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Gyrokinetic Vlasov code including full three-dimensional

geometry of experiments
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A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent
transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the mag-
netic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately
incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in
the Large Helical Device (LHD) [O. Motojima, N. Oyabu, A. Komori et al., Nucl. Fusion 43, 1674
(2003)] configuration are carried out by the GKV-X code for a benchmark test against the GKV code
[T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24 (2006)]. The frequency, the growth rate, and
the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical
data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers,
while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found
to be small in the core LHD region.
Keywords: gyrokinetic simulation, ITG mode, zonal flow, LHD, VMEC equilibrium

1 Introduction

Anomalous transport of particle, momentum and heat
is commonly observed in fusion plasma experiments,
and has been a central issue in the magnetic fusion
research for the last few decades. It is considered that
the anomalous transport is driven by the drift wave
plasma turbulence [1], e.g., the ion temperature gra-
dient (ITG) turbulence. The zonal flows are now well
known to play a critical role for regulating the turbu-
lent transport in toroidal plasmas, and various works
on the zonal flows have been done for tokamaks and
stellarator/heliotron configurations [2–4].

Toward the exploration of the zonal flow and the
microturbulence in non-axisymmetric configurations,
a number of linear and nonlinear gyrokinetic simu-
lations have been performed [5–9]. In our previous
papers [6,10], we investigated the effects of single and
multiple helicity magnetic field configurations on the
ITG turbulence in the helical system by using the gy-
rokinetic Vlasov flux-tube code, GKV [11]. The simu-
lation results manifest that a neoclassically optimized
(inward-shifted) helical configuration leads to a lower
level of the ion heat transport through the enhance-
ment of the zonal flows than that in the standard con-
figuration. This is also qualitatively consistent with
the Large Helical Device (LHD) [12] experiment re-
sults that the anomalous transport is reduced in the
inward shifted cases with decreasing the radial drift of
ripple trapped particles [13], but increasing the unfa-
vorable field line curvature [14].

For better understandings of the anomalous trans-
port physics, quantitative comparisons between the
results of gyrokinetic simulations and experiments
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are demanded. In the GKV simulations, however,
the model helical fields including limited numbers of
helical Fourier components are employed with the
large aspect ratio approximation to the field geometry,
where the Jacobian is assumed to be a constant on the
flux-surface, and the diagonal metric tensor compo-
nents derived from the cylindrical approximation are
used. For more quantitative gyrokinetic simulations,
thus, it is a natural path to furnish a well established
gyrokinetic code with the detailed geometrical infor-
mation obtained from a three-dimensional equilibrium
calculations as in Refs. [15–17]. Being based on this
motivation, we developed a new gyrokinetic Vlasov
code, GKV-X. The GKV-X code precisely deals with
realistic magnetic configuration with full geometrical
information given by the VMEC code [18] which is
a standard magnetohydrodynamic equilibrium solver
for non-axisymmetric systems. Using the GKV-X
code, we investigate effects of full geometry of the
LHD plasmas on the linear ITG mode and the zonal
flow response [6,19–23] by performing the benchmarks
with the GKV code.

The rest of this paper is organized as follows. In
Sec.2, we briefly summarize field representation and
the geometry in the flux coordinate system. In Sec.3,
we describe basic equations employed in the GKV and
the GKV-X codes, and clarify the differences between
the codes for the concrete representations of each term
in the equations. In Sec.4, simulation results of the
linear ITG instability and the zonal flow response are
compared between both codes for investigation of the
effects of the metric tensor and the Jacobian in the
helical systems. Finally, conclusion is given in Sec.5.
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2 Magnetic field geometry

In this section, for the later use, we describe the de-
tailed expressions of the magnetic field representation
and the geometry in flux coordinate systems. Here, we
consider the flux coordinate system, {ρ, θ, ζ}, where θ
and ζ are poloidal and toroidal angles, respectively.
The labeling index of the flux surfaces, ρ ≡

√
Ψ/Ψa,

is the dimensionless quantity. Here Ψ represents the
toroidal magnetic flux with the minor radius, r, de-
fined by Ψ = Baxr

2/2, with the field strength at the
magnetic axis, Bax, and Ψa is the value of the toroidal
flux at the last closed surface. Therefore, the flux la-
bel can be represented as ρ = r/a, where a means
the minor radius of the last closed surface defined by
Ψa = Baxa

2/2 at ρ = 1.

