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Abstract. Isotope effects on zonal flow response and the ion temperature gradient (ITG) instability in magnetically-
confined plasma with helical configurations are investigated by gyrokinetic simulations. Poloidally global simula-
tions of the collisionless zonal flow damping manifest enhancement of the residual amplitude by the equilibrium-
scale (uniform and constant) radial electric field (Er0), and show agreement with the zonal flow response kernel
analytically derived from the theory for helical plasmas with multiple-helicity confinement field components. The
higher zonal flow response is found with heavier ion mass for the same ion temperature (Ti) and Er0, because
effects of the radial electric field are introduced in terms of the poloidal Mach number (Mp), while the ITG mode
frequency is Doppler-shifted. Accordingly, the isotopic dependence of the zonal flow response through Er0 leads
to the mass (or Mp) dependence of the turbulent transport.

1. Introduction

A variety of isotope effects on anomalous transport have been reported from various fusion
plasma experiments but remain to be resolved [1]. Conventional gyrokinetic theory and simu-
lations of the local plasma turbulence predict the gyro-Bohm scaling of transport coefficients
showing transport enhancement as the square root of the ion atomic mass number, while several
experiments exhibit the confinement improvement in deuterium discharges.

Recent theoretical, numerical, and experimental investigations on the anomalous transport
shed a highlight on roles of self-generated poloidal shear flows, zonal flows (ZFs), in regulating
the plasma turbulence [2]. ZFs generated by the ion temperature gradient (ITG) turbulence [3]
lead to the ion heat transport reduction and the up-shift of critical ion temperature gradient
[4]. For finding further reduction of the turbulent transport, the ZF response function [5] has
been investigated in detail for effects of collisional [6], plasma shaping [7], short wavelength
[8–10], and non-axisymmetric geometry [11–16]. Influences of the radial electric field on the
ZF response are recently studied for a tokamak pedestal region [17] and non-axisymmetric
(helical) systems [18–20].

Gyrokinetic theory for a helical plasma with an equilibrium-scale radial electric field (Er0)
recently predicts enhancement of the ZF response [18–20], where Er0 drives the poloidal ro-
tation of helical-ripple-trapped particles with reduced radial displacements of drift orbits [14].
The Er0 dependence of the ZF response is regarded as the isotope effect if the ion temperature
and the radial electric field are the same for the different ion mass. A neoclassical transport
analysis for the Large Helical Device (LHD) [21] confirms that magnitude of the equilibrium
radial electric field expected in the deuterium discharge is almost identical to that in the hy-
drogen plasma if other parameters are the same [22]. An isotope effect on ZF response, thus,
appears through Er0 generated by the neoclassical transport, and is expected to play a favorable
role in reducing the turbulent transport.

In the present study, we investigate isotope effects on the ZF response and the ITG insta-
bility in helical plasmas with the equilibrium scale radial electric field, utilizing the gyrokinetic
simulation code, GKV [23–25], with extension of the field-line-label dependence of the confine-
ment field and the poloidal rotation due to Er0. A detailed parameter study of the ZF response
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for Mp and the radial wavenumbers is shown in the next section, where we examine two helical
field structures of the LHD type configuration, that is, the single-helicity and the inward-shifted
model cases. The gyrokinetic simulation of the ITG instability is shown in section 3, where
we employ a newly-extended GKV code with the field-line-label dependence of the drift and
mirror force terms. The uniform and constant Er0 leads to the Doppler shift of the ITG mode
frequency while the instability growth rate is expected to be unaffected. A nonlinear GKV simu-
lation also presents reduction of turbulent fluctuation levels and transport flux in case with Er0.
Accordingly, the isotopic dependence of the zonal flow response through Er0 leads to the mass
(or, equivalently, Mp) dependence of the turbulent transport. The results are summarized in the
last section.

2. Gyrokinetic Simulation of Zonal Flow Response with Radial Electric Field

The first gyrokinetic simulation of the ZF enhancement by Er0 in helical systems was carried
out by means of the GKV code, and shows increase of the ZF response for relatively large Mp-
values in the single-helicity LHD-type configuration [26]. A preliminary report of the GKV

simulation for multiple-helicity configuration is given in [20]. Global gyrokinetic simulations
for LHD and Wendelstein 7X configurations also demonstrate the enhancement of the residual
ZF level by the equilibrium radial electric field Ref. [27]. In this section we describe the GKV

simulation results of the ZF response for different Mp and radial wavenumbers for the single
and the inward-shifted model configurations of LHD.

