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Preface

This volume contains 21 papers contributed at the 1998-Workshop on
MHD Computations held in Toki, November 25-27, 1998. This workshop
was held as one of the collaboration research projects of the National
Institute of Fusion Sciences (NIFS). On the other hand, for more than
seventeen years, we have been continuing the workshop on the numerical
computations related to the thermonuclear fusion research, organizing the
domestic researchers in plasma physics and applied mathematics.

The purpose of this workshop is to study various possible plasma
behaviors and its controllability in the fusion research. The main basic
mathematical model treated in the workshop has been Magneto-Hydro-
dynamics (MHD).

This year, there were more than 30 participants in the workshop, and we
had 24 contributed talks under the following themes: 1) Study of plasma
equilibria and their stability analysis applied to plasma control; 2) Proposal
of new numerical methods and simulation techniques related to fluid
dynamics and electromagnetism; 3) Study of related mathematical as well as
numerical analyses.

We hope that this volume will contribute to the further development of the
research in this field. '

Organizers
- IMAI-Hitoshi ( Tokushima University, Tokushima, Tokushima 770 )

USHIJIMA, Teruo ( Univ. Electro-Communications, Chofu, Tokyo 182-8585 )
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HAMADA, Shigeo { Nihon University, Chiyoda-ku, Tokyo 101)
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Evolution of Field Reversed Conﬁgura‘tion1

S. Hamada and Y. Takaku

College of Science and Technology Nihon university
25th November 1998

Abstract
The model is studied systematically. An integral theorem and relations among
several decay rates of relevant quantities are obtained. The quasi-steady solution of
this model is also studied to make clear under which circumstance it is maintained
to be a stationary solution of the time dependent model equation. A formal criterion
for a quasi-steady solution to be an attractor is deduced.

1 Introduction

The 1 1/4 D time dependent model of Field Reversed Configuration (FRC) was pro-
posed by Steinhauer, Milroy and Slough in 1985 for the first time and numerically solved
to examine validity of their 1 1/4 D quasisteady model[1]. Although there are more re-
alistic models of FRC[2][3] other than this one, it may be worth studying systematically
because it is the simplest model with perfect inner consistency. Our study has not yet
finished but our schedule is as follows. First, we formulate again this model so as to fit our .
purpose. Second, quasi stationary solutions are shown to be maintained under a certain
circumstance. Third, it is studied under which circumstance it could be an attractor.
Finally, it will be studied what would happen if the foregoing circumstances are violated.
Here, we report results up to the second problem and, as for the third problem, only
a forma.l criterion for the quasisteady solution to be an attractor. Assumptmns for the
model are as follows.

-1. long racetrack shape of separatrix Length L(t) of the uniform part of separatrix
is sufficiently longer than the radius r,(t)

L

;— >1 (1'1)
L and 7, are treated as slowly dependent on time ¢t and length of all the magnetic
surfaces are taken to be equal to L(t).-

2. axial symmetry We set cylindrical coordinates (r,#,2) with z axis aligned on
“the axis of symmetry and z = 0 on the equatorial plane of the separatrix. As we
concentrate mainly on structure of the uniform part of separatrix, almost all field
quantities are taken to be independent of z, that is, the z component of magnetic
field B,, the # component of electric field Ej, the  component of plasma velocity v,,
the plasma pressure p, the plasma density p and the electric resistivity 7 are taken
to be functions of r,% only. One exception is the z component of plasma velocity
vz, which is taken to be a function of r, z,#. Another exception is a parameter © of
plasma temperatures, which is taken to be spacially uniform. (See next item.)

! This paper has been submitted also to the editor of proceedings of US-Japan workshop on Physics
of hlgh beta plasma confinement in innovative fusion (FR5-05) held 14 and 15th Dec. 1998 at NIFS.



. Uniformity of temperatures We assume that the ratio of the plasma pressure to
the density is spacially uniform and dependent only on time ¢.

kT, ZkT,
. p + e

P my My

~ 6(1) (1.2)

where m; and m, are the ion and electron mass, T; and T, the ion and electron
temperatures, Z the charge number of ion and k the Boltzmann’s constant.

. uniformity of main coil The main coil has a uniform inner radius r,, and suffi-
ciently longer than the separatrix length L(t). As a result, we have the well known

axial force balance relation{6]
2

By =1- :—;‘- (1.3)

where (f3) is the B ratio averaged inside the separatrix and 7, is the radius of the
neutral surface. (Notice the well known relation that 2r2 = r2.)

. functional form of v, We assume that

-;'—,t) (1.4) 'uz(r,g-,t) 1@+u(m‘) (1.5)

FA
_-vz(rﬂ 2 dt

L

where v is the z component of relative velocity of plasma to the separatrix end. The
function v is determined later. See eq. (3.2).

v,(r, z,t) =

. basic laws used for the model In addition to the foregoing assumptions. the
model is based upon the following laws.

pre-Maxwell equations:

dB < . L .
5t =-VxE (1.6) V-B=0 (1.7 wuj=VxB (1.8)
generalized Ohm’s law . .
n=E+97xB (1.9)
equilibrium' equation - _
Vp=jxB (1.10)
mass continuity equation for particle transport
a .
b—;’_+v.(pm =0 (1.12)

where u is the permiability of vacuum, 7 the electric current density and 7 the
electric resistivity of the plasma.



2 Dimensionless Flux 1, Coordinate u and Time Variable 7

We define a dimensionless flux ¥ as

Y(r,t) = /0 " 27rrBz('r,-t)dr _ (21)

1
nriB,
so that i is related to the magnetic flux ® as

B(r,t) = rr2(t) B.()¥(r, 1) (2.2)

Here, B,(t) is the value.of B, at the inner wall r = r,, of the main coil. It will be called
“external field ” hereafter. From this definition of 1, we have
Berg 6_71b a’%b | 22

o Br (2.3) where u=—>=—1 (2.4)

B. = £ r2(t)

= 2B,
The coordinate u was introduced by Tuszewski and Linford[4). As it is well known,
this coordinate has many advantages. The axis of the system, the neutral surface and
the separatrix always correspond to the values —1,0,1 of u , respectively. Inside the
separatrix, every magnetic surface ¢ = const. has two radii r () > r_(¥) > 0 and ,
correspondingly, two coordinates () > u_(%) . The remarkable relation u_ = —u,
always holds. Therefore, we have (u) = ¥(—u) so that (u) is an even function of u in
the domain [—1,1] of u. p and p are also even functions of u but B, is an odd function
of u on account of (2.3). Furthermore, the function v in eq. (1.5) is easily seen to be an
odd function of u. Since the neutral surface corresponds to u = 0 because u,. = u_, we
always have 72 = r2/2 on account of (2.4). These facts suggest that we had better to use
the coordinate u rather than r.

In order to make resulting equation dimensionless, we introduce a dimensionless time
variable 7 and, correspondingly, decay rate 1/7; of an arbitrary quantity f, which are
defined as

08, . 1 14 w? g
=hwme® ®) LT e T T nfa

where 7(0, t) is the electric resistivity on the neutral surface.
Now, almost all relevant quantities except » in (1.5) can be expressed in terms of
Y(u, 7) in the following way.

(2.6)

B2 Vu 1

2
[

B
p=3(1 -4 (27) P=5.61~ 4% (28 uio=—4B ——9" (29)
n07) B, B 1 1. . u+l, |
_Mrn('r)\/u_-kl{a'r (Tsa +T,g)¢+ Ty2 vl (210)
n0,7) 1, 8 1 utl ) oo
e WA - +(—e+;r—)w- rak e (w+1)9"}  (211)

where ' means the partial derivative with respect to ‘u.



3 Equation of Mass Continuity

The equation of mass continuity (1.11) is expressed in the cyrindrical coordinates as

1 8pru, ov,

(3t e TP

Changing independent variables (r,t) to (u,7), using (1.4, 5) for v,, (2.8) for p and (2.11)

for rv,, we obtain an equation for 4(u,7). In the domain [—1,1] of u, the even and odd
parts of this equation should hold separately. Thus, we obtain from the even part.

=0

18y, _ 1 1-— 41,b'2 Y R
FRy = Al gt )
L+ Dy s (3.1)

TBre T2 TL
where g is a function defined as g(u,7) = (7 + fju}/n(0,7) with the even part 7 and the
odd part 7 of {u, 7). The equation (3.1) is used to determine %(u, 7). On the other hand,
from the odd part of the mass continuity equation we obtain

n(0,7) L 8y'y” +As 4¢’2 {_’ _ 4u+7)
pry 21— 4% n(0,7)

This equation is used to determine v(u, 7) after the equation (3.1) is solved.

— "}/ (3.2)

4 Flux Loss Time 73 and Particle Loss Time 7y

From (2.2), we have a relation

1 = L + 1 + 1 where o 0%(0, 7) L. __61/)(0, 7)

¢ TB, T2 - Ty e ®0,7)8r .1y ¥(0,7)0r (4'1-)

From physical point of view, rv, should be continuous everywhere. This means that the
even and odd parts of the right hand side of (2.11) should be continuous, separately. In
particular, the odd part should vanish and continuous at u = 0. Then, we obtain the
following two equations '

1 __41,0" (0,7)
Te ¥(0,7)

For the total ion number N inside the separatrix, we have N = (L/m:®)mri(B2/2u)(0).
Then, we have a relation _ | '
1 1 1 1 1 1 1 B 1

—=———+—+ —+4+ —  (44) where — = — 4.5
TN TL Te T2 T  T(g) (44) T 1-(Bne (45)

42 imi@iawn=0 43
u—>0 T )

where (4.5) is obtained from (1.3). The particle loss rate can also be obtained by calcu-
lating ion number per unit time passing through the separatrix.
1 _ 2rLp, {wﬁvrs _drsy B gprave 1 4es(1— 4000y,
™ mN n01)  drt T (B)n(07) Tt (L- 47

(4.6)



Here, the suffix s means the value on the separatrix 4 = 1 and the final expression is
obtained with use of (2.11). This expression for particle loss rate is the same as those
obtained for quasisteady models[4][5].

5 Basic Equation for the Model

Since ¥'(0,7) = 0 on the neutral surface (see eq. (2.3)), the equation (3.1) has
singularity on both sides at © = 0. Noticing an identity

d) ' 1 1— 41!’,2 ' 2
multiplying 1/7y on both the sides, adding them to both sides of (3.1) and using (4.1)
and (4.4) we get

op(u, ) s odu [ 1-497 ¢
‘a—-r”“‘”)/o 1+ 497 [{ v g TN

”2

™ T T Ty
where the singurarities have been removed as seen from (4.3). This is our basic equation.
In order to determine the time variation of ¥ at a time 7, it needs to know, together
with ¥(u,7), several decay rates 1/71e,1/7y,1/7, and 1/7,2 or 1/7p at the same time
7. The former three decay rates, however, can be determined by (4.2), (4.6) and (4.1)
if %(u,7) and 1/7,2 are given. Differentiating both sides of (5.2) with respect to u, and
trying directly to calculate 1/7(), we obtain an integral theorem instead of 1 [T itself.
That is

1 du 1—49” ¢ myt ¢ 1 1 ny , 897
= —(— - )1 -4y + | = .
[ i [ sy - G - Dya-a+ 2 <0 69
This theorem is clearly necessary for the basic equation to be compatible with the re-
quirement - :

dy(1,7)

¥(1,7) =0  and — = =0 (5.4)

The decay rate 1/7,; or 1/7 is determined so that this theorem holds. That is
29807 g
1 _ (a2 - (o) — 2 () (5.5
7 1+ 2= 50— (=)
Notice that the decay rate of the external field 1/75, is a known variable. The angle
bracket means integration from u = 0 to 1: average of an even function inside the sepa-
ratrix. By the way, we obtain from (5.5) and (4.4)

(5.2)

11 G ) (2B,
PR PR T C R ey ) Y RO
B 1 1 2 1 1 '



6 Quasisteady State

We call 9 satisfying (5.2) but independent of time 7 “quasisteady solution” and denote
it as o(u) with suffix 0. All quantities relevant to 1 will also be shown by the same suffix
0. In order for the equation (5.2) to have a quasisteady solution, g, T, 7w, 7y and 7,z or T(g)
have to be independent of time 7. Furthermore, we have 1/7, = 0, 1/7g = 1/72 = 0
for the quasisteady state. Thus, the basic equation (5.2) becomes the following ordinary
differential equation for the quasisteady state '

1- 41100 ( 'lnbﬂ
'ﬂbﬁ Ta0

Boundary conditions for this equation are as follows.

L agy)y - (-4 = 0 (6.1)

%p(0) =0 (6.2) hm — '490

w.’
Yo(1) =0 6.4) (1) = %\/1 ~ s (6.5)

The problem (6.1 ~ 5) was investigated by one of the authors([5] in case of g = 1. That is,
for a pair of parametors 0 < @ < cc, 0 < fys < 1, there is a unique solution %y, 70, Tvo
with a single neutral surface and negative flux inside the separatrix. The flux loss time
Teo is a function of a and 3,, and the particle loss time Tyq is given by Twg = Teo/a. This
results do not change for non-uniform g. Thus, there may be a two dimensional domain
D such that, if (7s0, Tvo) € D, there is at least a solution which satisfies (6.1 ~ 4) except.
(6.5).

Now, let us consider conditions under which, if the initial value of 1 is equal to 1o(u),
the quasisteady state p(u) is maintained as a stationary solution of the equation (5.2).
First, g should be independent of time. Second, 7y = 7yo should be maintained by
somehow controlling the edge layer. Third. 1/ms = 1/72 = 0 should be maintained by
controlling the external field B, so that (see (5.5))

S SV .Y
oo 2- (g (2— )1 - fo)

Under these three conditions, to(u) continues to0 be a solution of (5.2). In fact, if at a
time 7 the three conditions are satisfied and (u,T) = ¥o(u), then, the basic equation
(5.2) and the integral theorem (5.3) become

aw — g 8%2/% Yo g 1 du  8Yg _
®Jo 1+ 4y Te o 1+4y§

L) =0 (6.3)

(ﬁo) _< 1
Z—ﬁOs 1‘“}60/2

Ny (66

1
+—01+
)+

respectively. We, therefore, have 1/7y = 0 from the integral theorem and the right hand
side of the basic equation vanishes. Thus, 1y(u) continues to be a solution of the time
dependent equation.



7  Small Deviation §9 from a Quasisteady State

We put 9(u, ) = thp(u) + 6¢(u,7) and consider behavior of §¢ within a range of
linear theory. We assume that g is not only independent of 7 but also uniform: ¢ = 1,
for simplicity. Since the particle loss rate is always given by (4.6), we assume that the
deviation of particle loss rate §(1/7y5)-due to the perturbation §7 is given by

1_4¢03 " 1 603) (ﬁﬂ) i
T L 1L, ) (6%+4) 00, = g+ () (7.1)

An assumption included here is that the value of 7 on the right hand side is fixed by
somehow controlling the edge layer. We fix the decay rate of the external field at the
value of 1/7p,9 given by (6.6). Then, if §¢) = 0, we have 1/7g = 0. But if 69 # 0, as it
can be seen from (5.5) and (4.5) we have a deviation given by

1, _ ) _28p”
) S TT s 0 - (s ﬁo,2>)[6‘(2-ﬁ)2(1—ﬂ))
(6) 1
e
e e _lﬁﬂ ) (7.2)

The deviations §(1/7¢) and 6(1/7) due to 47 can also be calculated from (4.2) and (4.1).
Now, linearizing the basic equation (5.2}, we get

a 6'¢ 1 _1+4'¢'0 ﬂ 4"\[)0 'd’ A%
arw) S TvaE | oy, ) 4 T Crey T}
80 e s Lvee oo (Bo) 1-4gF
+TN051/) +6(T<m){(1 448) 1—(60)( 7 o)’}
- (—)(1—4w ) (7.3)

Notice that 6(1/7¢) and d(1/7,) disappear by cancelling each other. Denoting [ ] on the
right hand side as L(dv), the equation is written in a short form:-

9 5, _ L) ,
orluy) = Traog (7:9)

8 a Criterion for 1 to be an Attractor

Multiplying (1 + 4¢@)y5 (01/4})" on both sides of (7.3') and integrating from u = 0

to 1, we get
10 &

SRR = (L) @Y



If the right hand side of this equation is always negative for any permissible d, the
quasisteady state v is an attractor. In fact, if the condition holds, we have

(1 + a2y 2

Rl

Then, we have at each point of .

64’1y — Sy = 0
~ On the other hand, the differential equation of §%

5/ — Suyf =
has the general solution d¢ = const.iyy) and only one solution satisfying the boundary
condition (u = 1) = 0 is §3 = 0. Therefore, if the right hand side of (8.1} is always

negative, §1 indefinitely tends to zero and the quasisteady state is an attractor. The right
hand side of (8.1) can be rewritten by integra.tion by parts as

(WL =~ HLENY)
So, if we define a linear operator £ as
£(6%) = S {8 L)Y (8.2)
the criterion for 1 to be an attractor is that the inequality
GwCEv)) >0 | (8.3)

is always satisfied.

9 Conclusion

The 1 1/4D time dependent model of field reversed configuration has been formulated
in somewhat different way from the original work{l}, and in its process, an integral theorem
has been obtained together with relations among decay rates of several relevant quantities.
Conditions that the quasisteady state is maintained as a stationary solution of the time
dependent equation have been listed- up. A formal criterion has been proposed for a
quasisteady state to be an attractor.’
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The Construction of Generalized Magnetic Coordinates

Michinari Kurata
Dept. of Energy Engineering and Science,
Graduate School of Engineering, Nagoya University
and
Jiro Todoroki

National Institute for Fusion Science

Abstract

Generalized Magnetic Coordinates (GMC) are curvilinear coordinates (£, . &) in which the magnetic field is

expressed in the form

B=V¥( . n.0XVE+H (§m)VExVn

The GMC construction algorithm is applied to the simple periodic model magnetic field. The coordinates are expanded
in the Fourier series in three dimensions. It is obtained after about 10~ 35 times iterations. The coordinates are well

constructed by the comparatively small number of Fourier modes.

Keywords:
generalized magnetic coordinates, GMC, magnetic flux coordinates, magnetic surface,

magnetic islands, ABC magnetic field, Fourier series, B-spline function
§ 1. Introduction

Magnetic flux coordinates[1,2] are widely used in the study of the MHD equilibrium and stability in the toroidal
plasma when the nested magnetic surfaces exist. Unfortunately, the nested magnetic surfaces exist only in the limited
region of torus; and even inside the outermost magnetic surface there might exist complicated magnetic islands
structure. In such cases, the use of the conventional magnetic flux coordinates is not expected.

- The Generalized Magnetic Coordinates (GMC){3] are the new one to supplement the magnetic coordinates system
adequate to treat the general magnetic configurations. The GMC can be constructed in the region without nested
magnetic surface and the region of chaotic or ergodic magnetic lines of force. So the GMC can treat the magnetic ﬁeld
involving magnetic islands and outside the outermost magnetic surface. ]

In the GMC (£, 1, ) the magnetic field is expressed iﬁ the form

B=VY(En.0)XVE+H (Em)VExVn, 1)



here H* = JE B° does not depend on £, where +/g is Jacobian. The function ¥ is the covariant {component of vector
potential. When the good magnetic surface exists, ‘¥ becomes independent of ¢ and “W(&,77)=Const. is the magnetic
surface. The (-dependent part of ¥ comresponds to the destruction of the magnetic surface. The GMC are to be
constructed so that the { component of vector potential becomes dependent of £ as little as possible.

In order to check the GMC construction algorithm, the general numerical method to construct a GMC is applied to
the simple periodic model magnetic field[4,5]. In this paper the GMC are applied to the model magnetic field involving

clearly magnetic islands.
§ 2. Construction of GMC

The algorithm to construct GMC is the new one to construct magnetic surfaces without tracing magnetic lines of
force. Itis based on the transformation rule of the vector potential accompanied with the change of coordinates[3].

