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Abstract. Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-
beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced 
equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound 
velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion 
finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux 
which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions 
shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy 
and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid 
model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-
fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide 
with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD 
equations with time evolution that are consistent with the above equilibria are also derived in order to study their 
stability. They conserve the energy up to the order required by the equilibria. 
 
1. Introduction 
 

Flows in magnetically confined plasmas may play an important role for the formation of 
steep structure where the scale lengths of microscopic effects cannot be neglected. In plasma 
flows driven by neutral beam injection, pressure anisotropy is relevant. Microscopic effects on 
equilibria in the presence of flow and pressure anisotropy have been studied with two-fluid or 
Hall magnetohydrodynamic (MHD) models [1]. However, a consistent treatment of hot ions 
in a two-fluid framework must include the ion finite Larmor radius (FLR) effects. 

In toroidally confined plasmas, both of the poloidal and toroidal components of flow are 
important. The single-fluid MHD equations for equilibria with flow reduce to the so-called 
generalized Grad-Shafranov (GS) equation and the Bernoulli law with five free functions of 
the magnetic flux in axisymmetric systems [2]. These systems of a nonlinear partial 
differential equation (PDE) and a nonlinear algebraic equation can be solved numerically by 
iteration schemes when the PDE is elliptic in the whole region. However, the generalized GS 
equation can be either elliptic, hyperbolic or singular depending on the magnitude of the 
poloidal flow velocity relative to the velocities of MHD waves. 

Recently, a reduced set of single-fluid MHD equilibrium equations has been derived for 
high-beta tokamaks with flow comparable to the poloidal sound velocity [3]. The ordering for 
this system eliminates the Alfvén singularity and the second hyperbolic region where the 
poloidal flow velocity exceeds the phase velocity of the fast magnetosonic wave and 
degenerate the first hyperbolic region near the velocity of the slow magnetosonic wave to give 
rise to the elliptic PDEs with the poloidal-sonic singularity. This model has been extended to 
two-fluid equilibria with ion FLR effects for isotropic and adiabatic diagonal pressure of ions 
and electrons [4]. 

We study the effects of flow, finite ion temperature and pressure anisotropy on equilibrium 
and stability of a high-beta toroidal plasma are studied in the framework of reduced 
magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta 
tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity has been 
formulated from two-fluid MHD equations with ion FLR terms. We include pressure 



2                        THC/P5-03 

anisotropy associated with the parallel heat flux that was neglected in the previous 
formulation [4]. We have found an analytic solution for the single-fluid model by extending 
that for single fluid equilibrium equations with adiabatic and isotropic pressure [5]. Numerical 
solutions are found by using the finite element method for the two-fluid model with FLR 
effects in the case of isotropic, adiabatic pressure. We have derived reduced single-fluid MHD 
equations with time evolution that are consistent with the above equilibria in order to study 
their stability and shown that the energy is conserved up to the order required by the 
equilibria. 
 
2. Equilibria with flow 
 
2.1. Equations for steady state 
 

The equations for two-fluid equilibria with hot ions and pressure anisotropy are given from 
fluid moment equations for collisionless, magnetized plasma [6] as 
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where mi is the ion mass, n is the density, v is the ion flow velocity, E and B are the electric 
and magnetic fields, j is the current density, p{i,e}{||,⊥} are the ion and electron parallel and 
perpendicular pressures, p{i,e}≡(p{i,e}||+ 2p{i,e}⊥)/3 is the total pressures, Πi

gv is the ion 
gyroviscous tensor, B≡|B|, b≡B/B, and q{i,e}{||,B||} and q{i,e}{⊥,B⊥} are the parallel and 
perpendicular heat fluxes defined as  
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The electron mass me is neglected because me≪mi. The electron gyroviscosity is also 
neglected since ρe≪ρi. We have introduced the artificial indices λΗ, λi and λi|| that label the 
non-ideal terms: (λΗ,λi)=(0,0) for single-fluid (ideal) MHD, (1,0) for two-fluid MHD with 
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electron diamagnetic effects but zero ion Larmor radius (Hall MHD) and (1,1) for two-fluids 
with finite ion Larmor radius, and λi|| =0,1 represents the ion pressure with and without 
parallel heat flux respectively. The fluid moment equations must be closed by a certain 
closure model. Here, we adopt the following fluid closure model for the fourth-order moments 
in the equations for the parallel heat fluxes, 
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where the square brackets around indices represent the minimal sum over permutations of 
uncontracted indices needed to yield completely symmetric tensors. It is noted that the 
equations for the parallel heat flux equations for mass-less electrons turn to the equations for 
the parallel and perpendicular electron pressures [1], 
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and the parallel electron heat flux are calculated from (6) and (7) by substituting (12). 
In order to obtain a simple, closed expression for ion FLR terms, asymptotic expansions in 

terms of the small parameter δ ∼ ρi /a, where ρi is the ion Larmor radius and a is the 
macroscopic scale length, are used. With a slow dynamics ordering, v  ∼ δ vthi where v and vthi 
are the flow and ion thermal velocities respectively, the ion FLR terms [6][7] are much 
simplified in the reduced models for large-aspect-ratio, high-beta tokamaks [8][9] after 
relating δ to the inverse aspect ratio expansion parameter ε≡a/R0≪1 where ε is the inverse 
aspect ratio and a and R0 are the characteristic scale lengths of the minor and major radii 
respectively [10] [11]. With the slow dynamics ordering, one finds 
 2 2