2.1 Field representation

Let us consider the Boozer coordinates [24],
{ρ, θB, ζB}, as the flux coordinate system. The con-
travariant representation of the magnetic field in the
Boozer coordinates, is written as

B = ∇Ψ(ρ) ×∇θB + q−1(ρ)∇ζB ×∇Ψ(ρ)

=
Ψ′
√

gB

(
eζB + q−1(ρ)eθB

)
= BζBeζB + BθBeθB , (1)

where, eθB ≡ ∂r/∂θB, eζB ≡ ∂r/∂ζB, q(ρ) is the
safety factor and

√
gB is the Jacobian in the coor-

dinate system,

√
gB = (∇ρ ×∇θB · ∇ζB)−1

=
Ψ′

B2

(
BζB + q−1(ρ)BθB

)
, (2)

where the prime symbol represents the derivative with
respect to the flux label ρ, i.e., A′ = dA/dρ. Hereafter,
for simplicity, the subscript ‘B’ of the poloidal and
toroidal angles is suppressed when the angles are used
as subscripts of any variables, e.g., BθB is rewritten
by Bθ. The poloidal and toroidal covariant compo-
nents of the field, Bθ and Bζ , are flux functions in
the Boozer coordinates, and consist of the covariant
representation of the field written as

B = Bρ∇ρ + Bθ∇θB + Bζ∇ζB. (3)

The components of the equilibrium field, Bθ, Bζ , Bθ

and Bζ are directly given by VMEC code except for
the component Bρ. The radial covariant component
Bρ can be determined using the contravariant ones,

Bρ = Bθgθρ + Bζgζρ. (4)

Here, gθρ and gζρ are the covariant components of the
metric tensor which are given in the next subsection.

2.2 Metric components

Since the VMEC code uses the original coordinate sys-
tem, so-called “VMEC coordinates”, we need to con-
vert the coordinates into the Boozer coordinates. For
the purpose, we use the NEWBOZ code [25] which
transforms coordinates from the VMEC to the Boozer
coordinates {ρ, θB, ζB} with the radial flux label ρ.
The VMEC/NEWBOZ code package outputs the in-
formation for the shapes of the flux surfaces defined in
the cylindrical coordinates {R, Z, ϕ} as Fourier series
for θB and ζB,

R =
∑

k

Rk(ρ) cos(nkζB − mkθB),

Z =
∑

k

Zk(ρ) sin(nkζB − mkθB),

ϕ = ζB +
∑

k

ϕk(ρ) sin(nkζB − mkθB). (5)

From Eq.(5), the covariant metric components can be
obtained,

gij =
∂R

∂i

∂R

∂j
+

∂Z

∂i

∂Z

∂j
+ R2 ∂ϕ

∂i

∂ϕ

∂j
, (6)

where i, j = {ρ, θB, ζB}. Making use of Eqs.(1), (2)
and (3), gθζ and gζζ can also be represented in a dif-
ferent form,

gθζ =
√

gB

Ψ′ Bθ − q−1(ρ)gθθ,

gζζ =
√

gB

Ψ′ Bζ − q−1(ρ)gθζ , (7)

which are useful for consistency check of the calcu-
lation of the metric tensor. We can obtain the con-
travariant metric components from the covariant ones,

gil =
1
gB

(gjmgkn − gjngkm) , (8)

where {i, j, k} and {l,m, n} are even permutations
of {ρ, θB, ζB}. In Fig.1, we show an example of the
contravariant components of the metric tensor in the
standard LHD equilibrium at the flux label ρ = 0.6,
where gij for i, j = {ρ, θB, ζB} calculated from the
VMEC/NEWBOZ output are plotted along the field
line.

