affect collisionless time evolution of zonal
flows. The Er effects appear through the poloidal Mach
number defined by Mp ≡ |(cEr/B0r0)(R0q/vti)| with the
safety factor q, the magnetic field strength B0, the speed
of light c, the minor (major) radius r0 (R0), and the
ion thermal velocity vti ≡ (Ti/mi)1/2. Thus, when the
geometry and the magnitude of Er are fixed, a higher
zonal-flow response is obtained by using ions with a heav-
ier mass, which increases Mp, and the resultant turbu-
lent transport is expected to show a more favorable ion-
mass dependence than the conventional gyro-Bohm scal-
ing [28].

Basic equations for describing zonal flows in heli-
cal systems are shown in Sec. II and analytical solu-
tions of the distribution function are given in Sec. III,
where we consider all classes of particle orbits and treat
transitions between toroidally-trapped and helical-ripple-
trapped particles in the presence of the radial electric
field Er. In Sec. IV, the collisionless long-time zonal-
flow responses to the initial condition and to the ITG
turbulence are derived with including effects of the he-
lical geometry and Er. Finally, conclusions are given in
Sec. VI.
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II. BASIC EQUATIONS

In the present work, we consider the same helical mag-
netic configuration as in Ref. [8]. We use the toroidal
coordinates (r, θ, ζ), where r, θ, and ζ denote the flux
surface label, the poloidal angle, and the toroidal an-
gle, respectively. The magnetic field is written as B =
∇ψ(r) × ∇(θ − ζ/q(r)), where 2πψ(r) is equal to the
toroidal flux within the flux surface labeled r and q(r)
represents the safety factor. The magnetic field strength
is written by a function of poloidal and toroidal an-
gles (its r-dependence is not shown here for simplicity)
as [8, 13]

B = B0[1− εT (θ)− εH(θ) cos{Lθ −Mζ + χH(θ)}],
(1)

where M (L) is the toroidal (main poloidal) period num-
ber of the helical field. For the LHD, L = 2 and M = 10.
Here, it is assumed that L/(qM) ∼ εT ∼ εH ¿ 1. In the
present study, we put εT (θ) = εt cos θ. Multiple-helicity
effects from Fourier components ∝ cos{(L + n)θ −Mζ}
with n = ±1,±2, · · · can be included in the function
εH(θ) [8, 13] which is even in θ and never take negative
values. An example of the profile of the field strength
along the field line ζ = qθ is shown in Fig. 1.

The gyrokinetic equation [29] for the zonal flow com-
ponent with the perpendicular wave number vector k⊥ =
kr∇r is given by

(
∂

∂t
+ v‖b · ∇+ iωD + VE

)
gk⊥

=
e

T
F0J0(k⊥ρ)

∂φk⊥

∂t
+ Sk⊥F0, (2)

where F0 is the local equilibrium distribution function
that takes the Maxwellian form, J0(k⊥ρ) is the zeroth-
order Bessel function, ρ = v⊥/Ω is the gyroradius, and
Ω = eB/(mc) is the gyrofrequency. Here, subscripts to
represent particle species are dropped for simplicity. The
drift frequency ωD is defined by ωD ≡ k⊥ · vd ≡ krvdr,
where vdr = vd · ∇r is the radial component of the
gyrocenter drift velocity and the radial coordinate r is
defined by ψ = B0r

2/2. The E × B drift velocity
vE ≡ (c/B)Er∇r × b due to the equilibrium radial
electric field Er is included in the differential operator
VE ≡ vE · ∇. In the present work, Er is assumed
to be constant. The source term Sk⊥F0 on the right-
hand side of Eq. (2) represents the E × B nonlinear-
ity and is written as Sk⊥F0 = (c/B)

∑
k′⊥+k′′⊥=k⊥ [b ·

(k′⊥ × k′′⊥)]J0(k′⊥ρ)φk′⊥gk′′⊥ . In Eq. (2), gk⊥ is regarded
as a function of independent variables (r, θ, ζ, ε, µ), where
ε ≡ 1

2mv2 + eΦ and µ ≡ mv2
⊥/(2B) represent the par-

ticle’s energy and magnetic moment, respectively. The
gyrokinetic equation given in Eq. (2) is based on the bal-
looning representation [30] to describe the local structure
of perturbations with much smaller perpendicular wave
lengths than equilibrium scale lengths. We consider the

local region around the magnetic surface r = r0 and write
the equilibrium electrostatic potential as Φ = −Erx,
where x ≡ r − r0.

As discussed in Ref. [18], although the potential fluc-
tuation φk⊥ , which produces zonal flows, is constant on
the flux surface, the solution gk⊥ of Eq. (2) needs to have
a dependence on the field line label α ≡ ζ − q(r)θ in he-
lical systems because ωD depends on α. Then, VEgk⊥ in
Eq. (2) does not vanish and it yields effects of the equi-
librium radial electric field on gk⊥ and accordingly on
behaviors of the zonal-flow potential. It is assumed in
Eq. (2) that, compared to the magnitude of vE , compo-
nents of grad B and curvature drift velocities parallel to
∇r × b are negligibly small.