We shall consider a curvilinear coordinate system (&, 1, £), { being the angle variable corresponding to the toroidal
direction. We introduce a time-like parameter T and consider the continuous path from an initial state of coordinates to
the GMC. Then coordinates are expressed as follows,

r=r&n.g. 7). @
The coordinates approach to GMC when T—soo. The parameter T corresponds to the iteration time in numerical
calculation by computer. ' |

The magnetic induction densities \/EB=(H¢,H",HC) can be expressed in terms of the vector potential

AE(A‘:’A’T’AQ') as

_9A A, 0A, 9A, . 3A, OA,
VS L 9’ T A an

£

€)

If we introduce the notations
A=4§AdL/HdS, A=A-A, : - @)
the principles to construct The GMC can be expressed by the following conditions;
7 1) H® does not depend on

2) A{ is minimized,

which are represented as

f{° ag=0. 8f|A]az=0. 5)

§ 3. Modeling and Results

We employ the ABC{Amol'd-Beltrami Childress) mégnetic field in the Cartesian coordinates added constant magnetic

field in the direction of z as the model magnetic field,



B, = bcos(2ny) + csin(27z), ©6)
B, = ccos(2nz) + asin(27x),

B, = acos(2mx) + bsin(2my) + B,

with (a=0.2, b=0.1, ¢=0.6). This magnetic field is periodic in the directions of (x,y,z). The constant magnetic field
B, is added so that B.>0.

The (x,y,z) coordinates are expanded into Fourier series in terms of the GMC (£, 17, £),

L L L
x=£ +l EL _Z . 2_‘,1 X} onn eXpREE+mn+ad]), : N
L L L '
y=n+ 3 3 3 Vi, expQuligtmisnl),
z=¢.

The space is divided into 20~40 meshes of (&, 17, {). The scalar function v is also expanded by Fourier series. The
GMC are obtained after about 10~35 times iterations so far.

In the previous paper[5], we reported two magnetic ficld cases of B;=0.5,1.0 without involving clearly magnetic
islands using the number of Fourier mode from L=1 to L.=7. Fig.1 shows the Poincaré maps of magnetié surfaces of

By=1.0 on the {=0 plane in the GMC. Fig.2 shows the shape and contour of ZC (£.17). When the nested magnetic
surfaces exist, they are equal to Z; =Const..

Next, the constant B, is lowered to B,=0.45, so that the magnetic field involves clearly magnetic islands. The
variation of the magnetic field in the { direction is larger than the case of By = 0.5. Fig.3 shows the GMC mesh of
& n=Const. at equal intervals constructed in the nu:ﬁber of Fourier mode L=9 on the z=0, 0.25, 0.5, 0.75 planes in the
Cartesian coordinates. The Poincaré maps of magnetic surfaces of B,=0.45 is also overlapped in Fig.3. The only

central toroidal field of interest is drawn in the Poincaré map and the outside of it is omitted to draw. Fig.4 shows the
Poincaré maps of magnetic surfaces on the =0, 0.25, .5, 0.75 planes in the GMC. The magnetic islands of poloidal
mode number M=5,7 and 9 are clearly shown. The magnetic islands rotate as ¢ changes. Fig.5 shows the shape and

contour of averaged magnetic surface Zc(é,n). The averaged magnetic surface is Xg =Const. when the breaking of

nested magnetic surfaces exist. Fig.6 shows the Poincaré map on the {=0.75 plane overlapped to Fig.5. The magnetic
islands of M=5 rotate along the averaged magnetic surface; and the width of magnetic islands of M=5,9 could be

measured by the averaged magnetic surface.

In order to evaluate the magnitude of the § dependent part of H® , we calculate the integral,
1, = L Jojol B[ danag 8
¢ " holblo nds - (8}
The integral [y is plotted against the number of Fourier mode. L in Fig.7. It decreases exponentiatly as L increases.
Since the GMC are constructed so that #* becomes zero, Iy must converge to zero. So the error of Iy is caused by the

finite truncation error for the most part.

In order to estimate the influence from the breaking of magnetic surfaces, we evaluate the magnitude of the {



dependent part of H¢ and H™ by the integral,
INIEE Lol 1) mon)?
I =J0JOI0|H§| d&dnd¢, 1, =JojofolHn| dédnd¢ &)
The integral /¢ and I are plotted in Fig.7. Since .34( is minimized in the GMC, H° and H" are also minimized. Since

H¢ and H" naturally contain the contribution from magnetic islands where the nested magnetic surface does not exist,

only its contribution should be contained in [z and /;, if the GMC are precisely made up. Since both g and /) are not
saturated and they are not very different from Iy, they are mostly reflected by the smallness of number of Fourier mode

more than the breaking of magnetic surfaces.

In order to estimate A ¢ that relates with the breaking of magnetic surfaces, we calculate the integral,
E = [Sasf +an | 10
o (&) = [ol|A°] +{A7| ag. (10)

The shape and contour of Eg, are shown in Fig.8. The shape of Eén seems like a crater of volcano. The shapes are

roughly unchanged for the number of Fourier mode from L=1 to L=9, but the shapes become a deeper crater as L

increases. Although the magnetic islands of poloidal mode number M=5 locate in the middle of the magnetic axis and

the outermost magnetic surface, Eﬁn is not especially large there. The largest region of Eén is annular and located

around the outside of the outermost magnetic surface. The region of nested magnetic surfaces around the magnetic axis

corresponds to the region of smaller Eén‘ The similar result for Eén is obtained for the magnetic field of B;=0.5.
At last, in order to examine the distribution of H¢, we calculate the integral

2
Eg(g,n)=}'(;|H§| dac. _ (1)

The shape and contour of E, are shown in Fig.9. Since the shape of E. is similar to Eg,, the region of the outside of
outermost magneétic surface influences on the convergence of E alike. Although E, must converge to zero like fy, the

shape of E, approaches to that of E, if L becomes large to L=9. The meaning of this is not clear at the present.
§ 4. Summary

It is shown that the averaged magnetic surface KC =Const. is equal to the magnetic surface when the nested magnetic

surfaces exist. The GMC can be constructed for the magnetic field involving clearly magnetic islands by the general

algorithm to construct GMC. In this model field H* H" and H® decreases exponentially as the number of Fourier

mode increases. The distribution of ﬂg that relates with the breaking of magnetic surfaces is estimated. The largest

region of /-&g is located around the outside of the outermost magnetic surface. The relationship between .:ig and the

region whete magnetic surface does not exist should be examined in further detail.



In the general magnetic configuration of interest the periodic condition in three dimension cannot be used. In order to
drop the periodic conditions of magnetic field in £ and 7 directions, the B-spline function should be used as the basis of

expansion. The B-spline function that has local support is adequate to treat the general magnetic field invelving further

breaking of magnetic surfaces.
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Appliéation-S of Neural Network to Numerical Analyses
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Abstract

Applications of a multi-layer neural network to num erlcal analyses are
described. We are mainly concerned with the computed tomography and
the solution of differential equations. In both cases as the objective
functions for the training process of the neural network we employed
residuals of the integfal equation or the differential equatibns. This is
different from the conventional neural network training where sum of the
squared errors of the output values is adopted as the objective function.
For model problems both the methods gave satisfactory results and the
methods are considered promising for some kind of problems.

Keywords: neural network, computed tomography, differential equation,
collocation method, data assimilation, Lorentz equation

1 Introduction

Though the studies on an artificial neural network were originally
started to construct a system which simulates a biologjcal neural network, at
present the studies are not restricted to the biological ones but the network
has a variety of application fields, -especially, for data ‘processing methods.
Because of the original motivation of studies of the neural network there
are a lot of studies on applications of the neural network to dlassification and
pattern recognition but there are few ‘exam ples of applications of the neural
network to numerical computations which need high accuracy as well as
high speed. There is, of course, a limitation to the’ application - of neural
network to the- numerlcal computatlon concermng the accuracy and the
speed as long as we use conventional‘¢oin piiters. ‘However,if we'make use
of unique features of the-neural rietwork satisfactorily and devisé a peculiar
numerical’ procédure, it is 'Ii'ossible ‘to “iise "the neural ‘network to' the



numerical computation effectively in spite of such limitations.

2, Structure and Training of Neural Network _

A neural network is constructed from a lot of co-mparatively simple
processors (units) connected each other in order to realize a certain function
as a whole. For realization of the function of the system the state of
connections represented by a weight assigned to each connection is the
im portant factor and the training (learning) of the neural network is the
process to determine values of the weights.

In this article we consider a multi-layer feedforward neural network as
shown in Figl. We employ the logistic equation of a sigmoid function-
type as a nonlinear transforming function (an activation function of a unit).
The training algorithm we mainly consider is the error back-propagation
method, i.e., the most commonly used method for this kind of the network.
offset

o o

* ® oo 00 ® o
® ° ®
o ° °
Input
Layer |

Hidden

Layers

Fig.1 : A multi-layer feedforw.ard’neural network

In Fig.1 w;;® is the weight assigned to the connection between the i-th unit in
the p-th layer and the j-th unit in the p+1-th layer. If we represent the
input value to a unit from the i-th unit in the preceding layer as x; and the
corresponding weight as wi, the output value y from this. unit is obtained by
nonlinearly transforming the weighted sum of the input data by the s.igm_.oid



function o(X) as

X= Zwixi

i=1 .
During the error back-propagation process the weights are updated

iteratively according to the following equation.
sy oy OB __ 0 X

dw; |

where E is the error function as the objective function of the optimization

process of the neural network, y is the learning rate, and C is the value

transferred from the succeeding layer.

3. Numerical Analysis and Features of Neural Network _

The neural network is considered as a device which has various
features represented by the following items. |
(1) astatistical model of the real world.

(2) a classification device.

(3) acontinuous mapping device.

(4) astatic or time dependent function.
(5) asmoothing operator.

(6) an interpolation device.

Though some of these features are advantageously used for numerical
computations there are only a few application of the neural network for this
field up to now. Because the training process of the neural network is
essentially a nonlinear optimization which inevitably requires a lot of
computational cost, it seems sometimes ridiculous to use the neural
network for numerical computations. But some of the above features are
very attractive and may make practicable the numerical computation
method based on the neural network technology by setting the advantages
off against the disadvantages.

4, Application of Neural Network to Computed Tomography

The simplest ideas to use the neural network for numerical
computations are found in the field of inverse problems. Amongthem the
CT (computed tomography) image reconstruction technique is one of the
interesting applications. In this section we describe the technique usable for



the diagnostics for the experiments of fusion plasma experiments.

4.1 Parametric Computed Tomography

In this subsection we consider a process to obtain a density distribution
n(xy) in a cross-section of a cylindrical or a toroidal plasma by a multi-
channel microwave interferometer. Analysis of the density distribution
from the set of the measured phase shift data (Fig.2) is a problem to solve the
first kind Fredholm integral equation. The phase shift of micowave
passing through a plasma is described as

}'L,(X_,)

9, =k [n(x.y)dy

yilxy)

where Yu(*?) and Y1) are the upper and lower limit of integration for the
j-th path of micro-wave. Because in this kind of measurements the
number of the microwave paths does not exceed several tens at most, usual
CT techniques cannot be applied to this problem. Therefore, some
assumptions such that the contours of the density distribution are only
slightly deformed from concentric circles are introduced and the parameters
defining the shapes and positions of the contours are analyzed. A typical
example of this kind of methods is to represent the density distribution by a
linear combination of a limited number of appropriate functions. For this
purpose we employed the Fourier-Bessel series as
n(x,y) =n(r,0) = i iamfm (A, r)cosmb

m=0 n=1
r= ‘/xz +y2 _and 0= tan'l(y/ x)

By entering the measured values corresponding to the line integrals
(the phase shift data of the microwave interferometry) of the paths to the
input unit of the neural network, values of the above parameters
(coefficients of the Fourier-Bessel series) are obtained from the output units.
In this problem the training of the neural network is carried out by
preparing parameters for various model distributions and corresponding
phase shift data as the supervisor data. The error function E of the neural
network is represented by the sum of the squared values of differences
between the nnetwork output and the supervisor data as



E= Z(f, ___fifeacher)Z

where f represents the coefficients a__.

microwave

#SOUFCG

L

plasma

vV
microwave
interferometer

Fig.2 Schematic diagram of the plasma density measurement
by microwave interferometry.

This is a very simple application of the neural network to the inverse
problems and we obtained satisfactory results for model distribution of the
plasma density. Bishop el al.[1] applied a similar method to the analysis
of the JET plasma by taking into account some additional information on
MHD equilibria of the measured plasma.

By this method once the network training is carried out only the
forward calculation along the network is necessary for the analysis which
consumes only a small amount of computation time. However, as the
density distribution is represented by only a small number of parameters
the expressive power of the system is relatively low, and if one wish to carry



out more detailed analysis the size of the network increases drastically.

4.2 Non-Parametric Computed Tomography (1)

In order to cope with the above problem we devised a new CT image
reconstruction method by using the neural network[2] . The most
distinctive feature of this method in comparison with the previously
described method is in the choice of the error function. In this method the
value of the density f is obtained from the output unit for the position (x,y)
given to the input units as,

f. = f(x,y. ;W)
Therefore, the network structure is 2 - (hidden layer) - 1, and the size of the
network is always kept rather small. The error function is given by using
the residual of the integral equation as

E=Y (30,60~ gy’
8,0, = | flx, yids = 3, aPfx, )

k) )
where r,_ and 0, are the parameters definingthe path of the line integral (r,:
the distance from the origin to the k-th line, 8,: the angle of the direction to
the path). Correspondingly, the updating equation of the weights is given
as follows.

. OE
Awp, ==Y o =272,

< I
mn k=1 =1

. dag(r, 6 :
(g(rk’ek)_grneasured) g(rk k) afl

k . ol
& . measured (k) af'z
= _27; ; (S(rk: 6,) -8 )0!,- 30

We applied this method to some model distributions and obtained
satisfactory results. The detailed description of the method is found in ref
[2}. Because of the features (5) and (6) described in Section 3 this method
may be promising for the case where sufficient number of data ‘points are
not available.

4.3 Non-Parametric Computed Tomography (2)
| Though the new CT image reconstruction technique is promising
there are some problems to be solved. One of them is the error
amplification due to the numerical differentiation during the training
process. We devised a new algorithm which does not include the



numerical differentiation. The procedure is described as follows.

(1) Continuous mapping between the parameters (r,8) defining the
integration path and the value of line integral b is constructed by using a
neural network as

b,=b(r,,8,) = | flx,y)e

(2) Derivatives of b with respect to r and/or 8 are calculated analytically.

%:j%dﬁzj(iix-+ii Ez_[(icosﬂp+isin6p}if

o ya) Il ¥
b (Lo (| L2 Yy
96 136 %36 a0

= I(%(—rpsin 6, +£cos 9p)+-gfj—(rp cos8, + £sin Gp)}ié'
r ' '

(3) The second neural network which gives df/dx and/or Jf/dy as the
output value by giving x and y as input values is constructed.
(4) Integration of Jf/dx alongthe x direction or gf/dy. along the y direction
give the value of f. o : _
The above procedure does not incdude the numerical differentiation
and it is expected that the CT image reconstruction with the high accuracy is:
realizable. Details of this method will be described elsewhere.

5. . Application of Neural Network for Solving Differential Equations.

Methods to solve | differential equationsby the neural network
collocation methodwere proposed and tested by B.Ph. Milligen, et al.[3] and
LE. Lagaris, et al.[4]. Difference between above two methods is in the
treatment of the boundary/initial conditions. In the Milligen’s method the
boundary/initial conditions are imposed as penalty terms added to the error
function of the neural network. In the Lagaris’s method, on the other hand,
the solution of the differential equation is com posed of the neural network
output and appropriate shaping functions so that the resultant solution
satisfies the boundary/initial conditions exactly. In this way, there is a
possibility that the Lagaris’s method gives a higher accuracy but it is rather
difficult to prepare appropriate shaping functions. We tried to prepare
necessary shaping functions by connecting partly defined shaping functions
smoothly -(the divided shaping function method).



5.1 Solution Method
The Lagariss method is explained briefly in the following We

consider to solve the following differential equation defined in a domain .

Du(x)=g(X) on Q
In the domain we prepare the domain composed of a set of collocation
points.

Du(x)=g() on Q@ QcQ |f2l<‘oo
The original continuous differential equation is solved by minimizing the
following residual.

E=Y(Du(@)- g(%)’

xeQl
The corresponding equation for the collocation method is as follows.

E=Y(Du(%p)-5®)

Feld
where the solution is constructed by using the neural network output and
the appropriate shaping functions.

u (%)= A(Z)+F(%, f (%,7)) _
The function F is exactly 0 at the Dirichlet boundary and the value of A at
the same point is exactly the boundary value.

5.2 Examples of Problems

W at first we tried the divided shaping function method worked well.
For this purpose we solved the poisson equation in a square domain and a
T-shaped domain. For the square domain a single shaping function was
used (Fig.3), and for the T-shaped domain 7subdomain were prepared and
the 7. shaping .functions connected smmothly .and the whole shaping
function was constructed (Fig.4). In both cases accuracy of the computations
was not necessarily satisfactory but the divided shaping function works
rather well and promising.
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Fig.3 Solution of the Poisson equation in the square domain.
(a) Contour plot of the solution, (b) Contour plot of the eror.
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Fig4 Sclution of the Poisson equation in the T-shape domain.,
(a) Contour plot of the solution, (b) Contour plot of the eror.

Next we studied the problems concerning the data assimilation
technique. For this purpose we tried to solve the Lorentz equation by
assigning the initial condition of different variables at different temporal
points. The results were satisfactory and the method worked well even if
the initial conditions are not imposed at the different temporal points for
different variabies. From this experiment it is conjectured that the neural



network collocation method might be usable for the data assimilation
problem where the temporal or the spatial positions for the initial /boundary
conditions are prepared irregularly.

6. Improvement of Neural Network Training

For the problems treated in this article the important and urgent
studies are improvement of the training characteristics. Among them the
realization of the fast training is very important. Among them to increase
the value of the derivative for large argument is very effective

improvement. For this purpose we consider the parametrized weight
method [5] and the modified sigmoid function.

6.1 Parametrized Weight Method for Fast Training

By the parametrized weight method each weight is expressed by some
third order equations, by which the derivative of E with respective to the
weight becomes large even for a large vlue of the argument of the sigmoid
function. By this fact the increment of the weight at each iteration step
becomes large and the convergence is accelerated.

X= zn:Wix‘.

W(m) _f'(P(m) (m) [m])
(m+1) (?") Ap(m)

Pi
m aX 9 af.
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AW =W -w;'"> s_kZ_Lw Apt™ +0{(ap'™y)
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n .‘ y do & H '_ J
P DR o
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fe(plt"'ptr"-pn)=3(Pe) ,
do |(d
AW ~ 229 [ 28
5 ycdxxl(dpij .

This m_-ethod is especially effective for some kind of model problems but for
some model problems this method does not work as expected. The
deetailed description of this method will be presented elsewhere.



6.2 Modified Sigmoid Function for Fast Training

According to the same guidline as the previous subsection we replaced
the argument X of the sigmoid function by a higher order equation of X,
which gives a large value of derivative of the sigmoid function and makes
the step length of the training large.

y=0o(X)

dy _do

o dX  dX
y=o{X+aX?)
dy dog, 3aX?)
dX dX

This method does not improve the convergence dramatically as the method
described in the previous subsection but improves the convergence on the
average.

7. Summary

We have developed a new application methods of the neural network.
This is based on the principle that the sum of squared residuals of the
integral equation or the differential equation should be minimized. The
concrete examples of the model problems are the CT image reconstruction
and the solutions of the Poisson equation, the Lorentz equation and so on.
We obtained a satisfactory results and the method may be promlsmg for
various kind of umque problems.

Reference

1. C.M. Bishop, Rev. Sci. Instr. 65, 1803 (1994).

2. XF. Ma, T. Takeda, Apphcatmn of neural network to CT, in this
report. 7

3. B Ph. Milligen, et al., Phys. Rev. Letters 75, 3594 (1995).

4. LE. Lagans, et al, Artificial neural network for solving ordinary and

partial differential equations, Preprint 15-96, Dept. of Computer
Science, Univ. of Tonia (1996).
5 T. Kin, T. Takeda,

—929 —



Za—INEXxyhIT—=IDCT DA
| B . WRRE
BREEAY WRIFER 'BREEAY BERISH

Application of Neural Network to CT
Xiao Feng MA Tatsuoki TAKEDA
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Abstract

This paper presents a new method for two-dimensional image reconstruction by using a mul-
tilayer neural network. Consider the general tomography problem illustrated in Fig.1. The goal
is to determine the local spatial quantity f(z,y) from a number of line integral measurements

o(r B) = [(  Jzds

made along various lines of sight k though a given region of space.