3 GKV and GKV-X codes

In the present section, we give the gyrokinetic equa-
tion employed in the GKV and the GKV-X codes,
and present concrete expressions of each term of which
profiles along the field line are compared for the two
codes.

3.1 Basic equations

Let {r, θ, ζ} be a generalized flux coordinate system.
The local flux-tube model [26] with the field-aligned
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coordinates, {x, y, z}, is used in the codes, where x =
r − r0, y = (r0/q0) [q(ρ)θ − ζ] and z = θ, with the
safety factor q0 at the minor radius r0 = ρ0a. The
minor radius, r0, is defined by the toroidal magnetic
flux Ψ(r = r0) = Baxr

2
0/2. The both codes solve the

electrostatic gyrokinetic equation of the perturbed ion
gyrocenter distribution function δf [11, 27],

∂δf

∂t
+ v||b · ∇δf +

c

B0
b ×∇Φ · ∇δf

+vd · ∇δf − µ

mi
b · ∇B

∂δf

∂v||

=
(
v∗ − vd − v||b

)
· e∇Φ

Ti
FM + C(δf), (9)

where b = B/B is the unit vector parallel to the
magnetic field, v|| and µ = miv

2
⊥/2B, which are re-

garded as the velocity-space coordinates in the codes,
denotes the parallel velocity and the magnetic mo-
ment, respectively. The Maxwellian distribution with
the temperature Ti and the collision term are de-
noted by FM and C(δf), respectively. The magnetic
drift velocity is vd = (c/eB)b × (µ∇B + miv

2
∥b · ∇b)

and the diamagnetic drift velocity, v∗ = (cTi/eB)b ×
[∇ ln n + (miv

2/2Ti − 3/2)∇ ln Ti]. The perpendicular
wave number vector is defined by

k⊥ = kx∇r + ky∇
[
r0

q0
(q(r)θ − ζ)

]
. (10)

In the wave number space, (kx, ky), the average elec-
trostatic potential at the gyrocenter, Φ, is related to
the electrostatic potential at the particle position, ϕ,
as Φkx,ky = J0(k⊥v⊥/Ωi)ϕkx,ky . The zeroth-order
Bessel function, J0(k⊥v⊥/Ωi), represents the finite gy-
roradius effect, where the ion gyro frequency is defined
by Ωi = eB/mic. The electrostatic potential ϕkx,ky is
calculated from the quasi-neutrality condition,∫

d3vJ0δfkx,ky − n0

eϕkx,ky

Ti
[1 − Γ0(b)] = ne,kx,ky ,

(11)

where δfkx,ky is the Fourier component of δf , Γ0(b) =
ebI0(b) with b = (k⊥vti/Ωi)2, and I0 is the modified
zeroth-order Bessel function. The ion thermal speed
is defined by vti =

√
Ti/mi. The electron density per-

turbation, ne,kx,ky , is assumed to be adiabatic, and is
given in terms of the electron temperature, Te, and
the averaged density, n0, by

ne,kx,ky

n0
=

{
e
[
ϕkx,ky − ⟨ϕkx,ky ⟩

]
/Te if ky = 0,

eϕkx,ky/Te if ky ̸= 0.