The perturbed particle distribution function δfk⊥ is
written in terms of the electrostatic potential φk⊥ and
the solution gk⊥ of Eq. (2) as

δfk⊥ = −eφk⊥

T
F0 + gk⊥e−ik⊥·ρ, (3)

where ρ = b× v/Ω. The perturbed gyrocenter distribu-
tion function δf

(g)
k⊥ is given by

δf
(g)
k⊥ = −J0(k⊥ρ)

eφk⊥

T
F0 + gk⊥ . (4)

The perturbed gyrocenter distribution function δf
(g)
k⊥

and the nonadiabatic part gk⊥ are independent of the
gyrophase although the perturbed particle distribution
function δfk⊥ depends on it as seen from the factor
e−ik⊥·ρ on the right-hand side of Eq. (3). Using Eqs. (3)
and (4), we obtain

δfk⊥ = δf
(g)
k⊥ e−ik⊥·ρ − eφk⊥

T
F0

[
1− J0(k⊥ρ)e−ik⊥·ρ]

.

(5)
On the right-hand side of Eq. (5), the factor e−ik⊥·ρ in
the first term results from the difference between the par-
ticle and gyrocenter positions while the second group of
terms represent the classical polarization. The classical
polarization refers to the variation of the particle distri-
bution due to the potential perturbation in the magne-
tized plasma where particles are subject to gyromotion
around field lines.

III. ANALYTICAL SOLUTION OF THE
PERTURBED DISTRIBUTION FUNCTION

In this section, we analytically solve the gyrokinetic
equation in Eq. (2) to obtain the perturbed distribu-
tion function, which determines the long-time behavior
of zonal flows. For that purpose, different classes of col-
lisionless particle orbits are investigated here.

Particles trapped in helical ripples are characterized by
κ2 < 1, where the trapping parameter κ defined by

κ2 =
ε− µB0 {1− εT (θ)− εH(θ)}+ eErx

2µB0εH(θ)
. (6)
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FIG. 1: An example of profile of the magnetic field strength
along the field line (ζ = qθ). Here, B/B0 = 1 − εt cos θ −
εH(θ) cos(Lθ −Mζ), L = 2, M = 10, q = 1.5, εt = 0.1, and
εH(θ) = 0.1× (1− 0.5 cos θ) are used.

FIG. 2: Particle orbits in the (θ, κ2)-plane (a) and poloidal
cross sections of toroidally-trapped and helically-trapped or-
bits, between which transitions can occur (b). Dashed lines
represent bounce-center E × B-drift motions of helically-
trapped particles. Transition points P+ and P− are located
at poloidal angles θ = θt and −θt, respectively.

Using L/(qM) ¿ 1, we approximate the field line ele-
ment dl by R0dζ, where R0 denotes the major radius of
the toroid. Then, the orbital average within a helical
ripple is defined by

A =





1
2

∑
σ=±1

∫ ζ2

ζ1
(R0dζ/|v‖|)A/

∫ ζ2

ζ1
(R0dζ/|v‖|)

for κ2 < 1∫ ζ0+π/M

ζ0−π/M
(R0dζ/|v‖|)A/

∫ ζ0+π/M

ζ0−π/M
(R0dζ/|v‖|)
for κ2 > 1,

(7)
where σ = v‖/|v‖| is the sign of the parallel velocity,
(ζ1, ζ2) represents the toroidal-angle interval for a particle
trapped within a helical ripple, and (ζ0−π/M, ζ0+π/M)
corresponds to a whole helical ripple around the local
minimum of B at ζ = ζ0. Using the longitudinal adia-
batic invariant J [13, 14, 27] given by

J =





2
∫ ζ2

ζ1
R0dζ |v‖| for κ2 < 1∫ ζ0+π/M

ζ0−π/M

dζ

(
R0|v‖| − σ

eψ′x
mcq

)
for κ2 > 1

=





16
R0

M

(
µB0εH

m

)1/2

[E(κ)− (1− κ2)K(κ)]

for κ2 < 1

−σ
2π

M

eψ′x
mcq

+ 8
R0

M

(
µB0εH

m

)1/2

κE(κ−1)

for κ2 > 1,

(8)

and the time period τh given by

τh = m
∂J(ε, θ, x, µ)

∂ε
=

{
2

∫ ζ2

ζ1
R0dζ/|v‖| for κ2 < 1∫ ζ0+π/M

ζ0−π/M
R0dζ/|v‖| for κ2 > 1

=





4(R0/M)(µB0εH/m)−1/2K(κ)
for κ2 < 1

2(R0/M)(µB0εH/m)−1/2κ−1K(κ−1)
for κ2 > 1,

(9)

with the complete elliptic integrals K(κ) and E(κ), the
orbital average of the radial drift velocity within a helical
ripple is given by

vdr =
mc

eψ′τh

∂J(ε, θ, x, µ)
∂θ

= − c

eψ′
∂H(θ, x, µ, J)

∂θ

=





cµB0

eψ′

[
∂εH

∂θ

{
2E(κ)
K(κ)

− 1
}

+
∂εT

∂θ

]

for κ2 < 1
cµB0

eψ′

[
∂εH

∂θ

{
2κ2

(
E(κ−1)
K(κ−1)

− 1
)

+ 1
}

+
∂εT

∂θ

]

for κ2 > 1,

(10)

where ψ′ = B0r0. Similarly, the averaged poloidal angu-
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lar velocity ωθ is written as

ωθ = − mc

eψ′τh

∂J(ε, θ, x, µ)
∂x

=
c

eψ′
∂H(θ, x, µ, J)

∂x

=




−cEr

ψ′
for κ2 < 1

2πσ

qMτh
− cEr

ψ′
for κ2 > 1,

(11)

where the functions J(ε, θ, x, µ) and ε = H(θ, x, µ, J) are
defined from substituting Eq. (6) into Eq. (8). The x-
dependence enters J and H through eErx in Eq. (6),
where other x-dependences in µB0(1 − εT − εH) and in
µB0εH are neglected. Thus, the E ×B drift appears in
Eq. (11) while the grad B and curvature drifts don’t.