Multilayer neural networks are extensively investigated and practically applied to solution of
various problems such as inverse problems or time series prediction problems. From learning an
input-output mapping from a set of examples, neural networks can be regarded as synthesizing
an approximation of multidimensional function (that is, solving the problem of hypersurface
reconstruction, including smoothing and interpolation). From this viewpoint, neural networks
are well suited to the solution of CT image reconstruction.

Though a conventionally used object function of a neural network is composed of a sum of
squared errors of the output data, we can define an object function composed of a sum of residue
of an integral equation.

E= Y (ol - 7
k
meas

where g,{_V N is line integration calculated from neural network output, g7 is the observed
projection data and k is the number of integral lines. By employing an appropriate line integral
for this integral equation, we can construct a neural network that can be used for CT. We
applied this method to some model problems and obtained satisfactory results.

As it is not necessary to discretize the integral equation using this reconstruction method,
therefore it is application to the problem of complicated geometrical shapes is also feasible.
Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse
mapping can be achieved smoothly even in case of including experimental and numerical errors.
However, use of conventional back propagation technique for optimization leads to an expensive
computation cost. To overcome this drawback, 2nd order optimization methods or parallel
computing will be applied in future.

Keywords: computerized tomography, multilayer neural networks, error back propagation
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Fig.1: The computational domain for two-dimensional image reconstruction
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Fig.4: Paths of line integrals of the projection data
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Application of the Infinite-Precision

Numerical Simulation to an Inverse Problem*

Hitoshi IMAI' and Toshiki TAKEUCHI!

! Faculty of Engineering, The University of Tokushima,
Tokushima, 770-8506, Japan

Abstract

In the paper an inverse problem on the heat equation is solved by direct simulation using
infinite-precision numerical simulation. It consists of spectral( collocation } methods and
the multiple-precision arithmetic. Numerical results are relatively satisfactory. Moreover, we
show another interesting approach which may increase validity of infinite-precision numerical
simulation to inverse problems.

Key Words : inverse problem, infinite, spectral method, multiple precision

1 Introduction

Inverse problems often arise in engineering, and they are very important from the practical
view point. However, it is very difficult to solve them because they are ill-posed[3]. Errors
grows exponentially. |

Inverse problems are usually transformed into minimization( regularized ) problems, then
solved. A lot of theoretical regularization techniques have been developed(3, 12}, however
they are not always applicable to practical problems due to unpredictable errors. This is be-
cause minimization problems are not ill-posed but ill-conditioned. So, additional techniques
are necessary for suppression of oscillation phenomena. A '

In practical{ complicated } problems AI{Artificial Intelligence) approaches are valid. In
such systems the fuzzy theory is often adopted, because it is easy to reflect the experience
of experts to the control system. We applied the fuzzy control to a little complicated inverse
problem which is concerned with the vessel design in the plasma confinement(2, 4]. The

*This work is partially supported by Grant-in-Aid for Scientific Research(Nos. 09440080, 10354001 and
09304023) Japan Ministry of Education, Science and Culture.



problem is an initial value problem on the Laplace operator and it is defined in the domain
with a complicated shape. We transformed the problem into a direct problem with a free
boundary, and optimized iteratively by using the fuzzy control. Unfortunately, numerical
results were not so satisfactory[12]. In such complicated direct problems unpredictable errors
spoil sophisticated numerical methods. In our problem, the complicated solver of the direct
free bounday problem may cause unpredictable errors.

We consider the direct simulation to inverse problems along the strategy. It is based on
the fact that numetical simulation is practical. Inverse problems are very important from
the practical view point, so numerical simulation is inevitable. It is more imporiant than
theoretical analysis. However, numerical simulation can not give global solutions to inverse
problems. Therefore, if numerical methods give good local solutions, then we should satisfy.
This approach may be realized by infinite-precision numerical simulation to PDE systems.
The simulation to one-dimensional boundary value problems enabled incredible accuracy(
errors < 1071%00){11, 7).

2 Our Method and Model Problem

2.1 Infinite-Precision Numerical Simulation

Errors in numerical simulation to PDE systems originate from truncation errors in the
discretization and round-off errors. Realization of arbitrary precision simulations needs ar-
bitrary reduction of both errors.

When partial differential equations have smooth solutions, truncation errors can be re-
duced by raising the order of approximation. We adopt the spectral method as a discretiza-
tion method. Particularly, the spectral collocation method is used here. This is because
it is very useful to nonlinear problems and its application is very easy like FDM. In the
spectral collocation method, the order of approximation can be controlled by the number
of collocation points. For example, in the spectral collocation method with Chebyshev-
Gauss-Lobatto points, the N-th order approximation can be realized only by using (N + 1)
collocation points[1].

In addition, the multiple-precision arithmetic[9] is used for reduction of round-off errors.
A lot of FORTRAN subroutines about the multiple-precision arithmetic are already known.
We used the library of FORTRAN subroutines on the net (http://www.Ilmu.edu/acad
/personal /faculty /dmsmith/FMLIB.html)[10].

Our numerical method consists of these two methods, i.e. the multiple-precision arith-
metic and the spectral (collocation) method. In our method, truncation errors and round-off
errors are controlled easily. This is very important in numerical simulation in applied math-
ematics. Of course, both errors can be reduced arbitrarily. This means theoretically we can
perform numerical simulation with errors which are less than the given tolerance. From this
point of view, our simulation can be called that in infinite precision[11, 7).

2.2 Model Problem

To evaluate our method we consider the following model problem. This problem is a
typical inverse problem on the heat equation.



Model Problem 1

0 d?
(1) —a%————a—;;, 0 <t, -l1<z<]l,
(2) u{z,0) = cos %:c_, -l<z <1,
(3) u(_lat) = 0: St,
(4) u(l,t) = 0, 0<¢

The exact solution for Model Problem 1 ié given as follows:

’ 2
t
(5) u(a:,t)=e><p3r4—cos3r23, 0<t ,-1<z<l

The exact solution grows exponentially as¢ increases.

2.3 Spectral Collocation Method in Time

We use the spectral collocation method in space and time. Generally, we need an iterative
method to apply the spectral collocation method in time. To do so, the time axis is divided
into intervals. In each interval the initial and boundary value problem is solved. This
procedure is executed iteratively[5].

For the application of the spectral col]ocatlon method to the interval [t,,t.] we consider
the following variable transform:

At 1

(6) Hr) = ST+ttt —1<7<L, At =1, —t,
9 1
) r(0) = 2ol 3 (t+ 1)
Then,
d dr 0 2 g
(8) = =

at  dtdr  Atdr

Thus Model Problem 1 is transformed into the following problems.



Model Problem 1' — 1
For the interval [0,t.] (i.e. £, =0),

20 &2
9) ‘A“ta_::‘a_“;’ -l<7<1, -l<z<l,.
(10) u(z,—1) = cos 323 1<z <l,
(11) u(—1,7) = 0, -1<7<1,
(12) - ufl,T) =0, -1<7<1

Model Problem 1" — 2
For the interval [t;, 1] after the interval [, %,] (ie. t, =1, ),

2 Ou Py :
o -1 < -
(13) AL Dy el <7<1, _ 1<z <],
(14) u(z, -1) = u(z,t=1), “l<z<l,
(15) ‘ u(-1,7) = 0, -1<7<1,
(16) u(l,7) = 0, _1<r<1

3 Numerical Results

For Model Problems 1’, SCM{ Spectral Collocation Method ) in space and time with
Chebyshev-Gauss-Lobatto points is used: We use same order approximation in t and z
directions for the simplicity. N represents the order of SCM. The number of total collocation
points is (V + 1)2. Numerical results are estimated by maximum among absolute values of
relative errors at collocation points.

First, numerical calculation is executed in double precision. A constant £ = 0.1. Table 1
shows the time t, when the error exceeds £ = 0.1. In Table 1, 7 =" shows the case where the
error exceeds 0.1 at the first interval. ¢, with symbol "*” shows the last time when numerical
calculation s stopped by overflow until the error exceeds 5. The boldface represents the
largest 2. for fixed N. There is a proper value of At for fixed V.

Next, numerical calculation is executed in quadruple precision. Table 2 shows t. for
¢o = (L1. In many cases, results in quadruple precision are better than those in double
precision.



Table 1. ¢, by SCM in double precision(gg = 0.1)

N=4]|N=5[N=6| N=7| N=8  N=9 | N=10
At =10.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2
At =0.2 0.2 0.2 0.4 0.6 0.4 0.6 0.4
At =03 0.9 0.9 0.6 0.3 0.6 0.6 0.9
At=04 7.6 4.0 1.2 1.2 0.8 0.4 0.8
At=05] 8.0 2.5 2.5 2.5 2.0 1.0 1.5
At =06 7.2 7.2 5.4 3.6 3.0 1.8 1.8
At =0.7 5.6 154 7.0 3.5 4.2 3.5 3.5
At=0.8 4.0 40.8 11.2 5.6 4.8 3.2 4.0
At =09 2.7 T1.1 21.6 9.0 6.3 3.6 3.6
At=1.0 1.0 29.0 60.0 17.0 8.0 5.0 5.0
At=1.1 1.1 13.2 172.7 29.7 12.1 8.8 5.5
At=1.2 — 7.2 85.2 75.6 18.0 9.6 6.0
At =13 — 3.9 44.2 284.7* 33.8 14.3 9.1
At=14 - 1.4 23.8 2184 81.2 21.0 11.2
At=1.5 - - 12.0 115.5 | 283.5* 36.0 16.5
At=1.6 — — 6.4 62.4 283.2* 97.6 24.0
At=1.7" - — 3.4 34.0 283.9* | 283.9* 42.5
At=138 - — 1.8 19.8 198.0 | 284.4* 91.8
At=1.9 — - — 11.4 108.3 | 283.1* | 283.1*
At =2.0 - — — 6.0 60.0 284.0% | 284.0*
At=21 — - — 21 35.7 270.9 283.5*

Table 2. . by SCM in quadruple precision(gq = 0.1}

N=4|N=5|N=6|N=7T| N=8B | N=9 | N=10
At=10.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2
At =02 0.2 0.2 0.4 0.6 0.4 0.6 04
At =023 0.9 0.9 0.6 0.3 0.6 0.6 0.9
At=04 8.8 10.0 1.2 1.2 0.8 04 0.8
At =05 8.0 6.5 2.5 2.5 2.0 1.0 1.5
At = 0.6 7.2 17.4 12.0 6.0 3.0 1.8 1.8
At =0.7 5.6 35.7 17.5 8.4 7.0 3.5 3.5
At=0.8 4.0 98.4 28.0 15.2 11.2 6.4 5.6
At =09 2.7 71.1 52.2 234 14.4 9.0 9.0
At=1.0 1.0 29.0 151.0 37.0 20.0 13.0 11.0
Af=1.1 1.1 13.2 172.7 66.0 28.6 17.6 13.2
At=1.2 - 7.2 85.2 180.0 44.4 25.2 16.83
At=13 - 3.9 442 | 462.4 79.3 35.1 22.1
At=14 - 1.4 23.8 | 218.4 | 2002 53.2 30.8
At = 1.5 - — 12.0 115.5 | 1365.5 91.5 40.5
At =16 — — 6.4 62.4 696.0 225.6 60.8
At=1.7 - - 3.4 34.0 365.5 | 3393.2 | 102.0
At=1.8 - - 1.8 19.8 198.0 1737.0 241.2
At=1.9 — — - 114 108.3 913.9 | 4598.0*
At =20 — - — 6.0 60.0 492.0 | 4598.0*
At =21 - - - 2.1 35.7 270.9 2725.8




Tables 3 and 4 show the largest ¢, for fixed N. The calculation in quadruple precision is
stabler compared with that in double precision.

Table 3. Largest {. by SCM in double precision(gp = 0.1)

Ny, Ni=4 | N;,N;=5 | No, N, = 6

At | 05 0.9 1.1
# iteration 16 17 157
te 8.0 71.1 1727

Max. of exact sol. | 3.74x10% | 2.20x10™ [ 1.15x 1075
Max. of numer. sol. | 3.38x10% | 2.24x10% [ 1.04x 1018
error 0.0948 0.0204 0.0999

Table 4. Largest £, by SCM in quadruple precision(gg = 0.1)

N=4 N=5 N=6 N=T N=28 N=9

At 0.4 0.8 1.1 1.3 1.5 1.7

# iteration 22 123 157 328 909 1996
i 8.8 98.4 172.7 426.4 1363.5 3393.2

Max. of exact sol. |2.69x10% [ 2.45%10705 [ 1.15x1073° | 7.84x10758 | 1.25x101281 [ 1.16x 103036
Max. of numer. sol. | 2.42x10% | 2.65x10105 | 1.04x10785 | 8.62x10%56 | 1.23x107%571 | 1.28x 103636
error 0.0994 0.0775 0.0999 0.0999 0.0999 0.1000

Next, numerical results by the FDM(Finite Difference Method) are shown for comparison.
The quadruple precision arithmetic is used. The second-order centered difference method
about z is used in FDM. Crank-Nicorson method is used for time integration. n represents
the number of grids in # direction. The calculation by FDM is unstabler compared with
that by SCM.

Table 5. . by FDM in quadruple precision(eq = 0.1)

n=11|n=101 | n = 1001
At=0.10] 1.90 2.80 2.50
At=0.11| 3.30 |[. 3.96 3.74
At=0.12 | 4.80 5.04 4.92
At=10.13 | 6.11 4,42 4.42
At=0.14 | 7.84 3.78 3.78
At=015| 7.80 3.30 3.30
At=0.16| 7.36 2.88 288
At =017 |- 5.95 2.55 2.55
At=0.18 | 4.50 2.16 2.16
At=0.19| 3.61 1.90 1.90
At =020 3.00 1.80 1.80




Table. 6.

Largest t. by FDM in quadruple precision(gq = 0.1)
n =11 n=101 | n=1001
At 0.14 0.12 0.12
# iteration 56 42 41
te 7.84 5.04 4.92
Max. of exact sol. | 2.52x108 [ 2.52x10° | 1.63x10°
Max. of numer. sol. | 2.75x10% [ 2.75x10° | 1.78 x 10°
error 0.092 0.095 0.094

Next, numerical results under the more strict condition are shown. Here g9 = 0.0001.

The numerical calculation have been executed by SCM in quadruple precision.

Table 7. . by SCM in quadruple precision(gq = 0.0001)
N=10 | N=11|N=12| N=13
At=1.0 10.0 6.0 6.0 4.0
At=1.1 12.1 8.8 3.8 5.5
At=12 156 10.8 9.6 7.2
At =13 20.8 14.3 11.7 9.1
At=14 28.0 18.2 14.0 11.2
At = 1.5 36.0 24.0 16.5 13.5
At=1.6 54.4 32.0 20.8 16.0
At = 1.7 39.1 42.5 27.2 20.4
At =18 18.0 63.0 36.0 23.4
At=19 9.5 96.9 47.5 304
At=20 4.0 50.0 72.0 42.0
At=121 2.1 25.2 111.3 54.6
At=2.2 — 11.0 129.8 74.8
At =23 - 4.6 64.4 121.9
At=24 - 2.4 33.6 252.0
At=125 - - 17.5 170.0

Table 8. Largest t. by SCM in quadruple precision(gq = 0.0001)
Ny Ny=10 | Ne,Ny=11 | N;,N,=12 | N, N, =13
At 1.6 1.9 2.2 2.4
# iteration 34 51 29 105
tc 54.4 96.9 129.8 252.0
Max. of exact sol. | 1.7401 x 10°% | 6.6839 % 10109 [ 1.2329x 10" | 1.0715x10%™
Max. of numer. sol. | 1.7400x 10%8 | 6.6846 x101%% | 1.2327x 10" | 1.0716 x 10?0
error 8.07x107° 9.83x10™° 9.90x107? 7.99%107°




Lastly, we show the numerical result by SCM in muiltiple precision. The number of
collocation points NV = 10. We can not use larger NV from restriction of computing resources.
go = 0.0001. Numerical calculation is executed in various digit numbers. Here, 16 and 34
digits correspond double and quadruple precisions, respectively. The calculation in multiple
precision is the better compared with that in double or quadruple precisions.

Table 9. ¢, by SCM in multiple precision{zg = 0.0001)

# digits 16 34 a0 100 150 200 250 300 500 1000
At=101| 3.0 [ 10.0 | 12.0 | 12.0 12.0 12.0 12.0 12.0 12.0 12.0
At=11] 3.3 | 121 | 220 | 451 | 50.6 50.6 50.6 50.6 90.6 50.6
At=121{ 48 | 156 | 28.8 | 56.4 85.2 | 114.0 | 146.4 | 174.0 | 288.0 | 5784
At=13| 65 | 20.8 | 37.7 | 754 | 113.1 | 148.2 | 191.1 | 2275 | 375.7 | 755.3
At=14] 84 | 280 | 504 | 994 | 149.8 | 200.2 | 254.8 | 303.8 | 429.8 | 4208
At=15112.0 | 36.0 | 69.0 | 138.0 | 184.5 | 184.5 | 184.5 | 184.5 | 1845 | 184.5
At=161| 176 | 54.4 | 83.2 | 83.2 83.2 83.2 83.2 83.2 | 832 83.2
At=1.71}30.6 | 39.1 | 39.1 | 39.1 39.1 39.1 39.1 39.1 39.1 39.1
At=18 1| 18.0 | 180 | 18.0 | 18.0.{ 18.0 18.0 18.0 18.0 18.0 18.0
At=191 95 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
At=20| 40 | 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

4 Another Approach Using Some Informations

Inverse problems can not be solved efficiently without any informations. Application of SCM
without any informations spoils its advantage on accuracy. Then we consider an ancther

approach using growth rate of the solution. Such approach is possible after simple simulation (
e.g. low-order approximation ).

The solution of Model Problem 1 is transformed by intfoducing a parameter A as follows:
(17) _ a(z,t) =exp(<M) u(z,t),  A>0
Model Problem 1 is transformed to Model Problem 1”:

Model Problem 1"

(18) E = —a—xg'—A?], 0 <t -1 <r<l,
(19) u{z,0) = cos %, -l<z <1,
(21) a(l,8) = 0, 0<t.



The exact solution for Model Problem 1” is given as follows:

2
(22) w(z,t) = exp ((%——A) t) cos%{, 0<t, ,—1<z <1

We solve Model Problem 1" by SCM in quadruple precision. Numerical calculation is
executed only for the first interval [0, At]. Numerical results are shown in Table 10. A = 0.0
means no information on the solution. In case of A = 3.0, error is small for various At. This
approach is similar to elimination of singurality[4].

Table 10. Error by SCM in quadruple precision

A=0.0 A=1.0 A=3.0 A=50 A =100
At =001 | 214 x 107 | 214 x 107 | 214 x 1077 [214x 1077 | 2.14 x 107
At=002 | 814x10° | 835x 10°¢ | 8.80 x 10~° [ 9.26 x 1078 | 1.05 x 10~°
At—005|1.23x10-7[123x1077 | 6.03x 1078 [ 6.03 x 1078 { 6.03 x 1073
At—01 |768x1071901x10"7 | 254x107% |3.50%x107% | 7.31 x 10~°
At=02 |158x10-7 |2.16x10-7 | 4.05x 1077 [ 763 x 1077 | 3.44 x 10~°
At=05 |7.78x10 5 |1.70x 10~7 | 6.3d x 1077 [3.40x 10~7 | 1.51 x 10~
At=1 402x10°7 [1.75x10 9| 1.74 x 1075 1 1.63 x 10~7 | 1.15 x 10—
At =2 407 x 107 | 3.87x 105 | 6.93x10-10 [ 4.49x 1077 [ 1.20 x 10~°
At=5 902 x 101 | 1.45x 106 | 1.61 x 107 | 4.27 x 1077 [ 6.99 x 107
At =10 1.00 1.00 2.07 x 1077 [1.56 x 102 | 5.48 x 10~

5 Conclusion

" We considered direct simulation to inverse problems along the strategy. It is based on
the fact that for inverse problems if numerical methods give good local solutions then we
should satisfy. To realize the strategy we used infinite-precision numerical simulation. It
was applied to an inverse problem on the heat equation. Numerical results are relatively -~
satisfactory. Moreover, numerical results using some informations on the solution were very
satisfactory; however they were not obtained in multiple-precision. We confirmed necessity
of such informations to inverse problems. ‘

We have a plan to investigate more detailed simulation to this problem. We also have a
plan to apply our approach to other inverse problems(6] and free boundary problem(5, 8].