2.1 Theoretical Background
In the non-axisymmetric systems, the equilibrium radial electric field Er0 drives the poloidal

rotation of helical-ripple-trapped particles with reduced radial displacements of drift orbits
[14]. Theoretical analysis of the zonal flow response including collisionless orbits for pass-
ing, toroidally-trapped, helically-trapped and transition particles predicts the residual zonal flow
potential of

φ(t) = φ(0)/[1+Gp +Gt +M−2
p (Ght +Gh)(1+Te/Ti)] , (1)

in the long time limit of t → ∞ [19]. Here, Gp and Gt mean the dimensionless geometrical
factors related to passing and toroidally-trapped particles. The unclosed and closed orbits of
helically-trapped particles are represented by Ght and Gh, respectively. The poloidal Mach
number is given by Mp = |(R0q/r0)(cEr0/B0vti)|, where R0, r0, q and vti =

√
Ti/mi denote the

major and minor radii, the safety factor, and the ion thermal speed, respectively.
The above response analysis predicts enhancement of the residual flow by increase of Mp,

while the shielding effect of the zonal flow potential due to the helically-trapped particles in-
creases for smaller |kr| in case without Er0 [11, 12].

2.2 Simulation Model
Here, we choose the field aligned coordinates of x = r− r0, y = r0 [θ −ζ/q(r)], and z = ζ ,

where the field-line-label α = θ −ζ/q = y/r0 is chosen to be BBB = (2π)−1∇Ψt ×∇α . The safety
factor is denoted by q. The magnetic field strength is given by

B = B0

{
1− ε00(r)− εt(r)cos(α + z/q)−∑

l
εl(r)cos[lα +(l/q−M)z]

}
, (2)

where the α dependence of the confinement field is explicitly taken into account. For LHD,
the toroidal and main poloidal period numbers of the confinement field are M = 10 and L = 2,
respectively.
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We solve the linearized gyrokinetic equation describing the collisionless damping of ZFs in
the model LHD configuration with the equilibrium-scale radial electric field Er0,

∂δ f
∂ t

+ v‖bbb ·∇δ f + vdx
∂δ f
∂x

−µ (bbb ·∇Ωi)
∂δ f
∂v‖

+ωθ
∂δ f
∂α

= −vdx
e
Ti

∂ 〈Φ〉
∂x

FM (3)

where δ f , µ , Ωi, and Ti denote the perturbed ion gyrocenter distribution function, the mag-
netic moment (µ ≡ v2

⊥/2Ωi), the ion gyrofrequency, and the ion temperature, respectively. The
poloidal EEE ×BBB rotation frequency is denoted by ωθ = −cEr0/r0B0. The ZF component of the
electrostatic potential in Eq. (3) is defined by the flux surface average, 〈Φ〉.

The electrostatic potential perturbation is obtained by solving the quasi-neutrality condition
that is simplified as

e〈φkx〉
Ti

=
〈δnkx(y,z)〉

n0(1− Γ0|ky=0)
(4)

where Γ0 = e−bI0(b) with b = (k⊥vti/Ωi0)2 for ky = 0. The zeroth-order modified Bessel func-
tions is denoted by I0. The weak dependences on α and ζ of the arguments for J0 and Γ0 are
ignored by using Ωi0 instead of Ωi, since the difference causes higher-order corrections only.
Then, one finds 〈Φkx〉 = J0|ky=0 〈φkx〉.

We consider two magnetic field structures, that is, the single helicity and the inward-shifted
model cases for the LHD configuration. In the former, the main helical field component of
l = L = 2 is introduced with the toroidal one, where the relative amplitude is set to be εL = εt =
0.1. In the latter, side-band components of the helical field are included with the amplitudes of
εL−1/εt = −0.8 and εL+1/εt = −0.2 with εL = εt = 0.1.

