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Abstract

In the frame of quantum defect theory, a Simplified Relativistic Configuration Interaction (SRCI) method is
developed to study the Dielectronic Recombination {DR) processes. In this method, the infinite resonant doubly
excited states involving high Rydberg state can be treated conveniently in a unified mannar by interpolation.
This provides an efficient method to check the validity of extrapolation based on n~3 scaling law, which is widely
used to treat the DR processes involving high Rydberg states. As an example, we studied the DR processes
for Li-like argon, and the results are compared with the scaling laws and the experimental measurements,

respectively.
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1. Introduction

Dielectronic Recombination (DR} can be regarded as
a resonant radiative recombination process. As a free
electron with a specific kinetic energy collides with an
ion A%t one of the bound electrons of the ion A9t is
excited from the initial n;l; orbital into the nyly orbital,
the free electron is then captured into an unoccupied
orbital n! and forms a resonant doubly excited state;
subsequently, the resonant doubly excited state decays
into a non-autoionizing state throngh radiative transi-
tion processes. Its importance to influence the ionic bal-
ance in high temperature plasmas, such as solar corona,
has been known for many years [1]. Its radiative emis-
sion is a significant contributor for plasma cooling in hot
plasmas in fusion experiments. The dielectronic satel-
ittes of hydrogen-like ion have also been used to measure
plasma densities in high density plasmas {2] and the elec-
tron temperatures in solar flares {3].

Many theoretical methods have been developed to
calculate the DR process, such as distorted wave method
14, B}, close coupling methods {6, 7], non-relativistic sin-
gle configuration|8, 9] and relativistic multi-configuration
methods[10, 11]. In these calculations, it is a tedious
work to obtain the accurate DR rate coeflicients since
they involve many resonant doubly excited high Rydberg
states. Due to the difficulty of numerical calculation on
wavefunction and too enormous number of high Rydberg
states, most calculations either neglect high-lying dou-
bly excited states or simply use the n=2 scaling law to
treat them[9, 12, 13, 14]. Neglecting high-lying doubly
excited states will induce inaccuracies in the DR. calcu-
lations, especialy for low Z atom. The evaluation by the
n~? scaling law can give an improvement, but it should
be checked for high Rydberg states. In order to check

the validity of the n® scaling law, Karim and Bhalla
have performed explicit DR calculations for Rydberg
states {(n < 8) on heliumlike ions using the Hatree-Fock
atomic model {15], and found that the 1/n® scaling law
is appropriate when n > 8 However, this conclusion
isn’t always correct for lower Z ions, we will discuss it in
section 3.

In fact, Quantum Defect Theory (QDT) has been de-
veloped to treat the atomic processes involving high Ry-
dberg states [16, 17, 18], which was also used to study the
DR cross sections and rate coefficients for high Rydberg
states by extrapolation {7, 19, 20, 21]. Recently, in the
frame of QDT, we have developed a Simplified Relativis-
tic Configuration Interaction (SRCI} method to study
the dielectronic recombination processes [22, 23, 24]. In
this method, all the resonant doubly excited high Ry-
dberg states are classified into different channels with
same angular momentum quantumn number and same an-
gular momentum coupling type. In each channel, the de-
fined energy-normalized matrix elements vary smmothly
with the energy of high Rydberg states. Only a few
points {including a continuum point) are calculated, the
many resonant high Rydberg states can be treated in
an unified manner by interpolation (rather than extrap-
olation), and then the DR cross sections and rate co-
efficients can be obtained conveniently. This method
gives an overall description of all high Rydberg states
in a channel, and avoid the inaccuracies of extrapolation
through one point. By analyzing the energy-normalized
matrix elements in a small energy domain, we can check
the validity of n~2 scaling law.

In this paper, as an example, we studied the DR pro-
cesses of AN = 0 transition for Li-like argon. The DR
processes has the form

e+ Art(15%25) —  Ar'*t(1s%2pnD)*
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Ar'H(1522snl)" + ho

Ar14+(1522m11f)* + hu. (1)
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Due to energy conservation, the possible resonant

doubly excited states appear at high Rydberg states (n >

10). Tt provide a good example to check the validity of

n~% scaling law for high Rydberg states. The results on

SRCI method are compared with the scaling laws and
the experimental measurements, repectively.