References

[1] C. Canuto, et al., Spectral Methods in Fluid Dynamics, Springer-Verlag, 1988.

[2] A.S. Demidov, The form of a steady plasma subject to the skin effect in a tokamak with
non-circular cross-section, Nucl. Fusion, 15, pp. 765-768(1975)

(3] G.Hammerlin, et al., Improperly Posed Problems and Their Numerical Treatment, Birkhiuser,
1983.



(4] H. Imai and H. Kawarada, One-Component Asymmetric Plasmas in a Symmetric Vessel, Japan
J. Appl. Math., 5(2), pp.173-186(1988)

[5] H. Imai, Y. Shinohara and T. Miyakoda, Application of Spectral Collocation Methods in
Space and Time to Free Boundary Problems, Hellenic European Research on Mathematics
and Informatics '94(Ed. E.A. Lipitakis), Hellenic Mathematical Society, 2, pp.781-786(1994)

[6] H. Imai, Application of the Fuzzy Theory and Spectral Collocation Methods to an Ill-Posed
Shape Design Problem With a Free Boundary, Inverse Problems in Mechanics(Eds. S. Saigal
and L.G. Olson), The American Society of Mechanical Engineers, 186, pp.103-107(1994).

(7] H. Imai, T. Takeuchi, H. Sakaguchi, Y. Shinohara and Tarmizi, On Numerical Simulation of
Partial Differential Equations in Arbitrary Precision, RIMS Kokyuroku, Kyoto Univ., 1040,
pp.92-99(1998), in Japanese

[8] H.Imai, Y. Shinohara, T. Konno, M. Natori, W. Zhou, I. Ohnishi and Y. Nishiura, Numerical
Computations of Free Boundary Problems in Quadruple Precision Arithmetic Using an Explicit
Method, Gakuto International Series, 11, pp.193-207(1998).

[9] D. E. Knuth, The Art of Computer Programming, Addison-Wesley, 1981.

[10] D. M. Smith, A FORTRAN Package For Floating-Point Multiple-Precision Arithmetic, Trans-
actions on Mathematical Software, 17, pp.273-283(1991).

[11) T. Takeuchi, H. Imai, Tarmizi, Y. Shinohara, H. Sakaguchi and T. Miyakoda, On Numer-
ical Simulation of Partial Differential Equations in Arbitrary Precision, Science Interna-
tional(Lahore) 10(4), (1998), to appear '

[12] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, John Wiley & Sons, 1977.



On Multiple Precision Calculation of

Eigenvalues and Eigenvectors of Matrices”
Masahiro KUSHIDA! Hitoshi IMAI? Toshiki TAKEUCHI?

! Department of General Education, Anan College of Technology
Tokushima, 774-0017, Japan

2 Faculty of Engineering, The University of Tokushima
Tokushima, 770-8506, Japan

“Abstract

In the paper, we performed multiple precision calculation of eigenvalues and
eigenvectors of matrices by means of FORTRAN. The method is very traditional
and it consists of the double-step QR algorithm and the inverse iteration. How-
ever, it is performed in multiple precision arithmetic by using the newest and
free library on the net. Numerical results are satisfactory.

Key Words: eigenvalue, eigenvector, multiple precision

1 Introduction

Recently, progress in computing technology enables various numerical simulations. At the
same time, we can easily use powerful computers. From such a background, we have already
proposed numerical simulations of partial differential equations in infinite precision|1, 2}, and
showed its validity for some simple problems. However, we have to develop various libraries
for its application to various problems.

In the paper, we developed FORTRAN subroutines for calculation of eigenvalues and
eigenvectors in multiple precision. Numerical methods which are used here are traditional.

*This work is partially supported by Grant-in-Aid for Scientific Research(Nos. 09440080, 10354001 and
09304023) Japan Ministry of Education, Science and Culture. .



However, the newest and free libraries which are written in FORTRAN are used for multiple
precision arithmetic. So, our subroutines realize facility of numerical calculation of eigenval-
ues and eigenvectors in multiple precision. They are easily improved to be faster by using
the parallel computing environment.

2 Numerical Method

We used the double-step QR algorithm for computing cigenvalues to avoid complex cal-
culation and we also used the inverse iteration method for computing eigenvectors. For
multiple precision arithmetic we used the newest and free FORTRAN libraries on the net.

2.1 Double-step QR algorithm

The QR algorithm is widely used for computing the complete set of eigenvalues|3]. The
basic QR algorithm to the matrix A starts with Ay = A and generates a sequence of matrices
{ A } by the following iteration:

Am—l - Qmer Am = RQO

That is, A,,_; is decomposed into factors Q,, and R,,, where Q,, is unitary and R,, is upper
triangular.
It is easy to show that

An = QrAmn—1Qm.

Thus all matrices in the sequence {A,,} are unitarily similar and therefore have the same
eigenvalues. The sequence {An} converges to the upper-triangular form:

M *
Az
0. M
where the eigenvalues appear on the main diagonal.

The shifted matrix A — o/ has eigenvalues \; — o, Ay — o, ... , An — 0. The QR algorithm
to A — o] can be described as '

Am—l —ol = Qmer Am = RQO + ol

When we chose o very close to A, [(An — ¢)/{Ai ~ o)} (i # n) becomes close to zero. So,
(m) (m) (m)

Qny’s Gyg s -+, Gy’ 4, Which are components of the n-th row of A,,:
*
Ap = Am
*
T e



converge to zero very rapidly. When they are small enough, a!™ can be considered to be an
eigenvalue of A. The remaining eigenvalues of A are obtained from eigenvalues of A After
repeating this procedure iteratively, we can obtain the complete set of eigenvalues of A.

For a non-symmetric matrix which has complex eigenvalues, we need a complex shift o.
Then a complex matrix appears in the procedure. This is not preferable.

We can avoid complex numbers by using the double-step QR algorithm. Consider a
arbitrary pair of shifts 0; and o3 in the QR-decomposition '

Am-l - UII = Qmen) Am. = RQO + UII1
Am —oal = Qm+1Rm+h Am+1 = Rm+1Qm+1 + oal.

Let

Qm = QQO—H? Rm - Rﬂ1+1an'
Then

Am. = -Rvan + Ul‘r
= QM (Am-1— 0 D)Qm+ 011
= QgAm—lQm)

H
Am+1 = m+1 QO+1
= m+1 QHAm— lQm Qm+1
== Qg‘Am—lQma

(Amer — 02D Ay —01]) = (Qu@)(Am—1 — 021)QmFim
= Qm(Am - U2I)R7n
= Gm@m+1Fims1Rm
= Qubn.

The above calculation is reduced into the following two steps (Double-step QR algorithm):

(Am-1 = 021)/(Am-1 = 011) = QuFim,
m+1 Q Am lQm

Suppose o, and o, are eigenvalues of

(m—1) (m-1
( a’nn—ll n—1 a‘nf?-l 1)1
ol en

As oy =3, bc;th o, +05 and o,0, are real. So, the right-hand side of the following equation:
(Am-l - UQI)(Am_l - 011) = A?n_] — (0’1 + 02) + oo
is real. Therefore, Qm and R,, are real. Then Ay, must be real.



Thus, in the double-step QR algorithm we can avoid complex calculation. The matrix A,,
converges to the following form:

~

A %k

{m—1}. (m~1)
O Cp1n-1 Cu-1n

-1 -1
a‘(nmn—l) ’(‘mn )

The eigenvalues of the lower right block satisfy
A2 — (a(m-l) + a,(‘mn—l))/\ + ™D pm-1) _ pme1) m-l) g

n—1 n—1 n—1 n—1"nn Api 0l ny =
The remaining eigenvalues of A are obtained from eigenvalues of A,,. After repeating this
procedure iteratively, we can obtain the complete set of eigenvalues of A.
Before starting the double-step QR algorithm, balancing of a matrix and transformation
into the upper Hessenberg form by similarity transformation are necessary.

2.2 Inverse Iteration

We can get eigenvectors by use of the power method.

Let Ay, Az, ..., Ay (JA1] > [A2] > - -+ > [As]) be eigenvalues of a matrix A associated with
eigenvectors 2y, Zg, ..., Z,. Start with an arbitrary vector &y and generate the sequence
{Zm|Tm = A™xy}.

From the assumption A; # X; (2 # j), 21, 22, ..., Za are bases of C". So,

Xog=c0C1zy+Czs+ -+ CpZn.

Then
ATxy = Alzi+ ATz 4+ -+ Az,
= A cz+c/\m‘z+ -+ Amz
= 1<1 2 X 2 Cn N n|-
M\™ |
From the fact that || > |[A] (1 = 2,3,...,n), it follows that — 0 as m — oo.

M
Then ., converges to the vector parallel to the eigenvector z;. The rate of convergence is
Az :

Al '
When the matrix A has eigenvalues Ay, Az, ..., A, (|[M] > |Ae] > -+ > |A]), and
1 1 1 1 1

eigenvectors zi, Za, ..., Zn, A7! has eigenvalues —, —, ... — —_— > > —— >
g ] T ] Ty g A11 A21 H An (’Anl ,/\2]

m) assoclated with eigenvectors z;, za, ..., zZn. So, the power method applied to A~!
1
1 - A

. 1 e
obtains the eigenvector z,. The rate of convergence is / — = ——. This method is
. . ’\n—l An . )\n—l .

called the inverse iteration.
The shifted matrix A — o/ has eigenvalues {A; — o} associated with eigenvectors {z;}.
The inverse iteration applied to A — o1 finds the eigenvector z; associated with M. which is



-0 .
, where A, — ¢ is the second

the nearest eigenvalue to 0. The rate of convergence is 3
| — T

smallest eigenvalue of A — o 1.
When o is a good approximation of Ax , Ay — o is very close to zero. So, the shifted inverse

iteration converge very quickly. We can adopt o from the eigenvalues by the double-step QR
algorithm. In practical calculation , we solve the linear system

Ay = Ty
instead of

&, = A .

2.3 Multiple precision subroutine

A lot of FORTRAN subroutines about multiple precision arithmetic [4] are already known.
We used the library FMLIB by Daivd M. Smith which is distributed on the net{5].

FMLIB is a package of FORTRAN subroutines for floating-point multiple precision arith-
metic and it involves elementary functions. We can perform multiple precision arithmetic as
follows.

1. Replace operators in the original FORTRAN program with FM subroutines.
2. Declare cominon blocks /FMUSER/, /FM/, /FMBUFF/, and /FMSAVE/.
3. Initialize several variables by calling a subroutine FMSET with demanding precision.

3 Model Problems

To evaluate our subroutines we consider the following two model problems. These problems
are well-known to be difficult. '

3.1 Hilbert Matrix

At first, the following Hilbert Matrix is considered:

1 1/2 1/3 -+ 1n
1/2 1/3 1/4 cee 1/(n+1)
1/3 1/4 1/5 e 1/{n+2)
1/n 1/(n+1) 1/(n+2) --- 1/(2n-1)
As the Hilbert matrix is symmetric, its eigenvalues are all real. However, it is known that
the matrix has a large condition number condA = |4 - [JA7]| = % So, numerical

computation is difficuit.



3.2 Perturbation

Suppose A and B are following n x n matrices:

2kw
A has a n-tuple eigenvalue A4 = 0, and B has eigenvalues Agi= We(cos — + isin ?ﬁf)

T
(k=0,1,... ,n—1). When ||B— A|| = ¢ is small and n is large, difference |ABk—Aao] = 3=

is relatively large. In this case, it is difficult to compute eigenvalues.
i ty(B— A)x

In general, when ||B—Al|issmall, Ag—A4 ~ gz
of A and B, respectively. x a.nd y are right |and left unit eigenvectors of A related with )4,
1B — Al

yx|

Here, A4 and Ap are eigenvalues

respectively. It follows |Ap — AA] < = If ‘yx = cosf (# is the angle between x and

y) is small, [Ap — A 4] may be large.
In the above case, the right eigenvector « and the left eigenvector y associated with
Ao = {/e are following:

1—¢ ) _ 1—¢! 11 1\’
= - Aﬂ- I\r = e— 1 —_— m— 4., EE— N
€T 1 ‘\/_(]“AA y ) ? y ( ’,\’,\2, ’A"’"l)

The values of cos & for several n and € are shown in Table.1. These small values of cos 8 are
not preferable. '

Table. 1: cos# for n and ¢

n £ cosf n € cos @

10 | 1E-01 | 6.75E-02 || 100 | 1E-01 | 6.55E-03
10 | 1E-10 | 8.10E-09 || 100 | 1E-10 | 5.33E-10
10 | 1E-20 | 9.80E-18 || 100 | 1E-20 | 2.16E-19

4 Numerical results

4.1 Hilbert matrix

We compute the eigenvalues of the 100 x 100 Hilbert matrix in double precision and
multiple precision with 300 significant digits.

The result computed in double precision is shown in Table.2. As the Hilbert matrix
is symmetric, all the eigenvalues must be real. However, 64 eigenvalues are complex. In
addition, Aj7 ~ Aoy seem to be unnatural, because their magnitude is almost same.



Table. 2: Eigenvalues of the Hilbert matrix in double precision

matrix size: n=100
Real part Imaginary part
A1 | 0.218269609775742E+01 | 0.006000000000000E+-00
Ay | 0.821445560556198E--00 | 0.000000000000000E+00
A3 | 0.218595882370696E+00 | 0.000000000000000E+-00
A1s | 0.456986377749665E—10 0.000000000000000E+-00
A6 | 0.521223882655702E-11 | 0.000000000000000E+00
Az | 0.100217547714874E—12 0.192798275536923E—-17
Ao | 0.107363474464636E—12 | 0. 143209038847983E—-17
Az | 0.110942509461211E-12 0.000000000000000E+-00
Aos | 0.930601959363224E—13 | 0.000000000000000E+-00
Ago | 0.613157780640225E—14 | 0.000000000000000E~+-00
oo | 0.630907998468590E—15 | 0.000000000000000E+00

Table. 3: Eigenvalues of the Hilbert matrix in multiple precision

matrix size: n=100

# digits = 300

3 | 3.1826960E 10 || hog | 2.6173449E—22 || As) | 3.2340872E—54 || Az | 2.3887789E —95
N | 8.2144556E —1 || A7 | 2.0260747E—23 || Asz | 1.1330678E—55 || A77 | 3.1234093E —97
Ns | 2.1850588E —1 || Azs | 1.5166500E—24 || Ag3 | 3.8408823E—57 || Ass | 3.8765971E —99
N | 3.9202251E —2 || Aeo | 1.0997826E—25 || Ay | 1.2503740E—98 || A7e | 4.5588509E—101
N | 1.0031812E —2 || Aao | 7.7233062E—27 || Ass | 3.9929580E—60 || Aso | 5-0696739E—103
Ne | 1.8850632E —3 || a1 | 5.2536401E—28 || As | 1.2237932E—61 || Mgy | 5-3195286E—105
%, | 3.3086781E —4 | Asz | 3.4621083E—29 || Agy | 3.6244390E—63 || Aez | 5.2538963E—107
X | 5.4645302E —5 || gz | 2.2107547E—30 || Asg | 1.0368774E—64 | Xg3 | 4.8711734E-109
%o | B5362805E —6 || Ags | L.3679747TE—31 || hsg | 2.8641142E—66 | gs | 4.22687G0E—111 |.
Mo | 1.2661665E —6. || Ass | 8.9036351E—33 || Ago | 7.6305206E=68 || Xes | 3.4211009E-113
%o | 1.7887224E —7 || Asg | 4.7682332E—34 || ey | 1.9636724E—69 || Ngs | 2.5727901E-115
N5 | 2.4126401E —8 || A7 | 2.6862998E—35 || A | 4.8692490E—71 || X7 | 1.7899102E—-117
Ma | 3.1133493E —0 || hss | L.4669365E—36 || Ags | 1.1630461E—~72 || Ags | 1.1461868E—119
Aa | 3.8502295E—10 || Ago | 7.7648559E—38 || Ags | 2.6778314E—74 || Agg | 6.7162863E—122
Arg | 4.5698647E—11 || hgo | 3.9839826E—39 || Aes | 5.9318B818E—76 || Moo | 3.5764767E—124
M | 5.2120262E—12 || ha1 | 1.0813085E—40 || hes | 1.2639324E—77 || Xe1 | 1.7165587E—126
A7 | 5.7190022E_13 || Mgz | 9.5503168E—42 | Ag7 | 2.5886262E—79 || gy | 7-3519486E—129
N1s | 6.0423065E—14 || Mz | 4.4615506E—43 || Ags | 5.0921195E—81 || Ags | 2.7753614E—131
Ao | 6.1526525E—15 || hss | 2.0198685E—44 || Agg | 9.06120500E—83 || Mes | 9.0907113E-134
Moo | 6.0420110E—16 || Aas | 8.8610078E—46 || Azp | 1.7400590E—84 || Ags | 2.5311009E—136
a1 | 5.726306TE—17 || M | 3.7662001E—47 || A7y | 3.0172384E—86 || Ags | 5.8243350E—139
gz | 5.2407021E—18 || A7 | 1.5508081E—48 || Aza | 5.0067135E—88 || Ae7 | 1.0634224E—141
Nos | 4.6330730E—19 || Aas | 6.1850682E—50 || Ars | 7.9417696E—90 || Mgg | 1.4443909E—144
N | 3.0606773E—20 || Ago | 2.3888G63E—51 || Arq | 1.2027870E—91 || Mgy | 1.2073462E—147
a5 | 3.2735449E—21 || Aso | 8.9336950E—53 || A7s | 1.7370402E—93 || Xigo | 5.7797008E—151




The result in multiple precision is shown in Table.3. All the eigenvalues are real . From

A
this result, the condition number condA = ||A|| - [|A7Y|| = H is about 10'%°. From these

two results, double precision is not proper to this case. Multiple precision is necessary for
the Hilbert matrices with large dimension.

Mathematica is widely used for algebraic calculation. We compared our results with
Mathematica’s results. However, Mathematica 3.0 could not get algebraically eigenvalues of
matrices whose dimensions are greater than 12 in reasonable time. So we used Mathematica’s
numeric mode and measured computation time(Table.4). PC used here is equipped with

Pentium IT 300MHz CPU and 224 MB memory.

Table. 4: Computational time

FORTRAN Program (sec) Mathematica (sec)
Precision Dimension n - Precision Dimension n

(# digits) || 10 | 20 [ 100 [ 200 (# digits) || 10 | 20 | 100 | 200

Double Precision || 0| 0 0 3 15 0| 0 1 4

100 O 1| 901323 100 0| 21381385

200 | O| 31186 | 1897 200 1| 4|222]1672

300 || 1| 5340 | 2578 300 1) 6361|2445

FORTRAN program is not so slow. This means it is superior both in facilities and in
improvement on speed by parallelization.

4.2 Perturbation

We compute eigenvalues of the perturbed matrix B for n = 100, £ = 10~%°, and compare

2k 2k
with the exact eigenvalues Ay = 10~ 106 (cos Wg + isin —16%) computed by Mathematica 3.0.