2.3 Simulation Results of Zonal Flow Response
Time-histories of the ZF potential for the single-helicity case are plotted in Fig. 1 (left) for

Mp = 0, 0.1, 0.2 and 0.3, where the radial wavenumber kr = kx = 0.065ρ−1
i . For Mp = 0, after

the initial GAM (geodesic acoustic mode) damping (t > 15R0/vti), one finds the residual ZF
with the small but constant amplitude of 〈φ(t)〉/〈φ(t = 0)〉 ' 0.011. The zonal flow response is
not much altered for Mp = 0.1, but clearly grows in time for Mp = 0.2, where the ZF amplitude
at t = 30R0/vti is about six times higher than that of the residual value for the case of Mp = 0.
As we have seen in our previous work [26], the response function starts to oscillate in time for
the larger Mp, which is related to the periodic motion of trapped particles to the radial electric
field.

The simulation results for the inward-shifted model case shown in Fig. 1 (right) demonstrate
the enhancement of the residual zonal flow after the collisionless Landau damping of the GAM.
The effect of Er0 clearly appears even for Mp = 0.1, and becomes more prominent for the higher
Mp. Indeed, the ZF potential with krρi = 0.065 for Mp = 0.3 at t = 30R0/vti is about 5.7 times
larger than that for Mp = 0. The time-averaged potential amplitude (from t = 15 to 30R0/vti)
is more significantly increased in the inward-shifted case (more than 20 times for Mp = 0.3 in
comparison to the case for Mp = 0), where the residual ZF level is nearly constant in time in
contrast to the single helicity case with the oscillatory ZF response.

Here, it should be mentioned that the time-integration of the zonal flow potential during
the GAM damping phase (t < 10R0/vti) is larger in the inward-shifted model case than that
in the single helicity one [13]. This also contributes to the more effective ZF generation in
the former [25], in addition to the higher residual levels in the long time limit after the GAM
damping in case with Er0.

Radial wavenumber (kr) dependence of the residual ZF amplitude is investigated for the
inward-shifted model case with Mp = 0 and 0.3 [see Fig. 2 (left)], where the horizontal line
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FIG. 1: Time-history of the zonal flow potential for the single-helicity (left) and the inward-shifted (right) model
cases with different poloidal Mach numbers of Mp = 0,0.1,0.2 and 0.3.
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FIG. 2: (Left) Radial wavenumber (kr) dependence of the residual zonal flow potential amplitude for the inward-
shifted model case with Mp = 0 (square) and 0.3 (solid circle), where φ(t) is time-averaged from t = 15 to 30R0/vti.
(Right) Poloidal Mach number (Mp) dependence of the residual zonal flow potential amplitude Re〈φ(t)〉/〈φ(t = 0)〉
for the inward-shifted model case with krρi = 0.065 where φ(t) is time-averaged from t = 15 to 30R0/vti. Dashed
line shows the theoretical estimate of the residual zonal flow amplitude in the limit of t → ∞ for krρi = 0.

represents the theoretical prediction in the long wavelength limit [19]. In the case without Er0
(Mp = 0), the zonal flow response shows a clear kr-dependence, and the residual level vanishes
in the long wavelength limit of krρi → 0. The simulation results shown in Fig. 2 (left) for
Mp = 0 agree with the ZF response predicted by the theoretical analysis [11, 12] even with the
field-line-label dependence of the confinement field.

The residual ZF level is largely enhanced by the radial electric field Er0. A qualitative
difference from the cases with Mp = 0 is found in the small wavenumber region, where the
residual flow for Mp = 0.3 remains finite in contrast to the case of Mp = 0. The residual flow
level given by the simulations for krρi = 0.065 agrees well with the theoretical value shown
by the dashed line in Fig. 2 (left). The simulation results manifest that the poloidal rotation
enhances the ZF response effectively in the inward-shifted model configuration.

2.4 Isotope Effects on Zonal Flow Response
Poloidal Mach number dependence of the ZF response for krρi = 0.065 is summarized in

Fig. 2 (right), where the residual level increases with Mp in agreement with the theoretical
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prediction for krρi → 0 (shown by the dashed line). Rapid growth of the ZF response is found
for Mp ∼ 0.1-0.2, where the residual flow for Mp = 0.15 is about 2.7 time stronger than that
for Mp = 0.1. The parameter range for Mp considered here is relevant to the LHD experimental
conditions. Specifically, for B0 = 2.75T, R0 = 3.6m, r0 = 0.36m, q0 = 2, Ti = 5keV and Er0 =
10kV/m, one finds Mp ' 0.1 and 0.14 for hydrogen and deuterium discharges, respectively.
Here, it should be reminded that, for the same Ti and Er0, the Mp-dependence of the ZF response
is equivalent to the isotope effect. The present simulation results suggest that, for the fixed Er0
and Ti, the ZF response can be enhanced by the heavier ion mass under conditions relevant to
the LHD experiments.