{ , } { , } { , } { , }
, .gv

i i i e i e i e thi i e
m nv p q vp v p      (13) 

The high-beta tokamak orderings are 
  2

0 { , }{||, } 0 0 || 0
, / , | | 1 / , | | 1 / .

p i e
B B p B R a         (14) 

We assume strong pressure anisotropy, |p||-p⊥| ~ p. Poloidal-sonic flow is introduced with 
ε ∼ δ. Under these orderings, the FLR terms [6][7] are approximated up to the order required 
to include ion kinetic energy (13) to obtain the following expressions 
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2.2. Reduced Equilibrium Equations 
 

Here, we shall consider the corresponding toroidal axisymmetric equilibria, where, in 
cylindrical coordinates (R,ϕ,Z), the magnetic field B and the electric field E can be written as  
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The asymptotic expansion is defined in terms of the inverse aspect ratio ε. The variables are 
expanded as f=f0+f1+f2+f3+…, where f1~εf0, f2~ε2f0 and f3~ε3f0. The leading order force 
balance gives 
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where B0≡I0/R0. The following leading order quantities are shown to be arbitrary functions of 
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The second order quantities are written in the following forms 
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where x≡R-R0. The coefficients in the first terms on the right-hand sides of (30) - (35), 
C…(ψ1), are obtained by solving the equations for the higher-order quantities as functionals of 
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the lowest order quantities, (28), while those in the second terms, denoted by ‘*’, are arbitrary 
functions of ψ1. The third order poloidal momentum balance gives 
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where E* is an arbitrary function of ψ1. The set of reduced equilibrium equations consists of 
the first two orders of the Grad-Shafranov (GS) equation of which the first order is same as 
that for static equilibria, 
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includes the E×B and the ion diamagnetic poloidal flows with the gyroviscous cancellation 
and the pressure anisotropy. The ion stream function Ψ is defined as 
 .n nRvϕϕ ϕ= ∇Ψ ×∇ + ∇v  (40) 

The asymptotic expansion yields 
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2.3. Analytic solution for the single fluid model 
 
The reduced GS equations (37) and (38) can be solved for the single fluid model 
(λΗ,λi, λi||)=(0,0,1) as for the case of adiabatic, isotropic pressure [5]. The solution is found 
when the pressures and the square of the poloidal Alfvén Mach number are linear with the 
first-order magnetic flux, 
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Figure 1 show profiles of an analytical solution; (a) the magnetic structure is modified by the 
flow due to the centrifugal force and through the Bernoulli law, (b) the pressure isosurfaces 
depart from magnetic flux surfaces due to the poloidal flow and (c) anisotropic pressure 
profiles are self-consistently determined in the presence of flow. Figure 2 shows the shift of 
the magnetic axis from the geometric axis as a function of the square of the poloidal Mach 
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number. There are three singular points where the poloidal flow velocity equals the phase 
velocities of either slow magnetosonic or two ion acoustic waves, 

  2 2 2
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M p p p p p   
    

 (43) 

which arise from the heat flux equations [12]. This result indicates a qualitative difference 
from the previous one obtained with adiabatic pressure [5], where the only one singular point 
corresponding to the slow magnetosonic wave exists. 
 

 
FIG. 1. Analytical solution for single-fluid equilibrium with flow: (a) the magnetic flux 
surfaces (black) compared with its static case (gray), (b) the isosurfaces of the average 
pressure (p||+ p⊥)/2 (black) and the magnetic flux surfaces (gray) and (c) radial profiles 
of p|| and p⊥ in the midplane. 

 
FIG. 2. The shift of the magnetic axis from the geometric axis as a function of the 
square of the poloidal Mach number. 

 
2.4. Numerical results 
 

We have solved the equilibrium equations for two-fluid equilibria with flow and FLR 
effects (λΗ,λi)=(1,1) numerically by using the finite element method for the case of isotropic, 
adiabatic ion pressure [4]. Figure 3 shows the following features of two-fluid equilibria: (i) the 
isosurfaces of the magnetic flux ψ, the pressure p and the ion stream function Ψ do not 
coincide with each other [Fig. 3 (a) - (c)], (ii) the solutions depend on the sign of the E×B flow 
to the ion diamagnetic flow [Fig. 3 (d) - (f)]. 
 