The parallel derivative is rewritten as
b · ∇ ' R−1

0 (∂/∂ζ + q−1∂/∂θ). Then, we
use (∂gk⊥/∂θ)/(∂gk⊥/∂ζ) ∼ r0/R0 ¿ 1 and
VEgk⊥ ' −(cEr/B0r0)(∂gk⊥/∂θ) in Eq. (2). Also,
we replace ωD(= krvdr) with ωD(= krvdr), which is
justified because the radial displacement δr [see Eq. (26)
in Ref. [8]] of the gyrocenter from the helical-ripple-
averaged radial position is much smaller than the
gyroradius ρ for helical systems with M À 1. Based
on these approximations, we obtain the lowest-order
equation (v‖/R0)(∂gk⊥/∂ζ) = 0 from Eq. (2), where
∂gk⊥/∂t is dropped because the long-time behavior
of zonal flows with characteristic frequencies much
smaller than v‖/(R0q) is considered. Therefore, to the
lowest order, gk⊥ is independent of ζ so that we write
gk⊥ ' gk⊥ ≡ h(x, θ, ε, µ). Here, the characteristic
gradient scale length of h in the x-direction is on the
order of the equilibrium gradient scale length and that
x-dependence should be distinguished from the rapid
variation described by the factor eikrx. The equation for
h is derived from Eq. (2) with the averaging operation
in Eq. (7) as

(
∂

∂t
+ ωθ

∂

∂θ
+ ikrvdr

)
h

= F0

(
J0

e

T

∂φk⊥

∂t
+ Sk⊥

)
. (12)

In the present work, we consider the case, in
which the poloidal Mach number defined by Mp ≡
|(cEr/B0r0)(R0q/vt)| with vt ≡ (T/m)1/2 is much
smaller than the unity. Then, for particles with κ2 > 1,
which are not trapped in helical ripples, the contribution
of parallel motion to the poloidal angular velocity ωθ is
much larger than that of the E × B drift and the Er

term in Eq. (11) for κ2 > 1 is neglected. Now, Eq.(12) is
rewritten for κ2 > 1 as

(
∂

∂t
+ ωθ

∂

∂θ

) (
eikr∆rh

)

= eikr∆rF0

(
J0

e

T

∂φk⊥

∂t
+ Sk⊥

)
, (13)

where h is regarded as a function of θ, ε, µ, and σ ≡
v‖/|v‖|. In Eq. (13),

∆r(θ, ε, µ) = σ
qM

2π

mc

eψ′
[J(ε, θ, µ)− Jt(ε, µ)]

(for κ2 > 1) (14)

represents the radial displacement of the helical-ripple-
averaged gyrocenter position and Jt is defined below.
For κ2 > 1, particles are classified into two types, par-
ticles trapped by the toroidicity and passing particles.
Figure 2 (a) shows the (θ, κ2)-plane, where regions for
different classes of particles are divided by three bound-
ary lines C1, C2, and C3. In this figure, we consider
the radial position r = r0 (or x = 0) and assume that
the profile of the magnetic-field strength along the field
is similar to that of Fig. 1, where the maximum field
strength BM is given at θ = π. The line C1 is de-
fined by κ2 = 1 while C2 is defined by Eq. (6) with
ε = µBM ≡ µB0[1− εT (π) + εH(π)] (recall that x = 0 is
assumed). Passing particles are defined by ε > µBM and
they belong to the region above C2. On the other hand,
toroidally-trapped particles are defined by ε < µBM with
κ2 > 1 and their region are bounded between C1 and C2.
The trapping parameter κ2 for x = 0 is written as κ2 =
κ2(λ, θ) ≡ [1 − λB0 {1− εT (θ)− εH(θ)}]/[2λB0εH(θ)],
where λ = µ/ε. We note that κ2 is an even function of θ.
Toroidally-trapped particles, which have the two invari-
ants ε and µ, reach the boundary line C1 at the poloidal
angles θ = ±θt(λ). The angle θt(λ) is determined by
the condition κ2(λ, θt(λ)) = 1 and θt(λ) ≥ 0. Now, Jt

in Eq. (14) is defined by Jt(ε, µ) = J(θt(µ/ε), ε, µ) for
toroidally trapped particles and by Jt(ε, µ) = J(π, ε, µ)
for passing particles.