3. Gyrokinetic Simulations of Ion Temperature Gradient Instability

To assess the possibility of turbulent transport reduction by the zonal flow enhancement
due to the isotope effect in helical systems with Er0, we develop a new GKV code with further
extensions of the field-line-label (α) dependence of the confinement field, and apply it to the
ITG instability analysis.

3.1 Simulation Model
Since the ITG instability is a microscopic drift wave mode, it is convenient to employ the

field aligned coordinates of x = r−r0, y = (r0/q0) [q(r)θ −ζ ], and z = θ , in the same manner as
that used in the conventional flux tube model. In contrast to the previous section, the field-line-
label is defined by α = ζ − qθ . This choice enables us to set the toroidal (α) period number
of simulation box Nα = M, and to introduce the finite magnetic shear ŝ. For perturbed ion
gyrocenter distribution function, we solve the gyrokinetic equation with the diamagnetic and
the EEE ×BBB drift terms, where the α-dependence of the magnetic drift and mirror force terms is
included.

3.2 Simulation Results
We first apply the new flux tube code to the linear gyrokinetic simulation of the ITG insta-

bility. Figure 3 shows the linear frequency (ωr) and growth rates (γ) of the ITG instability for
Mp = 0 and 0.3, where the magnetic field geometry relevant to the inward-shifted LHD config-
uration [13,25] is employed. Here, we introduced the finite collisionality of ν = 2×10−3Ln/vti
with the Lenard-Bernstein model collision operator [24] and the magnetic shear ŝ. As ex-
pected, the linear instability growth rates are not influenced by the equilibrium electric field,
Er0, while the phase velocity in the laboratory frame is modified. The difference of the real
frequency agrees with the Doppler shift due to the equilibrium-scale poloidal EEE ×BBB flow. Here,
it should be mentioned that the linear growth rates are measured in the early stage of simula-
tion (at t = 23Ln/vti). In later time, unstable eigenmodes overlap each other, because of the
α-dependence of operators in the gyrokinetic equation which involves linear eigenmodes con-
sisting of various poloidal wavenumber (ky) components.

Nonlinear gyrokinetic simulations of the ITG turbulence have also been performed for the
inward-shifted LHD model configuration in case with Er0 and the α-dependence of the con-
finement field strength. Comparisons of the ion heat transport coefficient, χi, and the turbu-
lent potential fluctuations T as well as the zonal flow amplitudes Z are, respectively, shown
in Figs. 4 (left) and (right) for Mp = 0 and 0.3. Here, we define T = ∑kkk,ky 6=0〈|φkx,ky|2〉/2 and
Z = (∑kx〈|φkx,ky=0|2〉/2)1/2, respectively. In an early nonlinear phase just after saturation of the
ITG instability growth (t ' 40 to 80Ln/vti), one finds reduction of the transport coefficient χi
and the turbulent fluctuations T for Mp = 0.3 in comparison with those for Mp = 0. In the longer
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FIG. 3: Linear frequency (ωr) and growth rates (γ) of the ITG instability for Mp = 0 and 0.3, where the finite
collisionality of ν = 2×10−3Ln/vti and the magnetic shear are included.

time period (t ' 40 to 300Ln/vti), the time-averaged values of χi are 1.21 and 1.10 ρ2
i vti/Ln for

Mp = 0 and Mp = 0.3, respectively. Reduction of the turbulent fluctuations is more clearly
found in Fig. 4 (right), where the time-averaged value of T is 6.7 for Mp = 0 but is reduced to
5.4 for Mp = 0.3 (about 20% reduction).