Table. 5: Eigenvalues of the perturbed matrix B in double precision

matrix size. n =100, e=1F —20

Real part Imaginary part
Ar | 0.6309@701763531598 (.000000000000000@
Az | 0.6297@515968499192 0.0396@3719563725086
Az | 0.6259@450172025149 0.079@15440946703962
As | 0.61996797828387999 0.118@1638305383951
Az | 0.118@3960020963865 0.619@9558071208230
A2z | 0.07T@896951553309539 0.62@61205138493846
Azs | 0.039@47718337829974 0.629@6808384037713
Azg | -0.0000@4873355560028325 | 0.630@7801471677452




Table. 6: Eigenvalues of the perturbed matrix B in multiple precision

matrix size n = 100, £=1F—20, +# digits=300

A

Re:0.630957344480193249434360136622343864672945257188228724527729528833494943297686
80757291406774365226487327346730988364659067642396464880448569818546555924659850
36241859191339523915193186595632068892720998767238331147096889970166794020026058
48115012327035845249311315549845097992743041198103120640@952408 ;

Im:0.000000000000000000000000000000000000000000000000000000060000000000000000000000
(0000000000000000000000000000000000000000000000000000000006000000000000000000000
00000000000000000000000000000000006000000000000000000000000000000000000000000000
0000000000000000000000000006000606000000000000000000000000000&

Az

Re:0.6297122942893572169864932971530560393503258402569549269068573251357094 77785915
60148630667904388074737180685546540687471304439885790375919317854457189325671847
55877254610235617371439057342003103816616321763013272464537732643672000708031450
542482393225232805356331429565298595580141628090108500788@52150

Tm:0.039618139460747281519151193681085575203658333800090396581737454138386948237809
11970865266265717350921704570224804179053767685434224321663821793122701304710785
"40696786691783067475296510408927145885846112051960083386877021420217021970983004

67914108411481330268104387103913851309999381928379471693G7081351

Azs

Re:0.03961813946074728151915119368108557520365833380009039658173745413838694823 7809

11970865266265717350921704570224804179053767685434224321663821793122701304710785

. 40696786691783067475296510408927145885846112051960083386877021420217021970983004
67914108411481330268104387103913851309999381928379471693@4938175

InrO.62971229428935?216986493297153056039350325840256954926906857325135709477785915

60148630667904388074737180685546540687471304439885790375919317854457189325671847

- 55877254610235617371439057342093103816616321763013272464537732643672000708031450
542482393225232805356331429565298595580141628090108500733@81210

Az

Re:-0.000000000000000000000000000000000000000000000000000000000000C0000000000000000
00000000000060000000000000000G:0000000000000000¢000000000000000000000000000000000
00000000000000000000000000000G00000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000@75578874627077156696

Im:0.630957344480193249434360136622343864672945257188228724527729528833494943297686

807572914067743652264873273467309883646590676423964648804485698185465556924659850
36241859191339523915193186595632068892720998767238331147096885970166794020026058

481150123270358452493113155498450979927430411881031206407@51620

The result in double precision is shown in Table.5. The mark '@’ shows the first position
where the digit of the computed eigenvalue differs from that of the exact eigenvalue.
The result in multiple precision with 300 digits is shown in Table.6. Over 290 digits
coincide with those of the exact value. The result is satisfactory.

This case also shows multiple precision is necessary to get the accurate eigenvalues.

o

Conclusion

We developed FORTRAN subroutines for calculation of eigenvalues and eigenvectors in
multiple precision and applied to some ill-conditioned matrices. Numerical methods which
are used here are traditional. However, the newest and free libraries which are written in




FORTRAN are used for multiple precision arithmetic. Numerical results are very satisfac-
tory. Moreover, our subroutines realize such advanced calculation on PC. They are easily
improved to be faster by using the parallel computing environment which can be easily

realized by the technology PVMS].
In the near future, our subroutines are used in infinite numerical simulation[1, 2].
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Abstract

A new unified algorithm is proposed to solve partial differential equations which describe nonlinear

boundary value problems, eigenvalue problems and time developing boundary value problems. The

algorithm is composed of implicit difference scheme and multiple shooting scheme and is named

as HIDM (Higher order Implicit Difference Method). A new prototype computer programs for 2-

.dimensional partial differential equations is constructed and tested successfully to several problems.

Extension of the computer programs to 3 or more higher order dimension problems will be easy

due to the direct product type difference scheme.

Keywords: partial differential equation, implicit difference scheme, multiple shooting scheme,

eigenvalue problem, evolutionary problem
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Abstract

The magnetic shielding performance of the high-Tc superconducting (HTS) plate is numerically investigated by
assuming the flux flow creep model as a constitutive relation representing a mixed state. In order to reduce the number of
variables, both the axisymmetry of the plate shape and the isotropy of the applied magnetic field are intreduced. Under
these assumptions, the shielding factor and the damping coefficient are calculated as functions of time and the frequency
of the applied magnetic field. The results of computations show that an increase in the frequency will weaken the time
dependence of the shielding factor and will enhance the shielding performance. In addition, the magnetic shielding
performance in the low-frequency range and in the high-frequency range is shown to be strongly influenced by the flux

creep and the flux flow, respectively.

Keywords: magnetic shielding, superconductor, YBCO, flux flow, flux creep

1. INTRODUCTION

Recently, the application of the high-Tc superconductor
(HT8) has been proposed in many engineering fields. The
magnelic shielding is one of the most important and
promising applications of the HTS. Although high-
conductivity or high-permeability materials have been so
far used as magnetic shielding materials, they cannot cut
off magnetic fields with the low frequency below 10Hz. In
this coatrast, the HTS is expected to have a frequency-
independent magnetic shielding ability because of its
shielding mechanism, i.¢., the Meissner effect. For this
reason, the HTS has attracted great atiention as a new type
of the magnetic shielding material and experimental studies
on its magnetic shielding performance have been performed
intensively [1]-[4]. However, in these studies, the applied
magnelic field is much smaller than the lower critical one
and, hence, the HTS does not remain in a mixed state but
in a pure superconducting one. On the other hand, the high
upper critical magnetic field is one of the excellent
advantages of the HTS. In this sense, the next stage is to
investigate the magnetic shielding performance of the HTS
plate in a mixed state.

The purpose of the present study is to develop the
numerical code for analyzing the time evolution of the
shielding current density and to numerically investigate the
magnetic shielding performance of the axisymmetric HTS
plate in a mixed state. In the next section, we introduce the
governing equation of the shielding current density in the
axisymmetric HTS plate by taking account of the strong
anisotropy of the critical current density. The numerical

method for the solution of the equation is also explained
there. In the third section, the time and the frequency
dependence of the magnetic shielding performance of the
HTS plate are investigated by using the method explained
in the third section. Furthermore, the influence of the ffux
creep and the flux flow on the magnetic shielding
performance is studied quantitatively. Conclusions are
summarized in the final section.
The ST units are used throughout the present study.

II. MATHEMATICAL FORMULATION

In this section, we introduce the governing equation of
the shielding current density in the HTS plate. The
schematic view of the magnetic shielding measurements is
shown in Fig. 1. Throughout the present study, the shape
of the HTS plate is assumed to be a disk of radius a and of
thickness b. Let us use the cylindrical coordinate system
(p. 8. 2), and take the symmetry axis as z-axis and the center
of gravity of the plate as the origin. The magnetic flux
density By is generated by a couple of Helmholtz coils and,
therefore, it is spalially homogeneous and its magnitude
By, changes as By, = By, sinuwt.

As is well known, the MPMG-YBCO superconductor
has a crystallographic anisotropy in the critical current
density: its component parallel to the a-b plane is negligibly
small as compared with that along the ¢ axis [5). By taking
this fact into account, we assume that the HTS plate is
composed of K pieces of thin layers and that the shielding
current density does not flow across the interface of every
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Fig. 1. Schematic view of the magnetic shielding
measurements.

two layers. When the thickness of each layer is much smaller
than the radius a of the HTS plate, the variation of physical
quantities in the z-direction can be neglected as compared
with their variation in the p-direction. Thus, it is also
assumed that neither the shielding current density nor the
electric field depends on z in each layer.

Under the above assumptions, the behavior of the
shielding current density can be expressed by the following
equation [6]:

to a’qg[o Sop' D 2% polp, p) 0" dp’ + EES 2,5,

19
=-9,By,-5 ﬁ(p Eq . '¢))

where £ g denotes B-component of an electric field E | in
the pth layer and p,, represents permeability of vacuum.
The scalar function Sp(p, f} is z-component of a current
vector potential and is associated with the shielding current
density jp in the pth layer through the relation:

h=-t =2ty )

Here the thickness of the pth layer is denoted by 2£P. The
explicit form of the function @* pq in (1) is written as

Q*p.p)=—ldne, Eq)'l (p p')—1f3

>

m=0n=

D™ KKK 3)

where K(x) is a complete elliptic integral of the first kind
and its parameter k7,  is given by

(k';;)z = 4pp’
% [(p+p)+ {lz,+ (D", - [z, + -D" l-?,,,]}z]‘l .

Here z, denotes z-coordinate of the centrai plane in the pth
layer.

The effect of electromagnetic characteristics of the HTS
is included by assuming the following J/-E constitutive
relation:

E,o=E(),q)) sgn(j,e) - )
For E( ), we adopt two kinds of functions: the Bean model
[71-[11] and the flux flow creep model [6], [12]-[14]. The
former represents the balance between the pinning and the
Lorentz force, whereas the movement of fluxoids is
included in the latter. The explicit form of £(}) for the Bean
model is given by

EM=Jjlolj] . (5)
where o denotes a virtual conductivity and is a functional
of j. In order to determine o at each time step, we employ
the following iterative procedure [8]-[11]. At first, the
initial value o'® of a virtual conductivity is assumed
sufficiently large, e.g., chuxIOS. Here o, denotes an
electric conductivity of copper at the room temperature. In
the nth cycle, (1) is solved together with the associated
boundary conditions after the substitution of o™ into q.
Then, the spatial distribution j B(")(p, t} of the shielding
current density is obtained and, subsequently, the virtual
conductivity is corrected by

o™= o Min(j: /|j5 1) . (6)

where j- denotes a critical current density and the
superscript (i) represents an iteration number label. The
above cycle is repeated uniil the shielding current density
does not exceed j all over the HT'S plate. On the other
hand, the function £( ) for the flux flow creep model [6],
[12]-[14] can be written in the form,

. U, j U, .
ch.lcsmh(kBTI:')exp(-kB_T) W<

Ep= U
P:jc[l _CXP(“k—I‘z)]"‘ ps-Jo) s> iz
B .

where p_ and py are the creep and the flow resistivity,
respectively, and U, k. and T denote the pinning potential,
the Boltzmann constant and the temperature, respectively.

As the initial and the boundary conditions to (1), we
assume that the shielding current density does not have a
normal component on each layer surface and that it vanishes
at+=0. In terms of §,, these assumptions are rewritten as
follows: Sp(a, f=0and Sp(p, 0) = 0. By solving (1) together
with these conditions, we can follow the time evolution of
the shielding current density.

If the finite element method and the 8-method are
applied to the discretization of (1) and the associated
boundary conditions, the resulting equation becomes a
nonlinear matrix equation. Thus, the iterative scheme is
employed to solve the equation. As the methods for its
solution, the successive substitution method and the
Newton-Raphson method are used for the Bean model and
the flux flow creep model, respectively. The numerical code
for solving the initial-boundary-value problem of (1) has
been developed by using the method explained above [6]
and, by means of the code, we can investigate the magnetic

* shielding performance of the HTS plate.



I11. MAGNETIC SHIELDING ANALYSIS

In this section, we investigate the magnetic shielding
petformance of the HTS plate by using the code explained
in the previous section. As the measure of the shielding
performance, we adopt the damping coefficient defined by
o = 10 log, 4((B2)/{B,?)) and the shielding factor defined
by A = B /B,. Here B and B, denote the total magnetic flux
density and its z-component, respectively. In addition, the
square bracket means a time average. Throughout the
present study, the geometrical and the physical parameters
are assumed as follows: @ = 20x107m, b = 2x10>m, By =

1x1072T, T= 77K, jo = 1.5x10°A/m?, Uy = 2meV.

First, let us investigate the time dependence of the
shielding performance of the HTS plate. The shielding
factors A are calculated by using the flux flow creep model
and are depicted as functions of time in Fig. 2. We see
from this figure that the shielding performance strongly

5.0 T

Shielding Factor, &
"
=

-5.0 : .
2.0 3.0

. 4.0
IRE

Fig. 2. Time dependence of the shielding factor A at (p/a,
z/a) = (0.0, —0.06). The symbols, O, @ and A , denote
the values for the flux flow creep model with.& = 1, 102
and 10%Hz, respectively, and the dashed curve represents
those for the Bean model. The values of the creep and the
flow resistivity are assumed as p, = 6.666x10™!!Qm and
pr = 7.620x1071%Qm, respectively.
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10% ¥ .
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Fig. 3. Maximum absolute value of the shielding current
density as a function of the frequency w in case that the
flux flow creep model is used. The values of the creep and
the flow resistivity are the same as those used in Fig. 2.

Damping Coefficient, o

depends on time for the case with w = 1Hz. In this contrast,
the shielding performance is almost time-independent for
the case with ® = 102 and 10*Hz. This tendency is
attributable to the phase difference between the applied and
the induced magnetic field. With an increase in the
frequency, the phase difference increases and approaches
gradually to . In fact, an increase in w raises the maximum
absolute value of the shielding current density until the flux
flow becomes dominant for w > 10°Hz (see Fig. 3). In such
a high-frequency region that w > 10?Hz, the effect of the
flux creep can be neglected as compared with that of the
flux flow and, hence, the J-E constitutive relation is written
as E(j) = pgj. Since the governing equation (1} becomes
linear in this case, the phase difference is equal to x. The
shielding factors are also calculated by use of the Bean
model and are depicted in Fig. 2. In case of the Bean model,
the shielding lactor does not change its valve for the
frequency range from 1072 to 10%Hz.

Next, we investigate the influence of the frequency on
the shielding performance of the HTS plate. Figure 4 shows
the frequency dependence of the damping coefficient for
the flux flow creep model. The damping coefficient o
decreases slightly with an increasing frequency for v < 1Hz,
whereas it diminishes drastically with w for
1Hz < o < 10°Hz. This is mainly because the flux flow
becomes dominant as compared with the flux creep in the
frequency range from 1 to 10°Hz. With a further increase
in w, the damping coefficient will approach 1o a constant
value. ,

Finally, we investigate the influence of the flux flow
and the flux creep on the shielding performance of the HTS
plate. For this purpose, the damping coefficients are
calculated as functions of either the creep or the flow
resistivity. In Fig. 5, we show the dependence of the
damping coefficient o on the creep resistivity p_. This figure
indicates that, in case of w = 10Hz, a decrease in the creep
resistivity will lessen the damping coeffictent to its value
for the Bean model. In this contrast, the dependence of o
on p, is relatively weak in case of w = 102Hz because the
flux flow dominates the flux creep. From this result, we
might conclude that the flux creep affects only the shielding

0

Bean Model /

Flux How Creep Model

-
=

o
S

_30 1 1 1 1 1
10 10° 10° 10
Frequency, w (Hz)

Fig. 4. Frequency dependence of the damping coefficient
a at (p/a, z/a) = (0.0, —0.06). The values of the creep and
the flow resistivity are the same as those used in Fig. 2.
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Fig. 5. Damping Coefficient « at (p/a, z/a) = (0.0, —0.06)
as functions of the creep resistivity p_. The value of p; is
fixed as p; = 7.620x107'9Qm. The symbol A is for the
case of o = 10-2Hz, A for w = 1Hz, @ for w = 10Hz, O
for w = 102Hz, and the dashed line indicates the value for
the Bean model.
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Fig. 6. Damping Coefficient o at (p/a, z/a) = (0.0, —0.06)
as functions of the flow resistivity p;. The value of p_is
fixed as p_ = 6.666x10711Qm. The symbol A is for the
case of w = 1Hz, A for w = 10Hz, @ for w = 102Hz, O for
w = 10PHz, and the dashed line indicates the value for the
Bean model.

performance against the low-frequency magnetic field. In
Fig. 6, we show the dependence of o on the flow resistivity
pr. We see from this figure that, for the case with w = 102
and 10°Hz, an increase in the flow resistivity will raise the
damping coefficient up to the value for the Bean model.
On the other hand, for the cases with o = 1 and 10Hz, the
damping coefficient remains almost constant and does not
approach to the value for the Bean model. This tendency
indicates that the flux flow influences on the magnetic
shielding performance only in the high-frequency range.

IV. CONCLUSION

We have developed the numerical code for analyzing

the time evolution of the shielding current density on the
basis of the flux flow creep model. By means of the code,
we have numerically investigated the magnetic shielding
performance of the HTS plate in a mixed state. Conclusions
obtained in the present study are summarized as follows.

1) With an increasing frequency, the time dependence of
the shielding performance becomes weak. The reason
for this is that the phase difference between the induced
and the applied magnetic field increases up to n with an
increase in the frequency.

2) If the frequency is small enough to suppress the flux
flow, the damping coefficient takes a smail value.
However, once the flux flow occurs, the shielding
performance is considerably improved until the damping
coefficient approaches to a constant value,

3) The flux creep influences on the magnetic shielding
performance against the low-frequency magnetic field,
whereas the flux flow has an influence on the high-
frequency magnetic shielding.
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Numerical Solution for Hybrid of Homogeneous and Inhomogeneous Linear EHiptic PDEs
- Application of Combination Method of FDM and BEM -

Soichiro Ikuno*, Atsushi Kamitani** and Makoto Natori*
*University of Tsukuba
**Yamagata University

The numerical method for solving the hybrid boundary-value problem composed of the homogeneous and the
inhomogeneous linear elliptic partial differential equations (PDEs) has been developed. The hybrid problem often appears
when the realistic MHD equilibria are determined by solving the Grad-Shafranov equation numerically. Although the
combination method of FDM and BEM has been proposed as the method for the solution of the hybrid problem, it takes
much CPU time 1o solve the problem by using the combination method. This is mainly because the iterative method is

_employed to satisfy the interface conditions precisely. In order to overcome this disadvantage, the non-iterative new
method is proposed as the method for solving the hybrid problem. In the new method, the combination method of FDM
and BEM is formulated into a set of the simultaneous equations and the equations are directly solved by the Gauss elimination
method. The new method is compared with the original one for the simple hybrid probiem. The results of computations
show that the CPU time required for the new method is about 60 times as small as that for the original method.

Keywords: hybrid of homogeneous and inhomogeneous, PED, FDM, BEM, MHD equilibnum
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(Stability and error analyses by energy estimate for Newmark’s method)
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Abstract

For the second order time evolution equation with a general dissipation term, we consider the
condition of stability for Newmark's method[10]. We treat the case that a coefficient linear operator
C' in the dissipation term is constant in time and nonnegative: C' > 0. We give the proofs of stability
and convergence of the scheme by an energy method. We apply the results to a model resistive MHD
equation|6].

Keywords: Newmark’s method, second order time evolution equation, dissipation term, stability,
error analysis, energy estimate, recurrence relation

1. Newmark’s method

We consider Newmark’s method for the second order time evolution equation in R™. Let C' and K be
linear operators on R™ and constants in time t, and f(¢) be a given function on [0, 00). We consider the

following second order time evolution equation:

1? 1
;?u(t) + C:Tc'”'(t) + Kult) = £t). "

Let A(t), V(t) and U(t) be approximations of a‘%u.(t), %u(t} and u{t) respectively, then Newmark’s
method for (1) is described as '

A(t) + CV () + KU(t) = f(t) .
Ut +71) = U@)+7V(t) + 372A(t) + B2 AG + 7) — A(2)) (2)
V(t+7) = V(t) + 7A®) +y7(A{t +7) = A(t)).

2. TIteration scheme of Newmark’s method

In Newmark’s method, the approximation sequence U{t),t = to,t0 + 7, -, o + n7, 18 generated by

the following iteration scheme:

*chiba@im.uec.ac.jp
tkako@im.uec.ac.jp



o 1. For t = ty, compute A(t} from initial data U{t) and V(¢):
Alt) = flt) - (C V() + K U(t)).

. Compute A(t+ 7) from f(¢ + 7), U(t), V(t) and A(¢):

-
b2

A+n)=I +y7C + BriE)!
X[-KU(#) = (C+ rEW () + {{v - D7C + (B - 3} K}A(R) + F(t 4 7)),

e 3. Compute U(t + 7} from U(e), V(¢£), A(t) and A{t+ 7):

Ult+71) = U@y +7V{t)+ 1724A08) + Br7(A(t + ) — A1)

.
b

Compute V(t + 7) from V (i), A(t) and A(t 4+ 1)

V(t+7) = V(1) + 7A(t) + 1 (Alt + 1) = A(t)).