For particles with κ2 < 1, which are trapped in helical
ripples, it is convenient to use J instead of ε as one of
the phase-space coordinates for representing h. Again,
considering the radial position x = 0, the energy variable
ε is expressed as

ε = W (θ, J, µ) ≡ H(θ, x = 0, µ, J)
≡ µB0[1− εT (θ) + εH{2κ2(θ, J, µ)− 1}], (15)

where κ2(θ, J, µ) is implicitly defined from Eq. (8) for
κ2 < 1. As an approximate solution of Eq. (8) for κ2 in
the region 0 ≤ κ2 < 1, we obtain

κ2(θ, J, µ) ' CκX(θ, J, µ)− (Cκ − 1)[X(θ, J, µ)]2, (16)

where X(θ, J, µ) ≡ J/[16(R0/M){µB0εH(θ)/m}1/2].
The dimensionless numerical coefficient Cκ in Eq. (16)
is given as Cκ = 1.32984 by using the least-mean-square
method. Equation (16) is useful when we need an explicit
form of W (θ, J, µ) in Eq. (15). From Eqs. (10) and (11),
we find

(
ωθ

∂

∂θ
+ ikrvdr

)
h(θ, J, µ)

=
(

ωθ
∂

∂θ
+ ikrvdr + eErvdr

∂

∂ε

)
h(θ, ε, µ). (17)
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In the right-hand side of Eq. (17), the last term is re-
garded as negligibly small compared to the second term
because of the order estimation eEr∂/∂ε ∼ eΦ/(rT ) ¿
kr. Now, Eq. (12) is rewritten for κ2 < 1 in the similar
form to Eq. (13) as

(
∂

∂t
+ ωθ

∂

∂θ

) (
eikr∆rh0(θ, J, µ)

)

= eikr∆rF0

(
J0

e

T

∂φk⊥

∂t
+ Sk⊥

)
, (18)

where J is used as one of the independent variables in-
stead of ε in Eq. (13) and the radial displacement of
the bounce center of the helical-ripple-trapped particle is
written as

∆r(θ, J, µ) =
1

eEr
[W (θ, J, µ)−Wt(J, µ)]

(for κ2 < 1) (19)

where W (θ, J, µ) is given by Eq. (15) and Wt(J, µ) is
defined below. As shown in Fig. 2 (a), the particle re-
gion κ2 < 1 is divided by the curve C3 into two regions.
Here, the equation to define C3 is given by substitut-
ing J = Jc(µ) ≡ 16(R/M)(µB0εH0/m)1/2 into the left-
hand side of Eq. (8) for κ2 < 1, where εH0 = εH(0)
in the case of Fig. 2 (a). In the region below C3 where
J < Jc(µ), bounce centers of helical-ripple-trapped parti-
cles can make poloidally-closed orbits while, in the region
between C1 and C3 where κ2 < 1 and J > Jc(µ), bounce
centers show poloidal drifts only in the bounded poloidal
regions [|θ| > θt in the case of Fig. 2 (a)]. In Fig. 2
(a), two points P+ and P− are located at the boundary
poloidal angles θ = θt and −θt, respectively. Here, θt can
be written as a function of (J, µ), θt = θt(J, µ), which is
derived from the relation obtained by taking the limit
κ2 → 1 in Eq. (8) for κ2 < 1. Now, Wt in Eq. (19) is
defined by Wt(J.µ) = W (θt(J, µ), J, µ) for J > Jc(µ) and
by Wt(J, µ) = W (0, J, µ) for J < Jc(µ).

It is important to note that, on the boundary line
C1(κ2 = 1), particles can make transitions between
toroidally-trapped and helical-ripple-trapped states. Fig-
ure 2 (b) shows poloidal cross sections of toroidally-
trapped and helically-trapped orbits, between which
transitions can occur. For the case of Figs. 2 (a) and
(b), where Er > 0 is assumed, both toroidally-trapped
particles with v‖ > 0 and helical-ripple-trapped particles
show the transition to toroidally-trapped particles with
v‖ < 0 at the point P+ where θ = θt. On the other hand,
at the point P− where θ = −θt, toroidally-trapped parti-
cles with v‖ < 0 change the sign of v‖ or make the transi-
tion to helical-ripple-trapped particles. Although Er > 0
is assumed throughout the present work, we can treat
the case of Er < 0 in the same manner as here by not-
ing that the transition from the toroidally-trapped state
with v‖ > 0 to the helically-trapped state occurs at P+

for Er < 0. Using the theory by Cary, et al. [14, 27], the
probability Pt of the transition from toroidally-trapped

(v‖ < 0) to helical-ripple-trapped particles at P− is given
by

Pt =
[

(∂Jr0/∂x)(∂εx/∂θ)− (∂Jr0/∂θ)(∂εx/∂x)
(∂J−0/∂x)(∂εx/∂θ)− (∂J−0/∂θ)(∂εx/∂x)

]

θ=−θt

,

(20)
where

Jr0 ≡ lim
κ2→1−0

J,

J−0 ≡ lim
κ2→1+0

J(σ = −1)

εx ≡ µB0[1− εT (θ) + εH(θ)]− eErx. (21)

We note that the fractional expression inside the brackets
[· · · ] in the right-hand side of Eq. (20) is an even function
of θ so that it takes the same value at θ = θt and −θt.
Now, using Eqs. (8), (20), and (21), we obtain

Pt ' 4
√

2
π

Mp

(
v

vt

)−1 [
ε
−1/2
H

∂εH/∂θ

∂(εH − εT )/∂θ

]

θ=θt

.