In the later phase of the simulations with the relatively small box size (that is, 3/5 of that
used in Ref. [25] in the y-direction), dominant low-ky components often cause large amplitude
of fluctuations in the time-evolutions of χi as well as the zonal flow amplitudes, which may
influence the quantitative estimate of χi. Also, the finite ion-ion collision is introduced with
the effective collision time of τeff = ν−1

eff ∼ (ν/εh)−1 ∼ 50Ln/vti which is only 2.6 times longer
than the poloidal rotation time, ω−1

θ = 18.9, and leads to the collisional damping of residual
ZFs. This may provide an explanation for the transport reduction smaller than that expected
from the collisionless ZF response enhancement in the previous section. Nevertheless, it should
be noteworthy that the turbulent transport reduction in case with Mp = 0.3 is clearly found in
the early nonlinear phase (t ' 40 to 80Ln/vti).

In Fig. 5, we plot ratio of the ZF amplitude, Z, and the turbulent fluctuations, T , which can
be employed as a measure for effectiveness of the zonal flow generation by turbulence. In the
case with Mp = 0.3, the ZF amplitude normalized by the turbulent fluctuations (Z/T ) increases
after the saturation of the instability growth at t ' 40Ln/vti, even though almost the same values
of T are found before the saturation. The obtained results suggest that the ZF response enhance-
ment due to the equilibrium-scale radial electric field contributes to the turbulence suppression
and the transport reduction.

4. Summary

By means of the gyrokinetic simulations, isotope effects on the zonal flow (ZF) response
and the ion temperature gradient instability are investigated for the non-axisymmetric (helical)
configurations with the equilibrium-scale radial electric field (Er0). The newly extended GKV

code including the field-line-label (α) dependence of the confinement field is utilized for solving
the initial value problem of the collisionless ZF damping and the linear ITG instability.

The residual ZF levels apparently show the poloidal Mach number (Mp) dependence, where
the ZFs are amplified by Er0 in the inward-shifted model case. The obtained Mp-dependence
indicates rapid increase of the ZF response in the range of Mp ∼ 0.1-0.2. The isotope effect on
ZF response, thus, appears through Er0 generated by the neoclassical transport, and is expected



7 THC/6-1

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  50  100  150  200  250  300

χ i
 (

ρ i
2  v

ti/
L

n)

time (Ln/vti)

Mp = 0.0
Mp = 0.3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50  100  150  200  250  300

T
=

Σ k
<

|φ
k|

2 >
/2

,  
Z

=
(Σ

<
|φ

Z
F|

2 >
/2

)1/
2

time (Ln/vti)

Mp=0.0 (T)
Mp=0.3 (T)
Mp=0.0 (Z)
Mp=0.3 (Z)

FIG. 4: (Left) Ion heat transport coefficient, χi obtained from the nonlinear GKV simulation of the ITG tur-
bulence for the inward-shifted LHD model configuration in case with Er0 and the α-dependence of the con-
finement field strength. Green and red curves represent the cases with Mp = 0 and 0.3, respectively. (Right)
Turbulent potential fluctuations T = ∑kkk,ky 6=0〈|φkx,ky |2〉/2 (green and red) and zonal flow potential amplitudes
Z = (∑kx〈|φkx,ky=0|2〉/2)1/2 (blue and magenta) for the cases of Mp = 0 and 0.3.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20  30  40  50  60  70  80

Z
 / 

T

time (Ln/vti)

Mp = 0.0
Mp = 0.3

FIG. 5: Zonal flow potential amplitudes normalized by the turbulent fluctuations (Z/T ) in an early phase of the
simulations for Mp = 0 (green) and 0.3 (red).

to play a favorable role in reducing the turbulent transport. The present study on the radial
wavenumber (kr) dependence also confirms the significant amplification of the ZF response in
the small krρi limit as predicted in the previous works [18–20].

It is also confirmed that growth rates of the linear ITG instability remains unchanged even
with the poloidal Mach number of Mp = 0.3, while the real frequency is Doppler shifted by the
equilibrium-scale poloidal EEE ×BBB flow. This means that, if the role of ZFs influenced by Er0 are
not taken into account, the isotope effect in the ion heat transport due to the ITG modes obeys
the conventional gyro-Bohm scaling in case with the adiabatic (mass-less) electron response. A
preliminary simulation study of the helical ITG turbulence with Er0 suggests more effective ZF
generation and turbulence suppression for Mp = 0.3 than those for Mp = 0.