(12)

Also, ⟨· · ·⟩ means the flux surface average written as

⟨A(z)⟩ =
∫ ∞

−∞

√
gFA(z)dz

/∫ ∞

−∞

√
gFdz, (13)

for arbitrary function of z, A(z). Here,
√

gF is the Ja-
cobian in the coordinate system, {x, y, z}, which has

the relation with the Jacobian in the Boozer coordi-
nates, Eq.(2),

√
gF =

q0

ar0

√
gB. (14)

We adopt the modified periodic boundary condition
at the boundaries of the flux-tube domain [26]. In the
linear and collisionless case, the Fourier transformed
expression of Eq.(9) becomes(

∂

∂t
+ v∥b · ∇ − µ

mi
b · ∇B

∂

∂v∥
+ iωDi

)
δfkx,ky

= FM(−v∥b · ∇ − iωDi + iω∗T i)J0(k⊥ρi)
eϕkx,ky

Ti
,

(15)

where ωDi = k⊥ · vd and ω∗T i = k⊥ · v∗ are the mag-
netic and diamagnetic drift frequencies, respectively,
and the ion gyroradius is defined by ρi = v⊥/Ωi.

3.2 Geometrical expressions used in
GKV

In the GKV simulations for the helical configurations
such as the LHD, we employed model field configura-
tion,

B = B0

[
1 − ϵ00(r) − ϵt(r) cos θ

−
L+1∑

l=L−1

ϵl(r) cos [lθ − Mζ]
]
, (16)

which includes the toroidal ϵt, main helicity ϵh = ϵL,
and two side-band helical components ϵ+ = ϵL+1 and
ϵ− = ϵL−1. Here, M and L mean the main pe-
riod numbers of the confinement field in the toroidal
and poloidal directions, respectively. For the LHD,
L = 2 and M = 10. Here, we regard the poloidal
angle θ as a coordinate along the field line labeled
by α = ζ − q0θ = const. In the GKV code, we em-
ploy the large aspect ratio approximation for the con-
finement field geometry assuming small helical ripples
and cylindrical diagonal metric tensor [7, 8]. Under
the approximation, in terms of the field-aligned coor-
dinates {x, y, z}, the magnetic drift frequency in the
right hand side of Eq.(15) is given by

ωDi = − c

e

(
µ +

1
B

miv
2
∥

)
ϵt
r0

×

[
ky

(ρ0ϵ
′
00

ϵt
+

ρ0ϵ
′
t

ϵt
cos z

+
L+1∑

l=L−1

ρ0ϵ
′
l

ϵt
cos[(l − Mq0)z − Mα]

)
+(kx + ŝzky)

(
sin z

+
L+1∑

l=L−1

l
ϵl

ϵt
sin[(l − Mq0)z − Mα]

)]
, (17)
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using Eq.(16) for a fixed α. Here, ŝ = (r0/q0)dq/dr =
(ρ0/q0)q′ is the magnetic shear parameter which is
assumed to be constant, and ϵ′ = dϵ/dρ = a(dϵ(r)/dr)
is used. The diamagnetic drift frequency is expressed
as

ω∗T i = − cTi

eB0Ln
ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]
, (18)

where ηi = Ln/LT with the background gradients for
the density, L−1

n = −d lnn/dr, and for the temper-
ature, L−1

T = −d lnTi/dr. The perpendicular wave
number k⊥ is written as

k2
⊥ = (kx + ŝzky)2 + k2

y, (19)

which is used for the zeroth-order Bessel function in
Eq.(15) and the zeroth-order modified Bessel function
in Eq.(11). The parallel derivative in Eq.(15) is given
by

b · ∇ =
1

R0q0

∂

∂z
, (20)

where the safety factor q0 and the major radius R0

are regarded as constant. This corresponds to the ap-
proximation that the Jacobian is expressed as

√
gF ∝

1/(B ·∇θ) ∝ 1/B, namely, B
√

gF is a constant on the
flux surface. This implies that the coordinates in this
model does not coincide with the Boozer coordinates,
exactly. In the large aspect ratio approximation, how-
ever, the difference is entirely small. The flux surface
average for arbitrary function, A(z), in Eq.(13) re-
duces to

⟨A(z)⟩ =
∫ ∞

−∞
A(z)dz/B

/ ∫ ∞

−∞
dz/B, (21)

which guarantees the property, ⟨B · ∇A⟩ = 0. Ac-
cording to the approximation, the parallel derivative
of B, which is employed for the mirror force term in
Eq.(15), can be written as

b · ∇B =
B0ϵt
R0q0

(
sin z

+
L+1∑

l=L−1

(l − Mq0)
ϵl

ϵt
sin[(l − Mq0)z − Mα]

)
,

(22)

with the constant field line label α.