2. Theoretical Method

The cross section of resonant capture processes, in
which the Ar'®* ion in initial state i(15%?2s) captures
a free electron with a specific energy ¢, and forms the
Ar'** ion in the resonant doubly excited state 7{1s%2pni),
can be treated in the isolated resonance approximation
{ atomic unit is used throughout unless specified},
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where g; and g; are the statistical weight of the state 1
and j,respectively. AJ; is Auger decay rate (inverse reso-
nant capture), which can be calculated by Fermi golden
rule,

|q}i€; > I27

o o7 1
Aji:€l<"pj‘z (3)
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where ¥; and W¥;, are antisymmetrized many-electron
wavefunctions for j state and 7 state plus a free electron,
respectively.
We construct the configuration wavefunctions ¢(T'.JM)

(T denotes the configuration 1s*2pnl and parity) as anti-
symmetrized product-type wavefunctions from central-
field Dirac orbitals with appropriate angular momentum
coupling]25]. All relativistic single-electron wavefunc-
tions (bound and contimuum} are calculated based on
the atomic self-consistent potential obtained from the
ground-state configuration for Ar’**+[26, 27]. An atomic
state function for the state j(1s*2pn{) with total angu-
lar momentum JM is then expressed as linear expansion
of the configuration wavefunctions with same principal
quantum numbers (2,7), and same orbital angular mo-
mentum quantum numbers (p, 1)

Pi(JM) = ZCjA¢(FAJM)~ (4)

A=1

Here m is the number of the configuration wavefunctions
and the mixing coefficients C;y for state 7 are obtained
by diagonalizing the relevant Hamiltonian matrices{25}.
The free state is chosen as the single configuration wave-
function. Then we have

Ajz = ?l ZCjAlMijAlzr (5)
A=1

where the Auger decay matrix element M7, is defined

as

1
Mgy =< $TATM)| Y — i, >

st s5,t

(6)

Based on QDT, when [ are fixed and n varies from
bound to comtinuum state, all the resonant doubly ex-
cited states with same J will form a channel. In the
channel, the energy-normalized matrix element can be
defined as

m
My = CoMs - (42%/a),
A=l

(7)

here (22 /q2) is the density of state, v, = n — p, i, is
the corresponding quantum defect, and ¢ equals to ion-
ization degree of doubly excited states plus one. This
energy-normalized matrix element m varies smoothly
with the electron orbital energy in the channel[22, 24].
When the energy-normalized matrix elements of a few
states (including one continuum state) in a channel have
been calculated, the Auger decay matrix elements of infi-
nite discrete states of that channel can be obtained by in-
terpolation. From the expression (7) and (5), the Auger
rates and capture rates (by detailed balance) of the in-
finite resonant doubly excited states can be calculated
conveniently.

The resonant doubly excited state may autoionize
with a rate AY, by reemitting Auger electron or decay
radiately into a lower energy state k with a radiative
rate A7, which is defined as

462w

AL —| < ‘I’j!T(l)?‘Ilk > [2,

i = 3hcggj (8)

where w is photon energy, T is electronic dipole oper-
ator [22]. The atomic wavelunction ¥y for final state k
can be constructed in the similar way as the expression

(4)

1

U(I' M) =Y Cen¢'(THT' M), 9
Ar=1
Then we have
r 462{.:} s ™ 2
Ajk = %I A,\Zr=1 Cj)«CkA’ M,\,xg‘kl ) (10)

where the radiative transition matrix element is defined
as

ik =< (A J M) ITW|e! (DA M) > (11)

For radiative process with certain final state k(1s22snl)
or k{1522pn'l"), the resonant doubly excited states with
the fixed (I) and different orbital energy form a channel.
In the channel, the energy-normalized radiative transi-
tion matrix element is defined as

Eh = Z CjACkA’M;,A'jk'(Vg/2/q)' (12)
A =1

This energy-normalized matrix element varies slowly with

‘the electron orbital energy[22, 29, 30, 31]. By interpola-

tion, all the energy-normalized matrix elements of infi-
nite discrete states in a ¢hannel can be obtained. From
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the expression (10), we can obtain all the radiative rafes
in the channel.