For helical systems, Er0 reducing the radial drift motions of helical-ripple-trapped particles
is introduced in the gyrokinetic equation through Mp that is larger with heavier ion mass for
the same Er0 and Ti. In contrast to axisymmetric configurations, accordingly, the uniform and
constant Er0 leads to the isotope effect on the ZF response in non-axisymmetric systems, as
the magnitude of Er0 caused by the neoclassical transport in the deuterium discharge is almost
identical to that in the hydrogen plasma in LHD [22]. In addition, the helical field optimization
with slower radial drift motion of helical-ripple-trapped particles is known to enhance the ZF
response [25]. Couplings of the neoclassical transport causing Er0, the enhanced zonal flows,
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and the regulation of ITG turbulence are, therefore, expected to bring the isotope effect on the
anomalous transport into helical plasmas. The possibility of turbulent transport reduction by
the zonal flow enhancement due to Er0 strongly motivates more elaborate simulation studies
on the ITG turbulence and ZFs in helical systems with the field-line-label dependence of the
confinement field.

Acknowledgments

This work is supported in part by grants-in-aid of the Ministry of Education, Culture, Sports,
Science and Technology (No. 21560861 and 22760660), and in part by the National Institute for
Fusion Science (NIFS) Collaborative Research Program (NIFS10KTAT040, NIFS10KDAT020,
and NIFS10KNXN186). Numerical simulations are carried out by use of the Plasma Simulator
system at National Institute for Fusion Science.

Reference

[1] ITER Physics Expert Group 1999 Nucl. Fusion 39 2175
[2] Diamond P H, Itoh S I, Itoh K and Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35
[3] Horton W 1999 Rev. Mod. Phys. 71 735
[4] Dimits A M, et al 2000 Phys. Plasmas 7 969
[5] Rosenbluth R M and Hinton F L 1998 Phys. Rev. Lett. 80 724
[6] Hinton F.L. and Rosenbluth M.N. 1999 Plasma Phys. Control. Fusion 41 A653
[7] Xiao Y. and Catto P.J. 2006 Phys. Plasmas 13 082307
[8] Kim E.J. et al 2003 Phys. Rev. Lett. 91 075003
[9] Xiao Y. and Catto P.J. 2006 Phys. Plasmas 13 102311

[10] Sugama H. et al 2007 Phys. Plasmas 14 022502
[11] Sugama H and Watanabe T H 2005 Phys. Rev. Lett. 94 115001
[12] Sugama H and Watanabe T H 2006 Phys. Plasmas 13 012501
[13] Ferrando-Margalet S, Sugama H and Watanabe T H 2007 Phys. Plasmas 14 122505
[14] Mynick H E and Boozer A H 2007 Phys. Plasmas 14 072507
[15] Mishchenko A, Helander P and Könies A 2008 Phys. Plasmas 15 072309
[16] Yamagishi O and Murakami S 2009 Nucl. Fusion 49 045001
[17] Landremen M and Catto J 2010 Plasma Phys. Control. Fusion 52 085003
[18] Sugama H, Watanabe T H and Ferrando-Margalet S 2008 Plasma Fus. Res. 3 041
[19] Sugama H and Watanabe T H 2009 Phys. Plasmas 16 056101
[20] Sugama H, Watanabe T H and Nunami M 2010 Contrib. Plasma Phys. 50, 571-575
[21] Motojima O, et al 2003 Nucl. Fusion 43 1674
[22] Yokoyama M, et al 2010 Contrib. Plasma Phys. 50, 586-589
[23] Watanabe T H and Sugama H 2006 Nucl. Fusion 46 24
[24] Watanabe T H, Sugama H. and Ferrando-Margalet S. 2007 Nucl. Fusion 47 1383
[25] Watanabe T H, Sugama H and Ferrando-Margalet S 2008 Phys. Rev. Lett. 100 195002
[26] Watanabe T H, Sugama H. and Ferrando-Margalet S. 2008 Proceedings of the 22nd IAEA

Fusion Energy Conference (Geneva, Swiss Confederation) TH/P8-20
[27] Kleiber R, Hatzky R and Mishchenko A 2010 Contrib. Plasma Phys. 50, 766-769