# 5. Replace t by ¢ + 7, and return to 2.

3. Recurrence relation of Newmark’s method

Newmark’s method (2) for (1) is reformulated as follows in the recurrence relation([1],[2] and Chaix-
Leleux[12}). Eliminating V and A from (2}, we have
1
(I+97C + Br2R)U(E+ 1) + (=20 + 7(1 = 29)C + 577(1 - 48 + 29)K}U2)
HI4+7(~147)C+ 1121428 - 29Kt - 7) (3)
=B+ 1)+ 374~ 48+ 29)f(£) + 3731+ 28 = 29) f(t — 7).
By using difference operators, (3) is represented as

(I+Br°K)D. Ut) + 4CDU(t) +{(1 = MC + 7(y - 3) K} DU () + KU (2)

={I+7(y— 3)D: + B2 D } f(t) (4)
where
D U(t) = L(U(t+7) - U(t))
D-U(t) = L(U(H) - U(t — 7)) (5)
D.U(t) = l (D U(t) D:U(t)).

Especially, in the case v = %, we have:

(I+4 Br*K)D.-U(t) + %C’(D, + DU {t) + KU(t) = (I + Br2 D,z ) f{1).

These recurrence refations are useful for the stability and error analyses of Newmark's method. See [8]
and [11] for the case with C = 0.

4. Stability analysis by energy estimate

Taking a scalar-product between (4) and (D, + D:)U(t), we can derive an energy inequality for
Newmark’s method. From this inequality, we obtain the stability conditions for Newmark’s method. In

the following, we use the usual Euclidean scalar product (-,-) and the corresponding the norm || - | in
R".



4.1 Derivation of an energy inequality

From now on, let C, K > 0 and f{t) = 0. We also assume that
1 .
- 6
2 )
Using (4), we derive an energy inequality(see [1].[2] for the case vy = }). Rearranging (4), we have

(I 4 BTKYD:U(t) + 3C(D; + D:)U(t) + (v - $)C{D, — D3)U{t)

+7(y - l)I(.Di—U(t) + KU{t)=10. (")
We take a scalar-product between (7) and (D, + D:)U(t). Since C' is nonnegative, we have
(T + 672 K)DysU(2), (Dr + DU ()} + (1 — 3)(C(D+ = D)U(2), (Dr + De)U(2))
+7(y = $UE DU (1), (Dr + D7)U(t) + (K ( 3 (Dr 4+ D:)U(1)) (8)
= =(3C(D+ + D:)U(t}. (D + D:)U(t)) < 0
We estimate each term in the left hand of (8) as follows. The first term is written as follows:
(I + BT K)Dr2U(t). (Dr + D:)U ( ))
=& ((I+ BTAR)(D-U(t) = D:U), (Ut + 1) = U(8) + (U(8) ~ U{E = 7)) (9)
= (I+5T21&)(U(t+”f) ()) Ut +7) - U(t)
—;15((I+,’J’1'21x)( Ui -—7),U)-U(t-"7))

The second term is transformed as follows:

—

{(v = NC (D7 = D3)U(t), (JD + D=)U(2))
= (v = ${(CD,U(1), D:U(t)) - (CD:U (1), D-U (1))} (10)
= (v - H{(CD-U(1). D ( )= (€D Ut = 1), DUt - 7))}

]

For the third term, we decompose D;U(t) into a symmetric part and an anti-symmetric part with respect
to D, and Dz
1
(o= PUEDAU0), (D + DAUE)
=7y = DD + DU = J(D: = D)} (Ds + D)U(1)
370y = §)(N(D- + D:)U(), (Dr + D:)U(t))

(11)
—L7(v = DE(D, = D:)U(t). (Dr + D3)U(t))
= i7(y — DIRYHD, + DU = Lr(y = AWK D, U(t). D, U(t))
+‘3 T(y - %)(I{DTU(t—T),DTU(t—T)).
The fourth term is deformed as
(KU(8), (Dr + DU (1))
= (K20 (), KU (t + T)) - (K20 (1), Ifl-/""U(t ~ 7)) (12)
= (KYV2U(t + 7), f\"lfo(t)) — (KY2U (), KV U (t - 7))
Multiplying (8) by 7% and using the above formulas, we have
(T +BrK)U(t+7) = U Ut +7) = U(t)) + (K20 (¢ + 1), K20 (2))
+T{'7 ~ INCW(t+ )= U))LU(t+71)-U(t)
47y = PIKY(Dr + DAV - 3747 = K D.U(0), DU () 13)

S((I+ﬁf2ﬁ)( (8) = U(t - 7)), U -) Ult - 7)) + (P RU(0), Ut ~ 7))
+r(v = ICW() ~ Ut — 7)), U() - Ult - 7))
7y — KD, U(t - 7),D,U(t - 7)),

-1
P



Since v — § > 0, we can omit 374 (y — DKV?(D, + D;)U(t)||? from the left hand.side of (13). So, we

have
((I+372I{)(U(t +7) - U(t)) Ult+7) = U)) + 72 KUt + 1), U(t))
+7(7 = D(CWLt+7) = UE),U(+7) = U(e) = Ity = PIKDU(®), D,U() 4
((I+ﬁ:2ﬁ)( ()= U (t~ U@ - Ut - 7)) + 72 (Mf(t) vt =
7y = )NCUE) = Ut = 7)), U(t) = Ut — 7)) — 37 (y — UKD U(t - 7), D,U(t - 7)).
Dividing (14) by 72, we obtain
(I + 87 K)D U (t). D U(t)) + (KU(t + 7)., U(2))
+7(v — $)(CDU(t), D, U{t)) - L%~y - KD, U(¢), D-U(t)) (15)
<((T+ BrPK)D Ut —7), DUt — 7))+ (KU(E), U(t - 7))
+7{y — INCD,U{t — 7). D, U{t — 7)) — b3y - sHA D U(t—7),D.U(t - 7)).
Using {15) repeatedly, we have
((I+Br2K)D U, DU+ (KU(t+ 1), U(t))
(7= H(CDU), DU() - §r(y - HED,U(0), DU () (16)
< {(I +p7°K) D, U(0), D, U(O))+(I\U( ), U(0))
+{y = $)(CD,U(0), D, U(0)) - §73(y ~ })(K D U(0), DU(0)).
Rearranging the right hand of (16}, we define ‘
Co=(( +,BT2K)DTU(O).DTU(O}) + (KU (), U(0))
+7(7 - %)(C'DTU(U),DTU(O)) — 373y = UK D.U(0), D, .U(0)) (17)
= 1DV + 78 — 37 + DIK2D U (O
+7(KD-U(0),U(0)) + HK”?U( P+ 7(y = PICY2 DU ).
Rearranging the left hand side of (16) and using the identity:
(KU(t+7),Ut)) = 7(KD-U (), U(t)) + (KU(), U(1)),
we get |
({ 4+ ArERYD-U#), DU+ (KUt + 7)., U(t)
+7(y - $)(CD-U (), D~ U( )} = 372y = )(KD.U(t), D,U(1)) s
— WD + 78— 5+ 2D, 00 1
+r(KY?D.U(t), Al/?U( )+ IE2U@)]]2 + 7y = DIICV2D, U ()|
So, we have
IDU@IF + 7268 - 57+ PIE2DU )
#r(BRDU(0, KAL) + [KVRU0IF + 77— HICDL U < Co.
We now estimate the third term of (19). For a positive o, we have
|7(K2 DU, KY2U (1)) (20)

ST |KVEDUE) x o x L x IEY2U () < 2{0272“1\1/%0 Ut ||A1/2U ()%}



Applying this inequality to (19), we get

DU + 7248 - 3 7 (r-35 }IlIx”zD URIP+7(v - 5 DICH2D, U0 + KU ()]

21)
< Cy - T(I\lsz U(f) K‘/QU( ) < Ch+ l{a?'rzHle/zD U] + =K 120 (t)]1}.
So, we have
- 1 1 y
1D-U () ||2 +72(8 - Ly - 3) - s MKV D U (22)
+r(v—3 ||C”2JD Ul ||2 1- = IEU)2 < Co.
Since r(y — 1) > 0, we can neglect 7(y — 3) |CY/2 D U(t)]|* and get the estimate
1 1 1 . .
Co 2 |IDUWI* +7%{8 - 5(v— 5 - §af2}|lI&’/2D,.D(t)||2
+7(7= DIC2DUWIE + (1 = Zo)IE AU P (23)
> DU+ 728 -3y —% - -GZ}HI\WD U@ + (1~ o) 1B U1
Finally we obtain the cnergy estimate:
1oL 1 ,
ID UM+ 8 = 5(v=35) - z}“I VEDUMI +(1 - oK PUMIF < o (24)

4.2 Stability conditions:

In this section, using (24) we derive stability conditions for Newmark’s method under the condition
v % Wit respect to a parameter §, we consider the following two cases.

4.2.1 Casel (3> 37)

We consider the case 3 > %Fy. In (24}, we look for the condition:

1 1 1, 1
,@—5('}’—5)——2'0.’ —03-1‘1(11—20—220
This implies that .
1. 1,1
e v = =)= =a? > =
h-zli=gl=30 2
.and hence ) ]
4> 27 > ‘ | {25)
Conversely, if 3 > %'}' > % and o? =23 — (v — 3), then 2(12 > 1. So, from (24) we have, for this a,
IDUIE + (1 = 5 ) IE2U (] < Co. (26)
Furthermore, in this case we have
HD Ult ‘ < Co,
which implies that
TN < Ut = 1)l + v Cor.
Hence we have the stability estimate:
U@l < ||U )| + v/ Cot. (27)

Note that we need no restriction for the time step 7 > 0.



4.2.2 Case2(0<f<iy)

Under the condition that % <yvand 0 < 8 < :;*‘f, we need a restriction on T for the stability. Putting

a? = 4, we have

. 1 _ .
1D-U®? + 728 - sDIE DU < Co.
Using the definition of operator norm and the condition 3 — %7 < 0, we have
1 . _
{1- T2(§7 - PNEAPHID-U ) < Co.

In order that this inequality makes sense as the estimate for an upper bound of |[D,U({¢t)|], the following
inequality must be satisfied:
i .
0< 175y = AIE "

Solving this inequality with respect to 7, we have

1
a \/(%7 = BIETPIP (2%)

Similarly to Case 1, we obtain

1 i Ch
T< \/(%'Y - DK = |l < §U ) + \/1 — TQ(%'Y — BEE £ (29)

4.3 Theorem on the stability of Newmark’s method

Combining the above considerations, we obtain the following result,

Theorem 1 Let C > 0 and K 2 0, and let f{t) = 0. Under the common condition that % < 7,
Newmark’s method for (1) with time step 7 is stable as follows:

Case 1: 1y < fand for any 7 = ||U(8)|| < ||U(O)|| + VCot.

. 1 . - 1 ¢
Case 2: 0< 0 < 37 and for 7 < (Iv=mIKTE[E == ”U(t)“ < ”U(O)” + \/1_72(%7_5)”1\'1]2”2t'
Here,

Co = §DUOF +7%8 - jv+ DIKY2D,U0)? + 7(& D.U(0),U(0))
+| KUY + (v - $H|CH2DU(0)|2.

5. Convergence of Newmark’s method

We show the proof of convergence of Newmark’s method using the stability theorem in the previous

section.

5.1 Convergence theorem

Theorem 2 Let T be o finite positive real number, 7 be a time step, C,K > 0, and f(t) =0 (1). If -
B2 0 and v > §, Newmark's method for (1) converges on [0, T) with the order O(72) when 7 | 0.

I



5.2 Proof of the theorem

Let u{t) be the solution of (1), U{t) be the solution of (4). and put 7 = T/n for n € N. We define the
error E(t) for t = jr(1 £ j < n) as follow: ’

E(t) =U(t) — u(t).
From (17) and Theorem 1, we consider the following quantity L[E):

LIE] = DB+ 728+ 1 - 19| KD, E(0)|? + (K'/?D, E(0), K'/* E(0))
+|| K2 B( 0)11? +7(y = HICY2 D EQ)°.

Since E(0) = 0, we have
LIE] = HNEMI + 8+ | = 3K PE@I + 2y - DIC2EC)™
By using the Taylor expansion of u(7) at 0 and the definition of U7 (7), we have
E(r)=0(r"), L[E]=0().

Next, by using (3), we define a time shift operator N, which appears in a formulation of Newmark’s

method:

Nov(t) = —(I+~7C+ 872K x ({21 + 7(1 = 29)C + 372(1 — 48 + 27) K }u(t)

HI+ (v - 1)C+ 3721+ 20 - 29)}u(t = 7)), £2 7, (30)

where (7} is calculated from w(0}, }’, {0) and (2). When v(7) = U{r), we apply N; to U(r) j -1 times,
and obtain the expression:
U(t) = NI-1U(r).

Before estimating E(t) = U(t) — n(t), we treat the following expression:

]\rg_]ﬂ‘(r) — 'u,(f,) = Nﬁ'lu,('r) - .7\"13:_211,(‘21') =+ .'\7;'1'_215(21') — e
= NI7fufir) 4+ Ni7ta(it) — NI (i + 1)7)
o — Nou(t — 7) + Nowl(t — 7) — w(t).

For the estimate of this expression, we define U;{kt) as follows:
Uitkt) = N¥FY(ir) = NEe((i 4+ 1)7) = NE{Nu(it) — u((i + 1)7)},

where

So, we obtain
Nihu(r) - u(t) = Y Ul — i - 1),

Using Theorem 1, we estimate each 0,(( § —1—1)7). From Theorem 1, we consider a quantity L[U;]
which corresponds to (g in Theoremn 1:

LG = WD U0 + 738 + 3 — InIEY2D.T;(0)|?
+7(y = DICY2D, GO + 7(KM2D.U(0), K'2U5(0)) + || K20 (0)f.



Using the Taylor expansion of ((z + 1)7) at ¢7 and the definition of N;, we have

U0y = Brifu({i +1)7) - u”(iT)} — Fedul(it) — ST (iT) + O(r%)
l},-(‘r) = N,-[ﬁrz{u”(('i + 1)7) — ‘u"(i'r)} - %Ta'u'"('h } - 374 w (it + O )]

where ' = &£ Then we have
Ui{0) = O(7%), Ui(r) = O(+*). D,U:(0) = O(=*), L[Ui} = O(=*).
Using tliese estimates and Theorem 1, we have

WG - i =D = 1IN {Npulir) — (i + D))}

< A + VTG —i - D)7
< IGO0 + / LIUAT = O(7%) + TO(%) = O(+2).
So, we obtain
i-1
Nf_'_l- —uf Z (fj—i—-1)m) = O(‘Tz),
i=1

and
E(ty=U(t) —w(t) = Ni7W(r) - N u(r) + O(r?) = NIYE(7) + O{r?).

Applying Theorem 1 to this we obtain, for small enough r,
. 1
BN < O(/L[E]) x t + O(+?) = O(7%), when 3 <sand <A,

Therefore, we obtain Theorem 2.

6. Numerical experiments

We compare Newmark’s method with the second order explicit Runge-Kutta method and the second
order implicit Runge-Kutta method. We apply those methods to the finite element approximation of

the following model resistive MHD(MgnetoHydroDynamics) equation{6]:

5 u( )+ CT.,H( Y+ Ku(t) =0,

C= ’?a;z K = (2 +sin 27m2)?,

OSJ], OS.LSI,_OS?<

() = sin 2, %‘u(@) =0,
where 7 is the electric resistivity, and K is the so-called Alfvén frequency.

We discretize ¢ and A by the finite element method using picce.wise linear continuous functions for

the equipartition of (0, 1) with a mesh size Az, From now on 5 = 0.0001, and mesh size of z-direction
is Ax =1/128,

6.1 Newmark’s method vs. Runge-Kutta methods
For applying Runge-Kutta methods to (31), we rewrite (31) as the first order equation: °

L¥(1) = AY(0)

B 0 I s [ u(0) (32)
4= ( -k -C ) Yoy = ( 4 4(0) )



Then, using (32), we can represent the second order explicit Runge-Kutta with a time step 7 as follows:

A:Ai()
k= AY (1) + 7h).
1‘( +7) = Y(t) 4 Lrh + k),

where 4 and ¥ arc the approximations of A and Y. Using (32), we can also represent the second order

implicit Runge-Kutta with a time step 7 as follows:

k= AY(8) + Erky),
Y(t+7)= Y{t) + 7h.

Using tle time evolution of the energy of solutions, we compare the result of Newmark’s method with

tliose of the Runge-Kutta methods. Here the energy of solutions are calculated as follows:
E(t) = f {(— dt 4 Ku(t) }de = £ {(V(£), V(2)) + (KU, U{t))} Az,

where U(¢), V() and K are approximations of u(t), £ 4 w(t) and &'. We calculate the energy for ¢ from
t = 0 to 100. We calculate two cases. The first case is shown in Figure 1 where 7 = 0.1 and the second
case with.7 = 0.2 is shown'in Figure-2. Figure 2 has a log-scale with respect to energy. In Figure 1 and

- Figure 2 we set parameters as follows:

curve name | method 7inFigl | 7in Fig 2 i} ¥ 7 Ag

line 1 Newmark 0.01 0.01 1/6 | 1/2 { 0.0001 | 1/128
line 2 Newmark 0.1 0.2 1/12 | 1/2 | 0.0001 | 1/128
line 3 Explicit Runge-Kutta 0.1 0.2 0.0001 | 1/128
line 4 Implicit Runge-I{utta 0.1 0.2 0.0001 | 1/128

Here ‘line 17 corresponds to a basic curve for the comparison with a small 7 = 0.01. Others correspond
to curves for different methods. Figure 1 and Figure 2 show that, although the equation (31) is stiff,

Newmark’s method gives a good result.
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In a slab configuration modeling the negative shear tokamak, the ion temperature gradient (ITG)
mode is analyzed numerically based on a gyrokinetic integral eigenvalue equation. Numerical results
show that chardcteristics of the ITG mode are greatly changed depending on the number of mode-
rational surfaces. When a single mode-rational surface exists at the gmin-surface, the finite Larmor
radius (FLR) effect produces an asymmetric mode structure with respect to the mode-rational
surface. Since the magnetic shear is weak near the gmi,-surface, two separate unstable regions
appear in both sides of the mode-rational surface. Also, the ion temperature gradient is steep in
these regions. Therefore, two independent modes become unstable depending on &, regions; one is
a low-k, mode which exists in the high-T; side, and the other is & high-k, mode which js in the
low-T; side. When double mode-rational surfaces exist near the gmin-surface, it is found that the
ITG mode becomes unstable in the interior region beiween the two mode-rational surfaces. Since
the shear stabilization disappear in this region, the unstable region spreads up to a high-k, value or
kypti < 10, where py; is the jon Larmor radius.

Keywords: ion temperature gradient mode, negative shear tokamak, gyrokinetic theory, linear global
analysis.

L. INTRODUCTION

In recent tokamak experiments with the negative-sheared magnetic configuration, the internal transport barrier
(ITB) was formed, and significant improvement of particle and energy confinement at the ITB was observed [1-3].
Here, the ITB is characterized by a steep density and temperature gradient near the gmin-surface, and often, sheared
poloidal and toroidal flows are observed. As one of the theoretical models for explaining these experimental results, a
model based on the drift wave turbulence was proposed [4]. Here, the main result is the stabilization of toroidal drift
modes and suppression of the associated anomalous transport by the negative magnetic shear. However, even in such
a situation, a slab drift mode remains to be a possible unstable mode, because the sign of magnetic shear has a hittle
effect on the stability of a slab drift mode. In recent years, comprehensive parameter studies for the ion temperature
gradient (ITG) mode have been performed for the purpose of evaluating the anomalous ion transport in tokamak
plasmas with the normal magnetic shear. Since the scale length ordering between the characteristic perpendicular
wavelength and equilibrium quantities has been assumed to be valid for conventional tokamak discharges with the
normal magnetic shear, Wentzel-Kramers-Brillouin (WKB) method [5] has been adopted in the linear stability analysis
of micro-instabilities. However, as is shown in recent works using the gyrokinetic global spectral code (9,10} or
the gyrokinetic particle-in-cell simulation [11), the linear eigenfunction of the ITG mode has a global radial mode
structure, especially in a weak magnetic shear region of the negative-sheared magnetic configuration. Therefore, the
WKB approximation or the ballooning representation may not be a good approximation for the I'TB region, which
is characterized by a steep density and temperature gradient at the weak magnetic shear region. Although several
Vlasov or gyrokinetic global codes, which solve an integral eigenmode equation, have been developed both for a slab
geometry {6,7,9] and for a torcidal geometry [8,10], numerical results for clarifying properties of the ITG mode in the
negative-sheared magnetic configuration were very limited.