The resonance energy ¢; can be calculated under the
frozen core approximation [32]. Then, we can obtain the
DR cross sections for any resonant doubly excited states
convenienily,

(13)

and

T
it gk
Pij;k

Y AL+ 3 A%

Here the summation ¢ is over all possible states of Arl®*
ion, and the summation k' is over all possible states of
Ar'%T whose energy are below state j.

(14)

The summation of cross sections over all possible k
is expressed as

(15)

Tij — E ;ij;k'
&

The DR strength 5;;, which is the integral of the DR
cross section over the natural width of the resonance,
can be written as

TR g AN
T € 20: 3 AT + 200 AGy
Using the velocity distribution of the free electron, we

can obtain the dielectronic recombination rate coefli-
clents.

(16)

3. Result and Discussion

There are enormous intermediate resonance states in-
volved in the DR process, which makes the explicit cal-
culations not practicable]15]. Hence, the n~ scaling law
is widely used in the literature to extrapolate the satel-
lite intensity factors (proportional to DR cross section)
for higher (n > 4) resonances[9, 12, 13, 14]. Based on
QDT, we have developed the SRCI method, in which all
the high-lying resonant doubly excited states are treated
conveniently through interpolation. This method pro-
vides an overall description on the behaviors of high Ry-
dberg states, and can be regarded as an eflicient method
to check the avalidity of n~2 scaling law. As an exam-
ple, we studied the DR processes for Ar'®t ions, and
calculated the Auger rates, radiative rates, integrated
cross sections and rate coefficients. In our calculation,
we have included the donbly excited states 1s22pnl with
10 € n < 15,1 < 11 ( and corresponding confinnmum
states) as benchmark points.

A. Auger rates

Using formulae (6} and (7), we can obtain the energy-
normalized Auger transition matrix elements. As an ex-
ample, we plotted the energy-normalized Auger transi-
tion matrix elements M; for the four Auger channels
in Fig.1, which include 1s?2pns(3P) — 15225 + epy 12
1522pnd(3Py) — 15225+ ep1 o, 1522png(3Fa) — 1s%2s +

epasz. 1872pmy (P 1) — 15725 + €902, and n changes
from n = 10 to » = oo and continnum states. In each
channel, Ht;z vary smoothly with the orbital energy of
capture electron. There are infinitely many doubly ex-
cited high Rydberg states in a small energy domain be-
Jow the threshold value. When the energy-normalized
maitrix elements of a few states (including one contin-
uum state} in a channel have been calculated, all the
Auger matrix elements of infinitely many doubly excited
states of that channel can be obtained by interpolation.
From the expression (7) and (5}, the Auger rates of the
infinitely many resonant doubly excited states can be
calculated conveniently. This method provides an over-
all description for high Rydberg states located in the
small energy domian, which is not same as the method
of widely used extrapolation by one points based on n—*
scaling law.

In the calculation of Auger rates for high Rydberg
doubly excited states, there are two ways to extrapo-
late the Auger rate based on n~® scaling law. One is
extrapolation from the Auger rate of one Rydberg state
with certain principal quantum number ng to these Ryd-
berg states with higher principal quantum number n by
A% (n) = Af,(no} x n/n3[33, 34, 35]. If we assume that
our energy-normalized matrix elements are constant and
the quantum defects can be neglected, namely, H;(n) =

M_;i(no) and p, — 0 when n > ng, and then we can ob-
tain this scaling law from eq.(7) and (5). Another way is
extrapolation from the threshold value of the according
partial electron-impact excitation cross sections[36, 37,
38]. Our energy-normalized matrix elements above the
threshold value are just the partial electron-impact exci-
tation matrix elements with exchange. If we assume that
our energy-normalized matrix elements below threshold
value are constant and equal to the threshold value in 2
channel, and the quantum defects can be neglected, then
from eq.(7) and (5), we can obtain the n~? scaling law
in the references|[36, 37, 38].