3.3 Geometrical expressions used in
GKV-X

In the new code, GKV-X, we employ the same ba-
sic equations as the GKV code, Eq.(9) and (11), but
with the confinement field model obtained by the
VMEC/NEWBOZ code package which outputs the
confinement field strength in terms of the Fourier se-
ries in the Boozer coordinate system, {ρ, θB, ζB},

B =
nmax∑
n=0

B0,n(ρ) cos nζB

+
mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ) cos[mθB − nζB], (23)

where Bm,n(ρ) is the Fourier component with the
poloidal (m) and the toroidal (n) mode numbers.
Here, mmax and nmax are the maximum mode num-
bers for poloidal and toroidal directions used in the
VMEC calculation. In the GKV-X, furthermore,
we implement exact representations of each term in
Eq.(9) with full geometrical factors, the Jacobian and
the metric tensor. In the coordinates, {ρ, θB, ζB}, the
magnetic drift frequency in Eq.(15) with zero-beta,
b · ∇b = (∇⊥B)/B, is given by

ωDi = − c

eB2

a
√

gB

(
µ +

1
B

miv
2
∥

)
×

[
ky

{(
ρ0

q0
Bρ + ŝθBBζ

)
∂B

∂θB

+(ρ0Bρ − ŝθBBθ)
∂B

∂ζB

−
(

ρ0

q0
Bθ + ρ0Bζ

)
∂B

∂ρ

}

+kx

{
Bζ

∂B

∂θB
− Bθ

∂B

∂ζB

}]
, (24)

with the perpendicular wave numbers, kx and ky,
where the field-aligned coordinates, {x, y, z}, for the
GKV-X case are defined later. The diamagnetic drift
frequency can also be expressed as

ω∗T i = − cTi

eLn

ρ0a
2

q0B2√gB
(Bθ + q0Bζ)

×ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]
= − cTi

eLn

ρ0a
2

Ψ′ ky

[
1 + ηi

(
miv

2

2Ti
− 3

2

)]
,

(25)

where we use Eq.(2) in the last line. Using the identity
for the contravariant components of the metric tensor,
Eq.(8), we can obtain the perpendicular wave number
k⊥ as follows;

k2
⊥ = k2

xa2gρρ

+ 2kxkya2

[
ŝθBgρρ +

ρ0

q0

(
q0g

ρθ − gρζ
)]

+ k2
ya2

[
ρ2
0

q2
0

(
gζζ + q2

0gθθ − 2q0g
θζ

)
+ 2ŝθB

ρ0

q0

(
q0g

ρθ − gρζ
)

+ ŝ2θ2
Bgρρ

]
. (26)

The parallel derivative is determined as

b · ∇ =
Ψ′

q0B
√

gB

(
∂

∂θB
+ q0

∂

∂ζB

)
, (27)

with the Jacobian Eq.(2). Therefore, in the GKV-X
code, we use Eq.(13) as the flux surface averaging, and
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the parallel derivative of B can be represented as

b · ∇B =
Ψ′

q0B
√

gB

×
mmax∑
m=1

nmax∑
n=nmax

Bm,n(ρ)(m − nq0) sin[nζB − mθB].

(28)

In Eq.(24), we use derivatives of the field strength
along each direction in the coordinates {ρ, θB, ζB}
written by

∂B

∂ρ
=

nmax∑
n=0

B′
0,n(ρ) cos nζB

+
mmax∑
m=1

nmax∑
n=−nmax

B′
m,n(ρ) cos[mθB − nζB],

∂B

∂θB
=

mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ)m sin[nζB − mθB],

∂B

∂ζB
= −

nmax∑
n=0

B0,n(ρ)n sinnζB

+
mmax∑
m=1

nmax∑
n=−nmax

Bm,n(ρ)n sin[mθB − nζB].