In the present work, we concentrate on the negative shear configuration with a steep density and temperature
gradient to study the ITG mode. In analyzing the ITG mode under these conditions, it is important to retain the full
finite Larmor radius (FLR) effect. Thus we have developed a gyrokinetic integral eigenvalue code (7,9,10] in a sheared
slab geometry. In the framework of the ballooning representation [12], a weak magnetic shear around the gy -surface
suppresses the driving force of the toroida! ITG mode due to the toroidal guiding-center drift in a region other than
8, ~ 0, where 8, denotes the ballooning angle. In addition, the toroidal mode coupling diminishes in a weak shear
region. Hence, it is probable that the ITG mode has a slab-like feature in the negative shear configuration {10], and
a slab model is useful as a model for the negative shear tokamak. Also, a slab model is advantageous in regard to an
analytical treatment of the eigenmode equation, as well as a numerical resolution in solving the gyrokinetic integral
eigenmode equation.



The negative-sheared slab ITG (NS-ITG) mode is characterized by following features: the shear stabilization
disappear around the gni,-surface; the variation of the magnetic shear, g”, generates a potential well in the linear
eigenmode equation; and two mode-rational surfaces appear in both sides of the gu;;-surface when k. £ 0, where k,
is a wavenumber in the direction of the magnetic field at the gu;,-surface. In the previous works (13,14), the NS-ITG
modes have been studied by the fluid type linear eigenmode equation, which is solved with the corresponding WKB
shooting code [5]. However, as is mentioned above, this treatment requires the assumption of a relatively weak density
and temperature gradient or k7' /L, ~ k!/Ly <« 1, where k, is a wavenumber in the perpendicular direction to the
dominant magnetic field, and L, and Ly; are scale lengths of the density and temperature gradients respectively. In
our analysis using the gyrokinetic integral eigenvalue code, we will study properties of the NS-ITCG mode under the
assumption of a steep density and temperature gradient or kIl/L,, ~ kIlng; £ 1, with including full kinetic effects
such as the higher order FLR effect and the Landau resonance.

The N5-ITG modes are classified in two cases. One is the single mode-rational surface case with k, = 0, and the
other is the double mode-rational surface case with k, # 0. The former corresponds to the weak shear limit [15)
of the slab ITG mode. Its property is significantly affected by a steep ion temperature gradient which produces an
asymmetric eigenmode structure with respect to the guin-surface through the FLR effect. The latter appears only in
the negative shear configuration. In the fluid limit described by the Weber type equation, the problem of the donble
mode-rational surface case reduces to a harmonic oscillator in a parabolic potential well perturbed by a fourth order
potential, in contrast to the ITG mode in the standard sheared slab model, which is characterized by a parabolic
potential hill. Thus, the NS-ITG mode with the double mode-rational surfaces is strongly destabilized around the
gmin-surface and has a global eigenmode structure bounded by the two mode-rational surfaces. The stability of this
mode is determined locally at the gui.-surface since ¢' ~ 0. As a result, the unstable Tegion in the k, space widely
spreads over the high-k, region with & p,; < 10. This is a remarkable feature of the NS-ITG mode obtained from the
gyrokinetic integral eigenvalue code which enable to analyze micro-instabilities with k p,; 3> 1.

The reminder of this paper is organized as follows. In Sec. II, the lincarized gyrokinetic Vlasov-Maxwell system
is formulated to obtain an integral eigenvalue equation. In Sec. III, the integral eigenvalue equation is reduced
to the Weber type differential eigenmode equation under the fluid limit with the long perpendicular wavelength
approximation where k) p;; < 1. Here the analytic solution of the NS-ITG mode is presented. In Sec. IV, numerical
results obtained from the gyrokinetic integral eigenvalue code are shown and the properties of the NS-ITG modes
are discussed. Finally, in Sec. V, we show the validity of the present analysis by comparing both the analytic and
numerical results of the NS-ITG modes.

II. GYROKINETIC INTEGRAL EIGENVALUE EQUATION

In this section, we derive an integral eigenvalue equation based on the gyrokinetic Viasov-Maxwell system. We also
give a numerical method for solving the linear eigenvalue problem described as a transcendental equation.

In the present study of the ITG mode, we consider a sheared slab geometry, where the z-direction corresponds
to the radial direction, the z-direction is chosen in the direction of the magnetic field at = = 0, and the y-direction
is chosen to be normal to both the z and z-direction. We assume the periodic boundary condition in the y and
z-direction, and the fixed boundary condition with conducting walls in the z-direction. By expanding the g-profile
around the position z = 0, we write the g-profile as ¢(z) = qo + gbz + 3gfz® + - -, where g, ¢} and gff are evaluated
at ¢ = 0. The corresponding slab magnetic field configuration for the normal shear case with g¢f, # 0 is

B(z) = Bylz — z/L,y), : : (1)

where L, = (g3 R)/(g4ro), R is the major radius of a toroidal plasma, ro is the minor radius at the position 2 = 0,
and z = 0 is the position of the mode-rational surface. For the negative shear case with ¢}, = 0, we choose the model
magnetic configuration as ' o

B(z) = Bo[z — (z/La,)%y], , (2)

where L., = 1/(2¢§R}/(qiir0), and z = 0 corresponds to the position of the gu,-surface. Here, it is noted that an
inclusion of the first order shear term {14] in Eq. (2) just shifis the position of the gm;-surface, and changes the
minimum value of ¢ from gp. Thus, only the second order derivative term is retained in Eq. {2). In these model
configurations, the asymmetry of the configuration which is produced by ¢4’ is ignored for simplicity.

In analyzing a relatively low frequency fluctuation in tokamak plasmas, we can apply the usual gyrokinetic ordering:
w/Q ~ ky/ky ~ ed/T ~ p{L, ~ O(e), where w is the characteristic frequency of the fluctuation; the gyro-frequency



is {t = qBg/mc; m and q are the mass and the charge of particle, respectively; the Larmor radius is p = |[b x v|/f; the
direction of the dominant magnetic field is b = Bg/Byg; ky and k; are wavenumbers in the parallel and perpendicular
directions to b, respectively; T is the temperature; Ly, is the density characteristic scale length, and ¢ is the perturbed
electrostatic potential. Under this ordering, a fast non-sccular perturbation relating to the gyration of a charged
particle is removed from the Vlasov-Maxwell system. We then have the gyrokinetic Vlasov-Maxwell system [16-19}
in the gyro-averaged coordinates, Z = (t; R, vy, M, ), where the definitions of each independent variables follow
those given in the gyro-center coordinates. In the gyro-center coordinates, R is the position of guiding center;
v, =v- b; vy = [vxb]; Mis defined as M = mv3 /2Q; c is the velocity of light; the gyro-phase angle is given by
@ = tan~1(v - e1/v - e3); and ey, ey are the unit vector in the = and y-directions. By linearizing the guiding-center
distribution fanction as F = Fy + Fi, we obtain the linearized gyrokinetic equations:

OF, B o - a oF |

S+ 5B VR + gbxValls Vafo— 5B Valligy! =0, (3)

m) = [ Fb((R+7] - x)Dd°% — T2 5 [1- fo(kL o} exp(—kLo1)] b cxp(ik ), )
k

—V2¢ = dme [n1(x) — na(x)], ' (5)

where the Jacobian of the gyro-averaged coordinates is D = gmBo/e, p¢ is the Larmor radius evaluated with the
thermal velocity, and Ig is the zeroth order modified Bessel function.

Since the system is symmetric in the y and z-direction, we assume the fty and R,-dependence of a linear perturbation
Fy as a plane wave with specified k; and k,:

F(R,v,, M,t) = (R, v,, M)exp(iky Ry + ik, R, — iwt), (6)

where the time dependence is also assumed as exp(—iwt) with a frequency w.-By. expanding the radial eigenfunction
" into Fourier series, we write a perturbed guiding-center distribution function and an electrostatic potential in a form:

F(R, 5, M,t)= Z Py, (v, M) exp(ika Ry + iky Ry + ik, R, —iwt), (7a)
k=

Fus (6., 41) = Lfb' Fy(Ra, s, ) exp(~ik, Ry )dR (7b)

1k, Vs, -"2L= _L. 1 T3y Vs, P z iz & i

and
$(R,t) = Y by explik, R, + iky Ry + ik, R, — iwt], (8a)
ke .

(R + 5,105 = ) _ du.Jo(kLp)explik. R + iky Ry + ik, R, ~ iwt), , (8b)

kw
i e -
h = 51 j: N #(R.) exp(—ik. R, )dR;, (8¢)

where L, denotes the system size in the z-direction. In the Fourier series representation, the gyro-average of a
perturbed quantity is written using the zeroth order Bessel function, Jy. By substituting these expressions into Eq.
{3}, we have the perturbed guiding-center distribution function as, '

- - w* l—n{é—MQ-i-lmﬁz TY — kyv . =
Fy(Ra,5,, M) = LR =l = hlnd LDl =80 § g, so(ks ) expliba B, (9)
)9 - w .
where ky = k- B/B, 3 = %.B/By, n = dInT/dlnng, and the diamagnetic drift frequency is «* =

(k, T/m)(dInng/dR,). Using a local Maxwellian for the unperturbed guiding-center distribution function, we obtain
the perturbed density from Eq. (4):

1 L=
n(z) = EEZZ/L dz' exp(ik.(z — z') + ik, z')
ke ky Vole

x T, [{Fo —7 G’ +ba) To +nbgl‘1}f‘z +To(n€'€ —1)(1+£2)

- E%S’. > "[1 - (') exp(—b)] éu:, exp(ik;z). (10)
K



The definitions of quantities in Eq. (10) are given as follows: Z = Z(£) is the Fried-Conte plasma dispersion
function; & = w/(V2|kylve); £ = w /(\/—fk"hu) b= (k2 + Dol b = (kL2 + E2)pd; be = (b+0')/2, by = VI,
I‘o(b,,,bg) = exp(—ba)Io{by); T'1(ba, bg) = exp(—ba)I1(by); and I, is the n-th order modlﬁed Bessel function. Finally,
by imposing the self-consistency condition or the Poisson equation, Eq. (5}, in the Fourier space, we derive the linear
integral equation for the Fourier amplitude, ¢y,

D Lima (@), = 0 (11)
s
1 L.

2L, )y,

1 1 .
+ZE[{F0—1); ("2‘ +baa) I‘0+Thbgarl}£,z

+I‘0(1‘,’,€:€. - 1)(1 + f.Z.) - {1 - Iﬂ(b:) exp(—b', )}]]s (12)

Ly p(w)= dz expli(k; — kp)z] % l:—(kf -+ ki + kf)

where Ly, i (w) are elements of the complex matrix £L(w), A%, = T,/(47n,0q?), and s denotes the particle species.
Thus, the linear stability problem of low frequency micro-instabilities in the sheared magnetic field is formulated as the
integral eigenvalue equation. Since our interest is not only in the ITG mode, but also in the short wavelength electron
temperature gradient driven (ETG) mode [20], we have used the general dielectric tensor including the electron kinetic
effects in Eq. (12). An analysis of the ETG mode will be reported in elsewhere.

The matrix form of the integral eigenvalue equation, Eq. (11), can be reduced to the problem of ﬁndmg eigenvalues,
{wi}i=1,n, of the complex matrix £, which satisfy

det L(w;) = 0. (13)

In finding a root of Eq. (13), first, we plot the contour lines of Re(det £) = 0 and Im(det £) = 0 in a complex w-plane,
and obtain guesses for the cigenfrequencies, {c;};=1..n, in a region where the eigenfrequency with the maximum
growth rate exists. We then refine guesses using a method based on the algorithm developed by Davies [21]. Although
the original algorithm can treat multiple roots simultaneously, we apply the algorithm only for a single root case. Let
us set a closed positively oriented contour, C : [w - ¢;| = #;, so that there exists a single root, w;, in the region limited
by C. Applying the residue theorem, the eigenfrequency, w;, is written by the following integral:

1 g'(w)
= 2mi f;‘w glw) @) (14)

where g(w) = det .C(w) In order to avoid the numerical calculation of g'{w), we use integration by parts to estimate
Eq. (14). Here, since In[g] is not single-valued along the contour, C, we rewrite the integral, Eq. (14), into the
following form:

_1 .G .
= i??i Y ) X e
=5 j{: In[G(w)]dw + c; (15)

where G(w) = g(w)/(w — ¢;), and In[G] is single-valued along the contour, C. The integral, Eq. {15}, is evaluated
using a numerical quadrature to obtain the eigenfrequency, w;. Finally, the corresponding eigenfunction is solved
using the usual inverse iterative method.

As a benchmark test, we have compared numerical results of our gyrokinetic integral eigenvalue code with our former
numerical results of the gyrokinetic particle simulation [19], which solve the gyrokinetic Vlasov-Maxwell system as
an initial value problem. And, we have seen a good agreement between the linear eigenfunctions and the linear
growth rates of these numerical results in a shearless slab plasma. Also, for the standard sheared slab case, we
have confirmed that our gyrokinetic integral eigenvalue code recovers the eigenfunction and the dispersion relation
of the ITG mode [22] and the ETG mode (8 = 0 case in Ref. [20]), which were also obtained by solving the integral
eigenmode equation.



III. NON-LOCAL ANALYSIS USING DIFFERENTIAL EIGENMODE EQUATION

Before showing numerical results of the gyrokinetic integral eigenvalue code, we provide an analytical result of the
differential eigenmode equation [23,24] in order to show qualitative characteristics of the NS-ITG mode.

We try an analytical treatment of the gyrokinetic Vlasov-Maxwell system under the ordering for the phase velocity,
vy < |Re(w)/k)| < vie. Hence, the differential eigenmode equation is obtained from the quasi-neutrality condition
with the gyrokinetic ion response and the adiabatic electron response. We also apply a long perpendicular wavelength
approximation, b ~ &' & 1, to the ion gyrokinetic response, Eq. (10). We then have the second order ordinary
differential equation,

-
s +a@EE=0, | (162)
Q(8) = 2 4 7 + 14 {(7 + 1/8 — 7 /(20)}6: Zc + (/)67 (1 + &Zi), (16b)

{7 + 1/Q 4+ 5(20)}6: Z; + (m/Q)E2(1 + &:2:)

where 7 = T./Ti, p,» = /Tpui, and each variables are normalized as follows: Q= wiwl; T= z/p.; l_cy = kyp,; and
é = e¢/T.. Here, it is noted that in this normalization, radial variation of the temperature within an analysis domain
is assumed to be weak, T' ~ T, even for a finite 0, where T is an average temperature. This assumption is valid
for a case with a relatively weak density and temperature gradient. Using the asymptotic expansion for the plasma
dispersion function, Z; ~ —8;1 - %E,-"a — %&_-_5 — .-+, under the fluid limit, §; > 1, we have a reduced form of the

eigenmode equation [24],

di?

d¢ . 1-0Q LIk -
— T ki < Lkl =0, 17
( v T oK + FEnE ¢ (17)

where K = (1+n)/7.
For the normal shear case with gh # 0 or the model magnetic field, Eq.(1), the eigenmode equation is rewritten in
a form of the well-known Weber equation:

3-. ' -
= hE=0, (18)

where

(L LOf ., 1-0
= az ==, €¢=— —k2 4 2 .
c=en e=VIa iL. ( v Q+K)

-

]l

In Eq. (18), k. is set to zero, because £, does not affect the stability but just shift the mode-rational surface from
z = 0. From the bounded solution in the ¢ space and the corresponding quantization condition for €, we have the
eigenfunction and the dispersion relation as follows,

$u(z) = [of (va2'1)]'"* Hy(C) exp(~(?/2), (19)
e=2141, (20)

where [ denotes a radial mode number, H; is the I-th order Hermite polynomials, and the eigenfunction, Eq. (19), is
normalized as [ ¢2dz = 1. If we assume that the cigenfrequency satisfies [Re(f2)] 3 |Im(Q2)], a potential of the Weber
equation, Eq. (18), is recognized as a parabolic potential hill and the eigenfunction, Eq. (19), shows an oscillating
feature in the % space. The asymptotic solution of Eq. {18) is then given as

- L
li =Cexp | —i—"r3? |, 21
|zTTO¢ xp( 12L,02 ) (21}

where C is a constant. By comparing Eq. (21) with an eikonal form of WKB solution, exp( [ kzdi), the group velocity
is evaluated as o, = 8(/0k, = [L,/(k2L,)]z. Hence, the asymptotic solution, Eq. (21), behaves as the outgoing wave
which takes a wave energy away from an unstable region around the mode-rational surface to a stable region where




the wave energy is absorbed by the ion Landau damping. This stabilizing mechanism is so-called the shear convective
damping [25].
For the negative shear case with g = 0 or the model magnetic field, Eq. (2), the eigenmode equation becomes

d¥¢
dc—3 -+

— . 1/2 - £ 82 '
{=az, a= 2k; Ln a = ky a
=k oesWEEa) 0 o=\ Lo

NS ¥ T - c -y 3

k, A -, 18 [L.k
€= = - —-ky + = + | —=

2k, L, O+ K Qk,

Here, we have assumed the double mode-rational surface case with k, # 0. Assuming a as a perturbation parameter,
the perturbation theory [26] can be applied to Eq. (22). Solving the perturbed eigenfunction &51) and the perturbed

energy level et(l) yields the eigenfunction,

(e—¢*—alh)p =0, (22)

where

b =8+ 4, (233)
. 1/2
% = [af (va21)]'"? Hi(¢) exp(—2/2), (23b)
(1
700 _ € 7(0)
= o : % (23c)
T B
and the dispersion relation,
€= e}o) + E‘(I) (24a)
9 =141, (24b)
eV = f H 0" act g4z, (24c)

where &EO)- denotes a complex conjugate of &EO). Again, for the case satisfying IRe(ﬁ)f > |Im(ﬁ)|, a potential in
Eq. (22) is recognized as a parabolic potential well with a fourth order perturbation, and the eigenfunction, Eq.
(23a), becomes a bounded solution in the & space. Accordingly, the linear stability problem of the NS-ITG mode with
the double mode-rational surfaces, which is described by Eq. (22), is recognized as a harmonic oscillator perturbed
by a fourth order potential. In the negative shear case, when there are two neighboring mode-rational surfaces at

Tpy = :L-\/I::, /l::yim, a potential well is formed between these mode-rational surfaces, z,. < % < Z,4. For this

situation, the width of the eigenfunction is evaluated as Az ~ a~!. From comparison between the width of the
eigenfunction and that of the potential well, we obtain a relation, AZ/(#,, — #,_)} = y/a < 1, i.e., the cigenfunction,
Eq. (23a), becomes localized within the potential well. Therefore, in the negative shear case, the shear convective
damping does not work, and the NS-ITG mode becomes unstable easily around the @min-surface.

IV. NUMERICAL RESULTS

Using the gyrokinetic integral eigenvalue code, we have analyzed the ITG modes both in the normal shear case
and in the negative shear case. Use of the gyrokinetic integral eigenvalue code enable us to analyze a global mode
with k;pi; < 1 as well as a short perpendicular wavelength mode with k) pi; > 1, where the full FLR effect becomes
significant. . ‘

Parameters used in the present analysis are chosen based on plasma parameters in Tokamak Fusion Test Reactor
(TFTR): R = 2.6m, rp = 0.3m; &, = #&; ~ 2 x 10"m~3; L, = 0.38m; T, ~ 3.9keV; T} = 12.8keV; By = 4.6T; and
Pri = 2.52mm, where ~ denotes a quantity averaged over the region of the gy,;,-surface. Here, we have considered a
relatively steep temperature gradient case corresponding to the I'TB region of the negative shear discharges. Also, we



have adopted the steep ion temperature gradient Ly; ~ 0.076m corresponding to ; = 5 in this section. For the negative
shear case, we have chosen a model configuration with go = 2, g5 = 0m~!, and ¢§ = 142m~2, which corresponds to
L., = 0.883m. In the former works [13-15,24], plasma parameters were described with non-dimensional parameters
with the normalization as in the previous section. In this section, in order to explicitly show relations among the scale
lengths of equilibrium quantities such as the density, temperature and magnetic shear, the ion Larmor radius, and
the scale length of the eigenmode structure, we have described the plasma parameters with dimensional quantities.
Also, in the present analysis, the non-adiabatic electron response is included for completeness.