(22)

Here, we find that Pt ¿ 1 because of the smallness of Mp.
Even though Pt ¿ 1, the average time duration which
particles spend in the helically-trapped state is compa-
rable to that in the toroidally-trapped state because the
poloidal angular velocity ωθ is slower in the former state
than in the latter by a factor proportional to Mp(¿ 1).
For those particles [in the regions between C2 and C3 in
Fig. 2 (a)] which make transitions, we define the average
poloidal time period τpo by

τpo ≡
∑

σ=±1

[
H(−σ)

∫

|θ|<θt

dθ

|ωθ|

+ H(σ)(1− Pt)
∫

|θ|<θt

dθ

|ωθ|

]
+ Pt

∫

|θ|>θt

dθ

|ωθ|

'
∮

dθ

|ωθ|
[
2H(κ2 − 1) + Pt H(1− κ2)

]
(23)

and the poloidal-orbit average of an arbitrary function
A defined along toroidally-trapped and helically-trapped
orbits by

〈A〉po ≡ 1
τpo

∑
σ=±1

[
H(−σ)

∫

|θ|<θt

A dθ

|ωθ|

+ H(σ)(1− Pt)
∫

|θ|<θt

A dθ

|ωθ|

]
+ Pt

∫

|θ|>θt

A dθ

|ωθ|

' 1
τpo

∮
dθ

|ωθ|

[
H(κ2 − 1)

∑
σ=±1

A + H(1− κ2)PtA

]

(24)

where H is the Heaviside step function [ H(x) = 1 for
x > 0 and 0 for x < 0 ] and σ ≡ v‖/|v‖|. Also, recall
that ωθ = −cEr/(B0r0) for κ2 < 1 and 2πσ/(qMτh) for
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κ2 > 1. When the transition occurs between at C1(κ2 =
1), the independent variable J for A in the helical-ripple-
trapped state and the independent variable ε for A in the
toroidally-trapped state are connected to each other by
the relation that is defined by substituting θ = θt(λ) and
λ = µ/ε into Eq. (15) as

ε = W (θt(µ/ε), J, µ). (25)

By the operation defined in Eq. (24), the function A is
averaged over the connected orbits containing both parts
of toroidally-trapped and helical-ripple-trapped states so
that 〈A〉po is independent of θ and it is regarded as a
function of either (ε, µ) or (J, µ), where ε and J are re-
lated to each other by Eq. (25).

For passing particles [in the region above C2 in
Fig. 2 (a)] and helical-ripple-trapped particles which
make poloidally-closed orbits (below C3), τpo and 〈A〉po

are given by

τpo ≡
∮

dθ

|ωθ| and 〈A〉po ≡ 1
τpo

∮
A dθ

|ωθ| , (26)

respectively.
The present work is concerned with the long-time be-

havior of zonal flows and the characteristic time scale is
assumed to be much longer than 1/ωθ. To the lowest
order, Eqs. (13) and (18) are both written in the same
form as ωθ∂

(
eikr∆rh

)
/∂θ = 0, which implies eikr∆rh is

independent of θ. Here, we should recall that ε is used
as the independent variable of h for κ2 > 1 while J is for
κ2 < 1. Then, using the poloidal-orbit average [defined
in Eqs. (24) and (26)], integrating Eqs. (13) and (18) in
time, and using Eq. (4) with gk⊥ ' gk⊥ ≡ h, we obtain

〈
eikr∆rh(t)

〉
po

=
〈
eikr∆r [h(0) + F0Rk⊥(t)]

〉
po

+
e

T
F0

〈
eikr∆rJ0 {φk⊥(t)− φk⊥(0)}

〉
po

=
〈
eikr∆r [δf (g)

k⊥ (0) + F0Rk⊥(t)]
〉

po

+
e

T
F0

〈
eikr∆rJ0φk⊥(t)

〉
po

, (27)

where Rk⊥(t) ≡ ∫ t

0
Sk⊥(t′)dt′. Appendix A shows in

detail how Eq. (27) is derived. Equation (27) is valid
for all passing, toroidally-trapped, and helical-ripple-
trapped states although we should regard ∆r and 〈· · · 〉po

in Eq. (27) as functions of (ε, µ) for κ2 > 1 and of
(J, µ) for κ2 < 1. In the regions between C1 and C3

in Fig. 2 (a), where the transitions occur at C1(κ2 = 1),
ε and J are related to each other by Eq. (25). Now,
using Eqs. (3) and (27), the perturbed particle distribu-
tion function is written in the same form for all classes

of particles as

δfk⊥(t) = − e

T
φk⊥(t)F0

[
1− e−ik⊥·ρeikr∆r

〈
eikr∆rJ0

〉
po

]

+ e−ik⊥·ρe−ikr∆r

〈
eikr∆r [δf (g)

k⊥ (0) + F0Rk⊥(t)]
〉

po
,

(28)

where φk⊥ = 〈φk⊥〉 is used. In the right-hand side of
Eq. (28), the first group of terms proportional to φk⊥(t)
represent the classical and neoclassical polarizations due
to gyromotion and drift motion of particles while the
second group of terms contain the initial condition and
the turbulent source.