(29)

In the GKV-X code, we use above terms after we
convert the coordinates into the field-aligned coordi-
nates {x, y, z} with the relations, x = a(ρ − ρ0), y =
(aρ0/q0)(qθB − ζB) and z = θB in a constant field line
label α = ζB−q0θB. The parallel derivative in Eq.(27),
for example, is written as b·∇ = (Ψ′/q0B

√
gB)(∂/∂z).

The concrete profiles of each term in the equation (15),
which are used in the GKV and the GKV-X simula-
tion, are shown in Fig.2. The details of the profiles
are discussed in the next section.

4 Comparison of simulation re-
sults

In order to investigate the effects of non-axisymmetric
geometry on the ITG modes and zonal flows, gyroki-
netic Vlasov simulations by linearized versions of the
GKV-X and the GKV codes are performed in a similar
way as in Refs. [7] and [11]. Here, we use the magnetic
configuration with the parameters of the confinement
field based on the VMEC calculation results for the
standard LHD case which is similar to ‘S-B case’ in
Ref. [8]. In the GKV-X simulation, we use the VMEC
configuration with full helical components. On the
other hand, the GKV calculation utilizes the param-
eters summarized in Table 1 which are obtained from
the VMEC configuration in terms of the toroidal, main
helical, two side-band components and their radial
derivatives. In both calculations, we use same parame-
ters for the variables, ηi = 3, Te/Ti = 1, Ln/R0 = 0.3,
q0 = 1.9, ŝ = −0.87501 and α = 0.

4.1 Effects of full geometry

To highlight differences in the effects of the metric ten-
sor, the Jacobian and full Fourier components of the
confinement field between the two models, we plot pro-
files of each term in Eq.(15), of which concrete expres-
sions are described in the previous section. In Fig.2,
we plot the normalized field strength, the magnetic
drift frequency, ωDi, normalized by vtiL

−1
n , the mir-

ror force term, (µ/mi)b · ∇B, normalized by v2
tiL

−1
n ,

and the square of the normalized perpendicular wave
number, k⊥ρi, as functions of the field-aligned coor-
dinate z at ρ = 0.6. Here, for the normalization of
the field strength, we use B0,0(ρ) as the normaliza-
tion factor B0. As seen in the figures, the profiles
of the field strengths, the magnetic drift frequencies,
and the mirror force terms for the GKV-X and the
GKV codes look very similar to each other. How-
ever, in the region near z = 0, where the ITG in-
stabilities are driven stronger because of more un-
favorable magnetic field line curvature, a difference
in the magnitude of the magnetic drift frequencies is
not negligible, and actually causes a difference in the
ITG-mode growth rates. For the diamagnetic drift
frequency given in Eqs.(18) and (25), we find that
they have only a small difference by the factor of
ω

(GKV)
∗T i /ω

(GKV-X)
∗T i = Ψ′/(a2ρ0B0) ≃ 1.0097. The pro-

files of the perpendicular wave number show an obvi-
ous difference due to the effects of the helical ripples
on the metric tensor. In the following simulations for
the linear ITG modes and collisionless damping of the
zonal flows, we obtain the results at ρ = 0.6 which is
in core plasma region of the LHD.