3. Reduced MHD Equations for Stability of Poloidal-sonic Flow 
 

In this section, we show the reduced single-fluid MHD equations for the stability of high-
beta tokamak equilibria with poloidal-sonic flow. We modify the reduced equations found by 
Strauss [9] to apply for high-beta plasmas with poloidal-sonic dynamics with non-constant 
density. The flow velocity and the magnetic field are written as 
 ( ) ( ) ( )01 , ,x R U B v B Iϕ ϕ≡ + ∇ × + ≡ ×∇ + ∇v B B B H



 (44) 
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   
H  (45) 

The set of reduced equations is obtained as 

 ( )
2

0
02 2

0

1 1 ,pF F J R
JB

µξ ξ ϕ
ξ ξ ξ ξ ξ

 ∂ ∂ ∂
+ = ≡ ∇ ×∇Θ ⋅∇ ∂ ∂ ∂Θ 

 (46) 

 
 

2
0 0

2 2
0 0

1 1 1 1 ,p pU U
B B

µ µξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ

     ∂ ∂Φ ∂ Φ ∂ ∂ ∂ ∂
+ = +      ∂ ∂ ∂Θ ∂ ∂ ∂Θ ∂Θ    

 (47) 

 

( ) ( ) { }

( )

22
0 2 2

0 0 0

0 0 02
0 0 0 0 0

, ,
2

11 0,

R U
R U R U R R p

t

jp pB R Rj p
B B B R

ϕ
ϕ

ϕ ρ ρ

ϕ ϕ µ
µ ϕ ϕ

⊥
⊥ ⊥

 ∇∂   + ∇ ×∇ ⋅∇ ∇ ⋅ ∇ + − −     ∂    
   ∂ ∂

+ ×∇ + − ∇ ⋅∇ + + ⋅∇ =   ∂ ∂  

HH

 (48) 

  
2

0
0

,
R U

U B
t R



 

  
      

  
H  (49) 

 
2

0
0 0 2

0 00 0

1 ,
R p U p

B R p U
t R BB


 

 

                                        

H  (50) 

  0 0 02
0 0 0 0

1 0,
R p

R U v B R p
t B R B

   


                             

H


 (51) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0 02
0 0 0 0

0

0 0 2 2
0 0 0 0 0 0

0

0

1

1 1

v Rp p B R p
t B R B

R BR I U U U p

v Rp pp B R
B B R B

p R BR I U U U

pR U U
BR

ϕ ϕ
µ

ϕ ϕ ϕ

γ ϕ ϕ
µ µ

γ ϕ ϕ ϕ

γ ϕ ϕ

  ∂
+ + ×∇ + ∇ ⋅∇  ∂   

+ ∇ ×∇ + ∇ ⋅∇ − ⋅∇ ∇ ⋅∇  
      

+ ×∇ + − ∇ ⋅∇ +      
      

+ ∇ ⋅ ∇ ×∇ + ∇ ⋅∇ − ⋅∇ ∇  

+ ∇ ⋅∇ ∇ ⋅ + ⋅∇ ∇ ⋅∇ − ∇

H

H H

H

H H

H H





( ) ( ) 0,U I Uϕ ϕ⋅∇ ⋅∇ + ∇ ⋅ ∇ ×∇ =  H

 (52) 

 

( ) ( ) ( )

( ) ( )( )

2

2
0 0 0

0

0 0

1

0,

I I I IU U U
R t R RB R RB R RB

U U p
R RB R RB

ϕ ϕ ϕ

µϕ ϕ

   ∂
+ ∇ ×∇ ⋅∇ + ∇ ⋅∇ ∇ ⋅ + ⋅∇ ∇ ⋅∇   ∂    

 ⋅∇
+ ×∇ ⋅∇ + ⋅∇ ∇ ⋅∇ = 

 

H H

HH H
 (53) 

where  0 .B UΦ ≡ Φ +  The above equations satisfy the energy conservation up to the order 
required by the equilibrium in the previous section as 

 ( ) ( )2 23 2 2
|| 2

0

1 1 2 0,
2 1

pd U v I
t R

ρ
µ γ

  ∂  ∇ + + + + =  ∂ −   
∫ x H  (54) 

which can be shown by asymptotic expansions in terms of ε. 
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4. Concluding Remarks 
 

We have derived a set of reduced equilibrium equations for high-beta tokamaks with 
toroidal and poloidal flow comparable to the poloidal sound velocity and pressure anisotropy 
is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD 
model with ion finite Larmor radius (FLR) terms. We have found an analytic solution for the 
single-fluid model and have shown complicated characteristics in the region around the 
poloidal sound velocity due to pressure anisotropy and the parallel heat flux. We have found 
numerical solutions by using the finite element method for the two-fluid model with FLR 
effects in the case of isotropic, adiabatic pressure and have shown the following features of 
two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream 
function do not coincide with each other, and the solutions depend on the sign of the radial 
electric field. We have derived reduced single-fluid MHD equations with time evolution that 
are consistent with the above equilibria in order to study their stability and have shown that 
the energy is conserved up to the order required by the equilibria. 
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FIG. 3. Isosurfaces of (a) the magnetic flux ψ, (b) the pressure p and (c) the ion stream 
function Ψ, and profiles of the normalized values of (d) ψ (e) p and (f) Ψ in the 
midplane, where black (gray) lines are for the case where the signs of E×B and the ion 
diamagnetic flows are the same (opposite). 
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