From above analysis, we can conclude that if the
n 3 scaling law is well preserved, it is necessary that
the energy-normalized matrix elements below threshold
value are almost constant in the small energy domain
where high Rydberg states are located. So we can check
the validity of n =2 scaling law in these two extrapolations
by analyzing whether the energy-normalized matrix el-
ements in the small energy domain below the threshold
value are constani in a channel. In our example, the
energy-normalized matrix elements near the threshold
value are almost constant in most of channels, as shown
in Fig.l. This means that the n™% scaling law should
be well preserved for these channels. However, it can
be seen that as the orbital quantum number [ increases,
the changing of the energy-normalized matrix elements
in the small domain becomes large, so it can be expected
the deviation from the n—? scaling law also become large
with increasing I. This can be confirmed from the Ayger
rates in Fig.2 and Fig.3, which are corresponding to the
four channels in Fig.1.

For 15%2pns(3Py) — 1522s+ep; /2 and 1s22pnd(3Po) —
1s22s + epyjo channels, because the curve of energy-
normalized matrix elements is almost constant as the
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curves 1 and 2 shown in Fig.1, the results from interpo-
lation on SRCI method and two extrapolation on n°
scaling law are in agreement within a few percent as
shown in Fig.2. For 1s%2png(®F) — 1s22s + eps/o
channel, The difference of SRCI method and two ex-
trapolation methods is within 15% as shown in Fig.3(a).
For 15%2pnj(3ls) — 15®2s + €iyy /o channel, the differ-
ence approaches to 100% as shown in Fig.3(b), this is
because the relative variation of M? is large with in-
creasing I, as shown in Fig.l. The fundmental reason
is as following: for a smaller values of radial distance r,
the energy-normalized wavefunctions vary slowly with
orbital energy[18, 28], which implies the scaling law for
Auger or radiative rate[28]. But this cann’t be extend
to bigger r. So the states with a relative big amplitude
of wavefunction in smaller r have good scaling law. As |
increases, the effect of centrifugal term becomes strong,
which cause a relative big amplitude of wavefunction in
bigger r. So the accuracy of n~? scaling law becomes
low with increasing [, as shown in Fig.2 and Fig.3. Asn
increases, the difference increases between interpolation
on SRCI method and first type of extrapolation and de-
creases between interpolation and second type of extrap-
olation, as shown in Fig.3. This comes from the different
initial points for the extrapolation.

B. Radiative rates

Here, we consider two main types of dipole transition
processes, as shown in eq.(1). For Ar'+(1s22pni)** -
Ar**+(15°2snl)* +h ( rate is denoted as A7, ), the ra-
diative rates are almost unchanged with n in a channel.
We calculated explicitly the rates of states with nn < ng.
For the states with n > no, we approximate A, (n) =
A7 (no). For Arlit(1522pnly* — Arl(122pn' 1) +
hv ( rate is denoted as A5 ), we can calculate the
energy-normalized radiative transition matrix elements
using eq.(13) and (14). This energy-normalized matrix
element varies smoothly with the orbital energy of cap-
tured electron22, 29, 30, 31]. By interpolation, all the
energy-normalized matrix elements of infinitely many
doubly excited states in a channel can be obtained eas-
ily. From the expression (12) and {10), we can obtain all
the radiative rates in the channel. In Fig.4, the energy-
normalized radiative matrix elements in four channels
are plotted, which include 15%2pns(3Py) — 1522023 P),

the threshold value are constant, we can check the valid-
ity of n scaling law in a channel.