IV. COLLISIONLESS LONG-TIME
ZONAL-FLOW RESPONSE IN THE PRESENCE

OF THE EQUILIBRIUM ELECTRIC FIELD

In order to determine the zonal-flow potential, we use
Poisson’s equation written as

∫
d3v δfik⊥ −

∫
d3v δfek⊥ = n0

eφk⊥

Te
(k⊥λDe)2, (29)

where the subscripts representing ions (i) and electrons
(e) are explicitly shown and λDe ≡ [Te/(4πn0e

2)]1/2 is
the electron Debye length. Then, substituting Eq. (28)
into (29) and taking its flux-surface average, we obtain

eφk⊥(t)
Ti

=
〈I(t)〉
D , (30)

which describes the collisionless long-time behavior of the
zonal-flow potential. Here, 〈· · · 〉 denotes the flux-surface
average and the shielding effects are represented by

D =
∑

a=i,e

Ti

Ta

〈∫
d3v Fa0

[
1−

∣∣∣∣
〈
eikr∆arJ0(k⊥ρa)

〉
po

∣∣∣∣
2
]〉

+ n0(Ti/Te)(k⊥λDe)2, (31)

while the initial conditions and the nonlinear sources are
included in

〈I(t)〉 =
∑

a=i,e

ea

e

〈∫
d3v J0(k⊥ρa)e−ikr∆ar

×
〈
eikr∆ar [δf (g)

ak⊥(0) + Fa0Rak⊥(t)]
〉

po

〉
.

(32)

It should be noted that Eqs. (30)–(32) can be applied
to the zonal-flow potential in wide wave-number ranges
including both ion temperature gradient (ITG) and elec-
tron temperature gradient (ETG) turbulence.

We now consider the wave-number region relevant to
the ITG turbulence, where k⊥ρi < 1, and take the small-
electron-gyroradius limit k⊥ρe → 0. In this case, we also
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have k⊥λDe → 0 and Eq. (29) reduces to the quasineu-
trality condition. Here, we also assume the radial dis-
placement of ions to be so small that kr∆ir < 1. Then,
we put kr∆er → 0 for κ2 > 1, where ∆er ¿ ∆ir because
of the small electron gyroradius, although electrons and
ions in the helical-ripple-trapped states κ2 < 1, for which
vdre ∼ vdri, make radial displacements of the same order
of magnitude, ∆er ∼ ∆ir. Then, Eqs. (31) and (32) are
expanded in terms of k⊥ρi and kr∆ir to yield

D = n0

〈
k2
⊥ρ2

ti

〉

+
∑

a=i,e

Ti

Ta

〈∫
d3v Fa0k

2
r

{〈∆2
ar〉po − 〈∆ar〉2po

}〉

= n0

〈
k2
⊥ρ2

ti

〉 [
1 + Gp + Gt + M−2

p (Ght + Gh)(1 + Te/Ti)
]

(33)

and

〈I(t)〉 =
〈∫

d3v
[
1 + ikr

{
∆ir − 〈∆ir〉po

}]

× [δf (g)
ik⊥(0) + Fi0Rik⊥(t)]

〉
, (34)

respectively, where ρti ≡ (Ti/mi)1/2/Ωi denotes the
ion thermal gyroradius and the electron contribution to
〈I(t)〉 is neglected. The part proportional to Te/Ti in
Eq. (33) represents contributions from electrons trapped
in helical ripples. The dimensionless geometrical factors
Gp, Gt, Ght, and Gh in Eq. (33) are defined by

Gp =
12
π3

B0R
2
0q

2

〈
B2

|∇ψ|2
〉 [∫ 1/BM

0

dλ

×
∮

dθ

2π
(2λB0εH)−1/2κ−1K(κ−1)

{
(2λB0εH)1/2

× κE(κ−1)−
∮

dθ
2π K(κ−1)E(κ−1)∮

dθ
2π (2λB0εH)−1/2κ−1K(κ−1)

}2

,

Gt =
3
π3

B0

(
R0q

r0

)2 ∫ 1/B′m

1/BM

τ̂po(λ)dλ 〈H(κ2 − 1)

× [{εH(θ)}1/2κE(κ−1)− {εH(θt(λ))}1/2]2〉po,

Ght =
15
32π

B0

(
R0q

r0

)2 ∫ 1/B′m

1/BM

τ̂po(λ)dλ 〈H(1− κ2)

× {ε∗(θ, λ)}2〉po − 〈H(1− κ2)ε∗(θ, λ)〉2po],

Gh =
15√
2 π

(
R0q

r0

)2

(εH0)1/2
[〈(ε̃T + ε̃H)2〉po

− 2Cκ(εH0)1/2〈 ˜(εH)1/2(ε̃T + ε̃H)〉po

+
4
3
C2

κεH0〈{ ˜(εH)1/2}2〉po

]
, (35)

where BM denotes the maximum field strength over the
flux surface and B′

m represents the minimum value of lo-
cal maximum field strengths within each helical ripple.
For the case of Fig. 1, BM = B0[1− εT (π) + εH(π)] and

B′
m = B0[1−εT (0)+εH(0)]. Here, Gp and Gt are related

to passing and toroidally-trapped particle orbits, respec-
tively, while Gh and Ght originate from poloidally-closed
and unclosed orbits of helical-ripple-trapped particles, re-
spectively. Integrals of functions of λ and θ are required
to calculate these geometrical factors in Eq. (35), where
τ̂po(λ) and ε∗(θ, λ) is defined by

τ̂po(λ) ≡ vτpo

R0q

≡ 4
√

2
∮

dθ

2π

(
H(κ2 − 1){εH(θ)}−1/2κ−1K(κ−1)

+ 2 H(1− κ2)
[
ε
−1/2
H

∂εH/∂θ

∂(εH − εT )/∂θ

]