4.2 Linear ITG instability

Figure 3 shows growth rates and real frequencies of the
linear ITG instability, obtained from the GKV-X and
the GKV simulations for ρ = 0.6, as functions of the
normalized poloidal wave number kyρi, where kx = 0
is used. The growth rate in the GKV-X calculation
is slightly higher than the GKV results for kyρi <∼ 0.3
and lower for kyρi >∼ 0.3. The real frequency given by
the GKV-X simulation is slightly more negative than
the GKV result. The differences between the codes
are magnified as the poloidal wave number increases,
which originates from the ripple components and the
full metric tensor through the magnetic drift frequency
(ωDi) and the perpendicular wave number (k⊥), re-
spectively. Since more helical ripple components are
included in the magnetic drift frequency for the GKV-
X case, the difference of ωDi appears as seen in Fig.2-
(b), that is, ωDi for the GKV-X is more negative than
for the GKV around z ≃ 0 where the ITG instabili-
ties are strongly driven because of unfavorable mag-
netic field line curvature. According to Eq.(24), the
difference in ωDi is enhanced in the large |ky| region.
In the expression of the perpendicular wave number,
Eq.(26), the terms including the metric tensor com-
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ponents gθθ and gρρ, which reflect the shape of the
elliptic magnetic surface, are influential in k⊥ related
to the finite gyroradius effect. The term with gθθ re-
mains finite around z ≃ 0, and the contribution of the
term to k⊥ is also enhanced for higher poloidal wave
numbers, while the term with gρρ vanishes at z = 0. In
the other terms of Eq.(15), i.e., the diamagnetic drift
frequency and the mirror force term, the differences
between the codes are much smaller than those in ωDi

and k⊥. Therefore, at large poloidal wave numbers,
the helical ripple components of the confinement field
and the metric tensor of the magnetic surface affect
the frequency and the growth rate of the ITG insta-
bility, through the magnetic drift frequency and the
finite gyroradius effect.

Eigenfunctions of the ITG modes are also in-
vestigated as shown in Fig.4 for kyρi = 0.324 and
kyρi = 0.649. As seen in the plot for kyρi = 0.324,
the mode structures of ϕk obtained by the two codes
have a similar profile which is accompanied by oscilla-
tions associated with the helical ripples. In contrast,
the field-aligned profiles of ϕk for larger poloidal wave
number kyρi = 0.649 show different ripple structures
in the unfavorable curvature region around z ≃ 0.
This is consistent with the results of the growth rate
and the real frequency shown in Fig.3, where the dif-
ferences are mainly found in the higher poloidal wave
numbers. Linear eigenvalue analysis [28–30] also pre-
dict the similar mode structure to the present results.

4.3 Zonal flow evolution

The zonal flows are produced by an electrostatic field
perturbation varying in the radial direction, and have
the poloidal wave number ky = 0. Hence, the per-
pendicular wave numbers in Eq.(19) and Eq.(26) are
simply given by

k2
⊥ =

{
k2

x for GKV,
k2

xa2gρρ for GKV-X.
(30)

Figure 5 shows the time evolution of the flux sur-
face averaged zonal flow potential ⟨ϕk⊥⟩ during their
linear collisionless damping found in the GKV and
the GKV-X simulations. The results are shown for
two different radial wave numbers, kxρi = 0.0637 and
kxρi = 0.1274. As seen in the plots, the response
functions of the zonal flows to the initial perturba-
tion, ⟨ϕk⊥(t)⟩/⟨ϕk⊥(0)⟩ given by the two codes agree
well with each other for both kx. The residual levels
of the zonal flow potentials at t/(Ln/vti) = 100 are
obtained as KGKV-X = (1.33 ± 0.81) × 10−2, KGKV =
(1.32± 0.79)× 10−2 for kxρi = 0.0637, and KGKV-X =
(3.54± 0.15)× 10−2, KGKV = (3.36± 0.10)× 10−2 for
kxρi = 0.1274. Thus, the effect of the metric tensor
on the residual zonal flow levels is very weak. We con-
sider that this is because the ripple effect of the per-
pendicular wavenumber Eq.(30) for the GKV-X case
with gρρ, which is plotted in Fig.1, is blinded with
taking the flux surface average to determine the resid-

ual zonal flow potential that loses the poloidal-angle-
dependent components associated with the geodesic
acoustic mode (GAM) oscillations. Regarding the
short-time response of the zonal flow potential, the fi-
nite gyroradius effects (due to k⊥ρi) on the frequency
and the damping rate of the GAM are weaker than
the effects of the Fourier spectrum of the confine-
ment field strength as theoretically shown in Ref. [31].
In the present paper, the difference between the field
strength structures used in the GKV and the GKV-X
calculations is quite small as seen in Fig.2-(a). There-
fore, the behaviors of the zonal flow response shown by
both codes have only slight differences for the present
case.