For 1522pns(3 By) — 1s%2p%(3Py) and 15%2pnd(3 Py) —
1522p2(3P1)} channels, H;k are almost unchanged in the
small energy domain below the threshold value as the
curves 1 and 2 shown in Fig.4, so n™2 scaling law can
be well preserved within 1% as shown in Fig.5. How-
ever, as angular momenfum quantum { increases, the
variation of ﬂ;k becomnes large in the small energy do-
main, as shown in Fig4, and the differences between
SRCI method and extrapolating method also become
large. For 15%2png(®F) — 1522p4f(®Dy) channel, the
difference is about 10% as shown in Fig.6(a), and for
1s%2pnj(3Is) — 1s22pTi(3H,), the difference approaches
to 80%.

It should be noted that for a certain initial state, the
energy-normalized transition matrix element may have
nodes, at which the matrix element is equal to zero[39].
In this case, the interpolation should be carried out for
the energy-normalized transition elements but not for
the radiative rafes {ie., proportional to the square of
the transition elements), of course, the n=2 scaling law
cann’t be used in this case.

C. Integrated cross sections

In some works[40, 35}, the DR integrated cross sec-
tions or rate coefficients have been extrapolated to high
Rydberg states directly by n™2 scaling law. Because the
DR integrated cross sections or rate coefficients are pro-
portional to Fy; . in eq.(13), this extrapolation is equiv-
alent to extrapolating the P;; ; and is also equivalent to
extrapolating the dielectronic satellite factors[g, 12, 13,

4] phis extrapolation can only be applied to two cases.
Oneis A}; < 37, AL, then we have A%, 37, AT, /(571 AT+
2o A%) = A% and the n™? scaling law can be used,
which often appears in the DR processes for middle or
high Z ions. Another is A%; > 37, A7, and ), A7, <
Yon Agjk, then we have A% > A;k/( i A;k,-e-zi, A;i,) o~
2ok A%y and the n2 scaling law can be used. For low

Z jons, A% > 3, A% and A7, > 3 ALy, then we
have A%, 35 AL/ (3 AT + 30 A%) = 3L Al
constant, so the n—? scaling law cann’t be used to DR
processes for low Z ions[22, 41], and Karim and Bhalla’s
conelusion {15] cann’t be extended to lower Z ions (Z <

1s*2pnd(®Po) — 15°2p°(* 1), 15*2png(* Fy) — 1s*2p4f(*Of)}. For our example, the comparisons of A%, 37, Al

1522pnj(3I5) — 1s*2p7i(®Hy), and n changes from n =
10 to » = oo and continuum states. Each curve varies
smoothly with the orbital energy, and all the transi-
tion prosesses involving infinitely many high Rydberg
states are located in a small energy domain below the
threshold value, which can be treated conveniently by
interpolation. The radiative rates according to these
channels are plotted in Fig.5 and Fig.6. If we assume
that our radiative energy-normalized matrix elements
are constant and quantum defects can be neglected for
high Rydberg states, namely, ﬁ;k(n) = mi(no) and
fi. = 0 when n > ng, we can derive the n~3 scaling law
Agjk(n) = A;jk(nﬂ) X (ngwo)/(nsw)[337 341 35] ,here wis
the energy of emitting photon. By analyzing whether the
radiative energy-normalized matrix elements —J\«?;k below

2ok Aby and 3o, AT + 304 A%y in four channels are

shown in Fig.7 and Fig.8. Asn increases, A% and >, A5 o
(the second type of radiative processes) decrease, but

>k AT (the first type of radiative processes) is almost

unchanged. For lower n, A%; > >0, Al + 3, A%,y

and } ., A% > > AT, as shown in Fig.7 and Fig 8.

However, for higher n, ), A7, > 3, Abx, and even

for higher {, 3, A7, + 27, AS;, > A%, as shown in

Fig 8, the conditions to extrapolate directly Py cann’t
be satisfied.