θ=θt

)
,

(36)

and

ε∗(θ, λ) = εT (θ) + εH(θ)− 2Cκ{εT (θ)εH(θt(λ))}1/2

+ (2Cκ − 1)εH(θt(λ))− εT (θt(λ)), (37)

respectively. The poloidal-angle functions ε̃T , ε̃H , and
˜(εH)1/2, which are used to define Gh, are given by

ε̃T = εT − 〈εT 〉po, ε̃H = εH − 〈εH〉po

˜(εH)1/2 = (εH)1/2 − 〈(εH)1/2〉po. (38)

The radial displacements ∆r of helical-ripple-trapped
particles, which give main contributions to the shield
of the zonal-flow potential, are proportional to the ra-
dial drift velocities vdr of those particles but inversely
proportional to the radial electric field Er. In heli-
cal configurations optimized for reducing neoclassical
transport, helical-ripple-trapped particles have small vdr

so that Ght and Gh take small values and the zonal-
flow potential shows a good response to the turbulent
source. Effects of Er on ∆r and accordingly on the zonal-
flow response are shown by the poloidal Mach number
Mp ≡ |(cEr/B0r0)(R0q/vti)| in Eq. (33). As seen from
Eq. (33), the shield of the zonal-flow potential is weak-
ened by strengthening the radial electric field Er and ac-
cordingly increasing Mp. For the same value of Er, Mp

can also be increased also by using ions with a heavier
mass, which is expected to produce zonal flows more effi-
ciently and give a more favorable ion-mass dependence
of the ITG turbulent transport than the conventional
gyro-Bohm scaling. In order to physically understand
the above-mentioned ion-mass dependence of the zonal-
flow response, we should note that the geometrical factors
multiplied with M−2

p represent the ratio of the neoclas-
sical polarization ∝ (εH)1/2(kr∆r)2 due to radial drift of
helical-ripple-trapped particles to the classical polariza-
tion ∝ (krρi)2. This ratio becomes smaller for heavier
ions because the classical polarization is proportional to
the ion mass while the neoclassical polarization is inde-
pendent of the mass in the presence of the equilibrium
radial electric field.
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If we assume the initial perturbed ion gyrocen-
ter distribution function to take the Maxwellian
form δf

(g)
ik⊥(0) = (δn(g)

ik⊥(0)/n0)Fi0 with δn
(g)
ik⊥(0) =

n0(k2
⊥ρ2

ti)(eφk⊥(0)/Ti) given by the quasineutrality con-
dition, the relation of the residual zonal-flow potential at
time t to its initial value is derived from Eqs. (30), (33),
and (34) as

φ(t) =
φ(0)

1 + Gp + Gt + M−2
p (Ght + Gh)(1 + Te/Ti)

,

(39)
where contributions of the nonlinear source are dropped.
In our previous works [7, 8] about the zonal-flow response
in helical systems without Er, the potential shielding
by helical-ripple-trapped particles has a different depen-
dence on krρti and the residual zonal-flow potential nor-
malized by the initial value, φ(t)/φ(0), decreases with de-
creasing krρti. Now, Eq. (39) shows that, in the presence
of the poloidal E × B rotation of helical-ripple-trapped
particles, φ(t)/φ(0) becomes independent of krρti for
krρti ¿ 1, which is a similar result to the residual zonal-
flow potential obtained by Rosenbluth and Hinton for the
tokamak case [3].

In the single-helicity helical configuration, where εH

is independent of θ, the curve C3 coincides with C1 in
Fig. 2 (a) and all helical-ripple-trapped particles show
poloidally-closed orbits. Then, we have Ght = 0 and
Eq. (40) reduces to

φ(t) =
φ(0)

1 + Gpt + (15/4π)M−2
p q2(2εH)1/2(1 + Te/Ti)

,

(40)

where εT = (r0/R0) cos θ is used. Equation (40) cor-
responds to the one derived in our previous work [note
that a numerical coefficient 15/8π in Eq.(12) of [18] is
corrected as 15/4π here]. In this case, Gpt ≡ Gp +Gt be-
comes the same geometrical factor as given by Eq. (52) in
Ref. [8]. Also, Eq. (40) agrees with the theory by Mynick
and Boozer [10] in which transitions of particles between
different classes of orbits are not taken into account.

In the limit Er → 0 as in our previous works [7, 8],
we have |kr∆r| → ∞ for helical-ripple-trapped parti-
cles and the nonadiabatic part of the helically-trapped-
particle distribution function is strongly damped by the
phase mixing due to the bounce-center radial drift. Then,
the terms of the form 〈eikr∆r · · · 〉po in Eqs. (27), (28),
(31), and (32) vanish in helically-trapped regions and the
previous results in Refs. [7, 8] can be reproduced from
Eq. (30)–(32).

The results shown in Eqs. (33), (39) and (40) do not
change when the sign of Er is changed. It is because
contributions of the magnetic ∇B-curvature drift veloc-
ity to the poloidal rotation are neglected compared to the
E × B rotation. When the poloidal rotation due to the
magnetic drift is added to the E × B rotation, the to-
tal poloidal rotation is either strengthened or weakened
depending on the particle charge and on which class the

particle orbit belongs to. For example, in the case of
Er > 0 and helical-rippled-trapped particles with un-
closed orbits [see Fig. 2 (b)], the poloidal rotation driven
by the E × B drift is weakened by the magnetic drift
for ions but strengthened for electrons although the re-
lation between the E × B and magnetic poloidal drifts
is reversed by changing the sign of Er. The variation of
the particle rotation speed will change the particle radial
displacement and accordingly the shielding of the zonal-
flow potential. Effects of the poloidal magnetic drift on
the zonal-flow response are neglected as a small correc-
tion in the present work although they can be included
in direct numerical simulations which may show a subtle
dependence of the residual zonal flow on the sign of Er.