5 Conclusions

In this paper, we reported development of the new
gyrokinetic Vlasov simulation code, GKV-X, which is
applicable to non-axisymmetric configuration such as
the LHD. The GKV-X code is designed to accurately
deal with the effects of complicated geometry and he-
lical ripple components of the confinement field, while
the original GKV code uses the model confinement
field for the geometry based on the large aspect ratio
approximation. The new code includes full informa-
tion about the metric tensor, the Jacobian, and the
Fourier components of the helical field obtained from
the VMEC equilibrium calculation. We performed the
benchmark test of the GKV-X with the GKV calcula-
tions in the core plasma region of the standard LHD
configuration. In the simulations of the linear ITG
instability, we have found that the effects of full ge-
ometry and the helical ripples are enhanced for the
higher poloidal wave numbers through the finite gy-
roradius effect and the magnetic drift frequency. The
collisionless damping of the zonal flow potential is also
examined, where the geometrical effects on the zonal
flow show little differences between both codes. Thus,
we can conclude that the GKV calculation with model
helical field is useful especially for the phenomena with
the long wavelengths in the standard LHD configura-
tion with relatively small helical ripple components.
However, we should mention that above benchmark
tests are made for a core plasma region at ρ = 0.6,
where the GKV simulations can be relatively appro-
priate for the investigation of the ITG modes and the
zonal flows. Therefore, the GKV-X code can be a pow-
erful tool to examine the effects of the full geometry
and helical ripples on the ITG modes and the zonal
flows, if we extend the simulation region to the edge
region of the LHD plasmas where the geometrical ef-
fects are expected to appear more remarkably. This is
because there exists strongly distorted magnetic sur-
faces and more complicated helical ripple components
in the edge region.

The gyrokinetic simulation including the full ef-
fects of the complicated three-dimensional magnetic
field is useful for quantitative investigation of the ITG
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modes and the zonal flows in the helical systems. The
GKV-X code enables us to study the ITG modes and
the zonal flows in various types of field configurations,
and to make comparison with the experimental data,
of which results will be reported elsewhere.
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Table 1 Parameters at the flux surface ρ = 0.6 employed in the GKV code. The prime symbol means A′ = dA/dρ.

q0 r0/R0 ϵt ϵh/ϵt ϵ−/ϵt ϵ+/ϵt
1.9 0.0907 0.0878 0.9113 -0.2806 0.0498
ŝ ρ0ϵ

′
00/ϵt ρ0ϵ

′
t/ϵt ρ0ϵ

′
h/ϵt ρ0ϵ

′
−/ϵt ρ0ϵ

′
+/ϵt

-0.87501 0.1997 1.006 1.9486 -0.6452 0.070
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Fig. 1 Example of the contravariant components of the metric tensor, which is used for k⊥ in Eq.(26), obtained by the
VMEC/NEWBOZ outputted configuration at ρ = 0.6 in the Boozer coordinate system {ρ, θB, ζB} with a fixed
α = ζB − q0θB. Each component is in unit of a−2.
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n , and (d): the square of the normalized perpendicular

wavenumber, k⊥ρi. All profiles are evaluated at ρ = 0.6 and three plots except for (a) are calculated for kxρi = 0
and kyρi = 0.324. In (b) and (c), the magnetic moment is µ/(miΩiB

−1) = 0.50 vtiLn. Black and red curves show
the results of the GKV and the GKV-X codes, respectively.
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