The integrated cross sections S;; in eq.(16) for doubly
excited states 1522pnd, 1s%2pnj and the sumn of 1522pmi(l =
1,2,...,11} are shown in Fig.9. We compare our results
from SRCI method with that from three extrapolations




on the n % scaling law, including: (1) Af, and Al is
extrapolated from ng = 13; (2). Af, is extrapolated from
threshold value and A, is extrapolated from ng = 13;
(3). P,k is extrapolated from ng = 13. For 1s?2pnd
resonances, the results from the first and second ex-
trapolations are in good agreements with that from our
SRCI method, as shown in Fig.9(a), but the third ex-
trapolation cann’t give an agreement, it is because the
condition for the third extrapolation hasn’t been sat-
isfied, as we have discussed. With the increasing ! of
1s22pnl resonances, the differences among the first and
second extrapolations and SRCI method become large
relatively, as shown in Fig.9(b). However, the main con-
tributions to integrated cross sections come from the res-
onances with relative small I, so the differences for total
integrated cross sections are small among the first and
second extrapolations and SRCI method, as shown in
Fig9(c). Above results show that the errors and varia-
tions in the calculations of the individual transition prob-
abilities may be large, such as Fig.3 and Fig.5, but be-
cause the DR integrated cross sections are proportional
to the FPj;x, the errors and variations tend to cancel in
the evaluation of integrated cross sections[40, 42], we can
still obtain good agreements among the SRCI method
and first and second extrapolation. But if we extrap-
olate the P,;, the errors in P ; will affect the cross
sections and rate coefficienis directly, so we must check
the condition before extrapolating F, .

The contributions of 1522pnl resonances with differ-
ent n and different [ are shown in Fig.10. As n increases,
the relative contributions of the resonances with high {
increase. There are two main reasons. First, for high-n
resonances, Ar'4t(1s22pnl)** — Arl*(1522snl)* + hv
dominates the radiative processes, which is almost non-
dependent on !, as shown in Fig.7 and Fig.8; second, the
statistical weight g; in eq.(13) increases with I, which
cancels partly the decreasing of A%,. These make 5;;
decrease slowly with [. Generally, the integrated cross
section S;; in eq.(13) is a fuction of A%;, A7, and gj,
which have different dependences on n and {, so when
we analyse the integrated cross sections S;; in Fig.10,
we must consider their synthetical effects.

D. Rate coefficients

We calculated the rate coefficients for the DR pro-
cesses of AN = ( transition for Li-like argon. Fig.11(a)
shows the theoretical rate coefficients, which is obtained
from integrated cross sections folded with the electron
beam temperatures (20meV /kg transverse temperature
and 0.13meV /k g longitudinal temperature)[43]. Fig.11(b)
shows W. Zong et al’s experimental measurements{44,
45], where a background of 5 x 107%m3s~! has been
subtracted. The theoretical and experimental line posi-
tions compare rather well. In the spectral one can iden-
tify Rydberg states up to n = 18 for the 1522p, /2 core
excitation and n = 25 for the 15*2p3/» core excitation,
as shown in Fig.11, where we only give labels for a few
resonances for simplicity. In general, the theoretical rate
coefficients are a little smaller than experimental mea-
surements for high Rydberg states. The possible reasons

2

include that the backgroud is not substracted fully, the
contribution of high I{I > 12) resonances is ignored, and
an extenal field may also give a visible influence on it[46]}.
We will discuss these effects further in future work.

4. Conclusion

In this paper, a simplified relativistic configuration
interaction method is used to study the dielectronic re-
combination processes. In this method, the infinite reso-
nant doubly excited states involving high Rydberg state
can be treated conveniently in a unified mannar by in-
terpolation. This method gives an overall description
of all high Rydberg states in a channel, and avoid the
inaccuracies of extrapolation through one point. By
analyzing the energy-normalized matrix elements in a
small energy domain, we can check the validity of ex-
trapolating method based on the widely used n~2 scal-
ing laws. In the DR calculation from Li-like to Be-like
argon, we found that the respective extrapolations of
Auger and radiative rates on 2> scaling laws can give a
good results for DR cress sections and rate coefficients,
although the difference between extrapolation and SRCI
method increases with increasing [ in 1s%2pnl resonances.
However, when we extrapolate P,;;, we must consider
the valid condition, otherwise, the errors may be very
large. Due to the fully relativistic treatments, our SRCI
method can be used to study the DR processes for any
Z elements with any elctrons. We will continue to check
the validity of scaling law for other system in future.
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