V. CONCLUSIONS

In the present paper, collisionless long-time behaviors
of zonal flows in helical systems with radial electric fields
are theoretically investigated. All classes of particles
in passing, toroidally-trapped, and helical-ripple-trapped
states are taken into account to derive the long-time re-
sponse of the zonal-flow potential to the initial condition
and to the turbulence source. Helical-ripple-trapped par-
ticles can draw either poloidally-closed or unclosed or-
bits, to the latter of which toroidally-trapped particles
can make transition with some probability. Effects of
this transition probability are also included in our the-
ory. Resultant formulas in Eqs. (30)–(35) describe how
the long-time zonal-flow response depends on the heli-
cal geometry and on the equilibrium radial electric field
Er. The dependence on Er appears through the poloidal
Mach number Mp ≡ |(cEr/B0r0)(R0q/vt)|. By doing
neoclassical optimization of the helical geometry to lower
the radial drift or by strengthening the radial electric field
Er to boost the poloidal rotation, we can reduce the ra-
dial displacements of helical-ripple-trapped particles and
accordingly enhance the zonal-flow response. Further-
more, under the same conditions on the geometry and
the magnitude of Er, using ions with a heavier mass in-
creases Mp and leads to a higher zonal-flow response so
that we can expect a more favorable ion-mass depen-
dence of the turbulent transport than the conventional
gyro-Bohm scaling.

For gyrokinetic simulation to examine effects of the
E×B drift of helical-ripple-trapped particles, a simula-
tion domain needs to be extended from a toroidal flux-
tube to a poloidally-global region. In order to confirm
the validity of our theoretical predictions presented in
this work, simulation studies using the poloidally-global
gyrokinetic Vlasov code [19] are now in progress and their
results will be reported elsewhere.
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FIG. 3: The (ζ, v‖) phase space obtained by magnifying the
neighborhood of the transition point P−. Two toroidally-
trapped orbits (solid curves with arrows) are shown in the
v‖ < 0 region. One of them is connected to a toroidally-
trapped orbit in the v‖ > 0 region while the other is coupled
to a helically-trapped orbit (a dashed curve with an arrow).
The latter case represents the transition from the toroidally-
trapped state to the helically-trapped state.
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APPENDIX A: DERIVATION OF EQ. (27)

For passing particles and helically-trapped particles
with closed orbits, Eq. (27) is immediately derived from
Eq. (13) and from Eq. (18), respectively, with using the
orbit-average defined in Eq. (26) and the time integra-
tion. Therefore, it is shown in this Appendix how to
derive Eq. (27) only for particles which show transitions
between toroidally-trapped and helically-trapped states.
We should recall that Eqs. (13) and (18) are both de-
rived by taking an average within a helical ripple [see
Eq. (7)] and, therefore, h = gk⊥ is independent of ζ.
Figure 3 shows the (ζ, v‖) phase space obtained by mag-

nifying the neighborhood of the transition point P− [see
Figs. 2 (a) and (b)]. There, two toroidally-trapped or-
bits (solid curves with arrows) are seen in the v‖ < 0
region. One of them is connected to a toroidally-trapped
orbit in the v‖ > 0 region while the other is coupled
to a helically-trapped orbit (a dashed curve). The latter
case represents the transition from the toroidally-trapped
state to the helically-trapped state. These two types of
particle orbits should be taken into account when we eval-
uate h = gk⊥ in the neighborhood of transition point.
For toroidally-trapped particles, which don’t show tran-
sitions to the helically-trapped state but change the sign
of v‖, the boundary condition at P− is given by

(gk⊥)t− = (gk⊥)t+, (A1)

where the subscripts t− and t+ represent toroidally-
trapped particles with v‖ < 0 and those with v‖ > 0,
respectively. On the other hand, for particles which show
transitions between the toroidally-trapped and helically-
trapped states, we have

(gk⊥)t− = (gk⊥)r, (A2)

where the subscript r represents the helical-ripple-
trapped state. Recalling that the probability of the tran-
sition from the toroidally-trapped state to the helically-
trapped state is given by Pt in Eq. (22), h = gk⊥ is
considered to satisfy the boundary condition written as

ht− = (1− Pt) ht+ + Pt hr. (A3)

The boundary condition in Eq. (A3) at the transition
point P− can also be used at P+ [see Figs. 2 (a) and (b)]
as seen by making a similar argument for the transition
at P+. Now, applying the average operation in Eq. (24)
to a combined set of Eqs. (13) and (18) and noting from
Eqs. (14) and (19) that ∆r = 0 at P+ and P−, we find
from Eq. (A3) that the term 〈ωθ∂(eikr∆rh)/∂θ〉po van-
ishes and

∂

∂t

〈
eikr∆rh

〉
po

=

〈
eikr∆rF0

(
J0

e

T

∂φk⊥

∂t
+ Sk⊥

)〉

po

.

(A4)

Integrating Eq. (A4) in time immediately yields Eq. (27).
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