In the numerical calculation, in order to exclude spurious solutions, we have used 128 modes for the k; spectrum
corresponding to the system size, L, = 60.3p;, the grid size of Az =~ 0.471py, and the wavenumber of k.5 < 7.
Also, we have adopted a sine series expansion to satisfy the conducting wall boundary condition in the z-direction.
Thus, even and odd modes appear alternately with the increase of k..

First, we will show the result of the conventional slab ITG mode, where the shear parameter,’ L,, is chosen as
L, = La, (La/L, =~ 0.43). The eigenfunction and the k, spectrum of { = 0 mode are shown in Figs. 1 (a)
and 1 (b). In Fig. 1 (a}, the mode-rational surface, z,, the ion resonance point, z;, and the electron resonance
point, 2., are also shown with arrows, where =,, z;, and z. are defined as kj(z,) = 0, Re(w)/ky(=:i) = v, and
Re(w)/ky(ze) = vee, respectively. Since the eigenfunction has a finite amplitude on the ion resomance point, the
conventional slab ITG mode shows the kinetic feature [24]. In Fig. 1 (b), we see that odd modes are close to zero
and the eigenmode structure has even symmetry. Since the mode width is relatively narrow, Az/py ~ 4.7, the effect
due to the radial variation of equilibrium quantities is relatively weak. Here, the mode width, Az, is defined as
Az = (’-83/21?)_1 = (3, kel |/27 3, | )~ [7). Also, since the k, spectrum has large amplitude components
for k. pri < 2, the long wavelength approximation, ky py; < 1, is not a good approximation in analyzing this mode.

In the negative shear configuration, there are two types of NS-ITG modes. One is for the single mode-rational
surface case with k; = 0, and the other is for the double mode-rational surface case with k; # 0, which is discussed
analytically in the previous section. While the double mode-rational surface case is specific to the negative shear
configuration, the single mode-rational surface case is recognized as the weak shear limit [15] of the slab ITG mode
in the normal shear configuration, because the perturbed density response, Eq. (10}, does not depend on the sign of
the shear in the sheared slab geometry. ©

In the single mode-rational surface case, there are several unstable branches both in a low-ky region and in a high-k,
region. In Figs. 2 and 3, the eigenfunction and the &, spectrum of two characteristic branches are shown for the
low-k, case with ky g ~ 0.348, and the high-k; case with k5 =~ 0.9, respectively. Since the magnetic shear is weak
around the mode-rational surface, which is equivalent to the gmj,-surface in this case, an unstable region satisfying
v < |Re(w)/k)| K vie, is divided into two separate regions which are located in both sides of the gmi,-surface.
Between these regions, the ion Larmor radins varies due to the variation of the ion temperature, and the FLR effect,
which is most effective at -k g;; ~ 1, produces the asymmetry of the mode structure. As is shown in Figs. 2 (b) and
3 (b), these modes do not have spatial parity. Therefore, the eigenfunction of the low-ky (high-k;) mode peaks in the
high (low) temperature side. In Figs. 2 (b) and 3 (b), we also see that these modes have a relatively oscillating mode
structure whose k, spectrum peaks at k. j5,; ~ 1.3, and the radial correlation length is evaluated as Ax/pn ~ 5.

In the double mode-rational surface case, k, determines a depth of the potential well and a distance between the
two mode-rational surfaces. In this section, we have chosen k. as k, ~ 3 x 2n/(goR) ~ 0.008495;, so that the double
mode-rational surface NS-ITG mode gives the approximately maximum growth rate at 7; = b. In Figs. 4 and 5, the
cigenfunctions and the k, spectrums of the double mode-rational surface NS-ITG modes are shown for I = 0 and
I = 1, respectively. In the figures, it is noted that, while the electron resonance points appear in both sides of two
mode-rational surfaces, the ion resonance points exist but do not appear in the interior region between these surfaces,
becanse of the weak magnetic shear. And, a wide unstable region satisfying v < |Re(w)/k)| < v¢e exists around the
gmin-surface. This fact implies the validity of the fluid approximation used in the analytic treatment of the differential
eigenmode equation, Eqs. (16). As is predicted in the analytic solution, Egs. (24), the double mode-rational surface
NS-ITG mode has the mode structure which is localized around the gui,-surface. In Figs. 4 (b) and 5 (b), we see
that the k; spectrum of the ! = 0 (I = 1) mode shows approximately even (odd) symmetry. However, also for the
double mode-rational surface case, weak asymmetric components are observed because of a relatively broad mode
structure, e.g., Az/p,; ~ 15 for the | = 0 mode. Here, it is noted that for the NS-ITG modes which are analyzed in
this section, the ratio of the radial correlation length Az to the scale length of an ion temperature gradient L;; reaches
at Az/Ly; ~ 0.5 and, therefore, the WKB procedure may not be appropriate for the analysis of these modes. Since
the k, spectrum of these modes peaks in a long wavelength region, k;py; < 1, the long wavelength approximation,

k1 py < 1, which is used in the analytic calculation, may be valid for the double mode-rational surface N5-ITG mode
with kyﬁﬁ S 1.



Figure 6 (a) shows the k,-dependence of a real frequency of the above three types of I'TG modes. For kypy < 1, the
absolute value of real frequency increases linearly with &, and the dispersive feature behaves as Re{w) ~ w? except for
the high-k, branch of the single mode-rational surface NS-ITG mode, which becomes unstable in a low temperature
region. For kg > 1, the absolute value of real frequency of the double mode-rational surface NS-ITG modes reduces
again. This feature is also seen in the ky-dependence obtained from the local dispersion relation for the shearless slab
ITG mode, Fig. 7 (a). '

In Fig. 6 (b), the ky-dependence of the growth rate of these modes is shown. As was seen in the previous works 16,22,
an unstable region of the conventionsl slab ITG mode exists for kypii < 1. For the single mode-rational surface NS-
ITG modes, there are two unstable regions corresponding to the low-k, mode with kyp; < 0.5, and the high-&, mode
with kypy > 0.5. Compared with these three branches, the double mode-rational surface NS-ITG modes are strongly
unstable and their unstable region includes the high-k, region with ky 5, > 1. In order to explain this unique feature
of the NS-ITG modes, we have analyzed the k,-dependence, Fig. 7 (a}, and the k|-dependence, Fig. 7 (b), of the
local dispersion relation for the shearless slab ITG mode at the gniy-surface. As shown in Fig. 7 (b), the ITG mode
is basically the ion sound wave which is modified by the density and temperature gradient, and its stability is very
sensitive to k). Whereas, in Fig. 7 (a), we see that with a constant kyj, the k,-dependence of the growth rate is weak
for kyp: > 1. 1t is noted that the non-adiabatic ion response contributes to the stability of ITG mode in the high-k&,
limit, while the contribution vanishes exponentially in the high-k, or k., limit. This is because the non-adiabatic pazt
of the ion response, Eq. (10), is proportional to k,p,;:I'o(b) or k,p;T'1(b), and in the high-%, limit, these functions are
approximated [27] as v/bTg(b) ~ 0.399 + 0.0133671, and vbI';(b) ~ 0.399 — 0.03995~1, respectively. Therefore, what
is significant in stabilizing the ITG mode is not the variation of k, but the variation of k|, which generates the ion
Landau damping in a high-k| region. In the sheared slab geometry, k, and ky are closely related by the magnetic
shear. If the magnetic shear exist in an unstable region, k| increases along with the increase of k,, and the mode is
then stabilized by the ion Landau damping for kyp;; > 1. This is the kinetic stabilizing mechanism of the slab ITG
mode and the single mode-rational surface NS-ITG mode. However, if the mode arises in a low magnetic shear region
around the gumin-surface, which corresponds to the double mode-rational surface NS-ITG mode, k|| is independent of
k, and the ky-dependence of the stabiliby is almost determined by the local stability for the shearless slab I'TG mode
which is shown in Fig. 7 (a). Thus, an unstable region with kypii > 11s allowed for the double mode-rational surface
NS-ITG mode. '

Figures 8 (a) and 8 (b) show the 7-dependence of the real frequency and the growth rate, where k, and k, are
chosen so that the critical temperature gradient parameter, 7;., approximately becomes the minimum value. For
the conventional slab ITG mode, 7;. ~ 3 is obtained, and this value is consistent with the analytical estimation of
The, Which is obtained from the analysis of the differential eigenmode equation, Eq. (16), in the kinetic limit {24].
Compared with the slab ITG mode, the NS-ITG modes give considerably lower critical values around m;, = 1 ~ 1.5.
As for the real frequency, the slab ITG mode and the double mode-rational surface NS-ITG mode have a finite real
frequency at their marginally stable state, while real frequencies of the single mode-rational surface NS-ITG modes
become close to zero at n; ~ 5. '

V. SUMMARY

In the present paper, we have analyzed the NS-ITG modes using the gyrokinetic integral eigenvalue code. In the
negative shear configuration, several types of ITG modes exist because of the peculiar properties of the magnetic
configuration: the magnetic shear is very weak around the gui,-surface; and the configuration is determined by 98,
which forms a potential well in the eigenmode equation. Also, the double mode-rational surfaces appear when &, #£ 0.

In the single mode-rational surface case with k, = 0, two separate unstable regions, which widely spread in both
sides of the mode-rational surface, appear because of a very weak magnetic shear. In these unstable regions, the
ion temperature and the ion Larmor radius vary considerably, and the FLR effect provides the asymmetric mode
structure. Thus, the low-k, (high-k,) mode becomes unstable in the high (low) temperature side of the mode-rational
surface. )

We have shown both the analytic and numerical results for the double mode-rational surface case with k, # 0. In
an analytical treatment, the linear stability problem described by the differential eigenmode equation is recognized
as a harmonic oscillator perturbed by a fourth order potential. Using the perturbation theory, we have obtained
a bounded solution which is localized around the gmin-surface. This solution is also obtained from the gyrokinetic
integral eigenvalue code. These analyses have shown an existence of a broad unstable region in the interior region
between the two mode-rational surfaces, and this feature is also explained by either kinetic and flnid pictures. In the
kinetic picture, the appearance of the unstable mode in the interior region between the two mode-rational surfaces



is explained by an absence of the ion resonance points in this region. In the fluid picture, the driving mechanism is
explained by a trapping of wave energy in the potential well generated by variation of the magnetic shear, gg. Thus, the
eigenfunction is bounded by the two mode-rational surfaces and has a relatively broad mode structure. Here, it should
be noted that for the analysis of this kind of global modes, the WKB approximation or the ballooning representation
scems inappropriate, because the scale length ordering, Az/L, ~ Az/L, ~ O(¢}, does not hold for the steep density
and temperature profiles. Another particular feature of this mode is that the unstable region spreads over the high-k,
region, kypy; < 10. Unlike the conventional slab ITG modes and the single mode-rational surface NS-ITG modes, in
the double mode-rational surface case, the magnetic shear vanishes in the unstable region, where the eigenfunction
peaks, and k) becomes independent of k,. Hence, the k,-dependence of the growth rate is essentially determined
by the local stability at the gmi-surface. This numerical result may explain the short wavelength fluctuation with
kspei ~ 5, based on the NS-ITG mode, which is observed in the TFTR enhanced reversed shear (ERS) experiment [28].
In order to identify this short wavelength fluctuation, a linear stability calculation of the ETG mode remains to be
done for comparison with the data.

From evaluation of the radial correlation length and the growth rate for these three types of NS-ITG meodes,
the double mode-tational surface NS-ITG mode may occupy a significant contribution to the anomalous transport,
provided that 7; is sufficiently larger than its critical value, ;.. Also, for the plasma parameters used in Sec. IV,
these NS-ITG modes give considerably lower critical temperature gradient parameter, 7. = 1 ~ 1.5, compared with
the conventional slab ITG mode which gives 7, ~ 3.

In the present analysis, we have considered only the slab ITG modes, which is driven by the resonant interaction
between transit particles and electrostatic waves. Thus, the present results may not be appropriate for a quantitative
comparison with tokamak experiments, if the driving force due to the toroidal effects such as toroidal guiding center
drift, trapped particles, and the toroidal mode coupling, are essential. However, we believe that the toroidal effects
tend to become weak for the negative shear configuration and the slab-type drift waves are relevant to understand
experimental results. Future work will be directed to the development of the gyrokinetic integral eigenvalue code for
a realistic toroidal configuration.
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FIG. 1. (a) shows the eigenfunction of the { = 0 branch of the slab ITG mode for k, pe; ~ 0.4 and r; = 1. = 5. "Also, positions
of the mode-rational surface, z., the ion resonance point, z;, and the electron resonance point, z. are indicated by arrows. (b)
shows the corresponding k. spectrum of the eigenfunction. Here, odd modes have almost 2ero amplitudes.
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FIG. 2. (a) shows the eigenfunction of the single mode-rational surface NS-ITG mode for the Iov\;-k, branch with ky 7. ~ 0.348
and n: = . = 5. (b} shows the corresponding k. spectrum of the eigenfunction.
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FIG. 3. (a) shows the eigenfunction of the single mode-rational surface NS-ITG mode for the high-k, branch with &y pe: = 0.9

and 7; = 1. = 5. (b) shows the corresponding k. spectrum of the eigenfunction.
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F1G. 4. (a) shows the eigenfunction of the I = 0 branch of the double mode-rational surface NS-ITG mode for ky7e; = 1.5,
k. pu ~ 0.00849, and n; = 1. = 5. (b) shows the corresponding k. spectrum of the eigenfunction. Here, the eigenfunction has
even parity and even modes are dominant in the k» spectrum.
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FIG. 5. (a) shows the eigenfunction of the = 1 branch of the double mode-rational surface NS-ITG mode for kypii = 1.5,
k.pei ~ 0.00849, and 7; = n. = 5. (b) shows the corresponding k. spectrum of the eigenfunction. Here, the eigenfunction has
odd parity and odd modes are dominant in the k. spectrum.
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FIG. 6. (a} Real frequency and (b) growth rate are plotted for the I = 0 branch of sheared slab ITG mode (crosses), the
low-k, (open triangles) and high-k, (closed triangles) branches of the single mode-rational surface NS-ITG mode, and the I = ¢
(open circles) and ! = 1 (closed circles) branches of the double mode-rational surface NS-ITG mode. Here, parameters are same
as numerical results in Figs. 1-5, except for k, .
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FIG. 7. (8) k,-dependence and (b} k.-dependence of the local dispersion relation of the shearless slab ITG mode are plotted
under conditions with (a) k. p. ~ 0.00849 and (b) ky 5 ~ 0.4, and 5 = 9.
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FIG. 8. (a) Real frequency and (b) growth rate versus n; is plotted for the slab ITG mode and the NS-ITG modes. The
parameters are chosen as follows: the stab ITG mode with k, pr; = 0.399 (crosses); the low-k, branch with ky5,; = 0.424 {open
triangles) and the high-&, branch with ky 5. = 0.849 {closed triangles) of the single mode-rational surface NS-ITG mode; and
the double mode-rational surface NS-ITG moade with kyp:; = 0.849 and k.pri = 0.000424 (open circles).
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Abstract

The eigenvalue problem of the linearized magnetohydrodynamic(MHD) equation is formulated by
using higher order spline functions as the base functions of Ritz-Galerkin approximation. When the
displacement vector normal to the magnetic surface (in the magnetic surface) is interpolated by B-spline
functions of degree p; (degree p;) which is continuously ¢;-th (c-th) differentiable on neighboring finite
elements, the sufficient conditions for the good approximation is givenby p1 > p2+1, ¢y L 2 +1, (a1 2
1,p2 > ¢2 > 0). The influence of the numerical integration upon the convergence of calculated eigenvalues
is discussed. '

1 Introduction

MHD stability is an essential issue for the magnetic confinement of fusion plasmas. Spectrum analyzing
codes of the linearized MHD equation with higher accuracy is required to analyze the localized modes
with small growth rate.

The finite element method based on the variational energy principles has been applied to the analysis
of MHD spectrum, and a lot of codes have been constructed [1, 2, 3, 4, 5]. Most of these codes are of
second order accuracy, i.e., the numerical errors in the eigenvalues scale as N~2, N being the number
of elements in one dimension. Although fourth order accuracy is achieved in NOVA code [6] which does
not depend on variational energy principles, by utilizing the third order spline functions, the nonlinear
eigenvalue problem is involved. In the present paper, higher order spline functions are used as the base
functions of the finite element method which applied to the Lagrangian of the linearized MHD eguation.

In the present method, the 2-D {or 3-D)} stability problem is reduced to 1-D problem with many
variables by using the Fourier expansions with respect to poloidal (and toroidal) angles. Then the finite
element method is applied to the minor radius direction. When the displacement vector normal to the
magnetic surface is represented by X and the displacement vector in the magnetic surface is represented
by Y, there appear the differential of X with respect to the minor radius direction, but not the differential
of Y. The component vectors X and Y belong to the different function spaces. The operator which
is defined by the energy integral is not compact; the spectrum pollution can occur. In order to avoid
the spectrum pollution most of variational codes employ piecewise linear functions and step functions
in hybrid. In this paper, the properties of ”good approximation” is defined as the properties which the
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approximated spectrum should possess, and the sufficient condition for the base functions that "good
approximation” is derived is given with mathematical proof.

Most of theories of the finite element method depend on an assumption that the integral is carried out
exactly. However, most of the spectrum analyzing codes utilize the numerical integration for calculating
energy integral. Effect of numerical integration on convergence property of eigenvalues is one of the key
problems, but only few discussions have so far been made. If the energy function is integrated exactly,
the lowest eigenvalue is necessarily approximated from above. In ERATO code [1, 2], however, the lowest
eigenvalue is approximated from below in most calculations against the ordinary theory. This problem
is also discussed in this article.

The bilinear form which defines the linearized MHD operator is introduced in section 2. In section 3,
the properties required for the approximated spectrum are defined. The theorem which determines the
function spaces of the Ritz-Galerkin approximation is presented in section 4. The outline of the proof
of the theorem is given in section 5 (the detail is shown in Appendix IT). In section 6, the numerical
errors in the eigenvalues are estimated. In section 7, the influence of the numerical integration upon the
convergence of calculated eigenvalues is discussed. The numerical examples in the case of the clyndrical
plasma are shown in section 8. Section 9 is devoted to the conclusions.

2 Linearized MHD Operator

We consider tours plasma. configurations such that there exists a magnetic axis and around the
magnetic axis there exist the magnetic surfaces which do not intersect each other.
Let £ be the plasma displacement. When we assume the time dependence £(r,t) = £(r) exp{—iwt},
the ideal linearized MHD equations are written as

—Apo€ = F[¢], (1)
with | '
FI€] = {V(6- Vo0 + 707 £) +V x Q(€) x Bo + Jo % Q(6)) @

where A = w?, Q(€) = V x (€ x By) and pqg, Jo, By and Po are the mass density, the current density,
the magnetic field and the pressure in the equilibrium. In general pg may be a function of r. In follow,
we assume that po is a positive constant (pp = 1) for simplicity. Since we assume that the plasma is
bounded by a conducting shell, the boundary condition at the plasma surface is expressed by

{n=0, - o ' ’ - (3)

where n denotes the vector normal to the plasma surface. The eigenvalue problem (1) can be formulated
in the weak form as

W, n] = AK[€,n], for any 7, (4}

where )
Wig.nl = /{Q(E)-Q(n)+Jo X7-Q(€) +{€-Vpo) V-7 + ypoV-£V -n}dr, .- (5)
Kl = [ &nr (6)

with volume element dr. From the symmetricity of W[€, 7] we can see that X is real number.

We introduce the coordinate system (¢,6,¢) where ¢ is a magnetic surface label, while # and ¢ are
angular coordinates on a toroidal surface. If we deal with 2-D equilibria, we can take v as the poloidal
magnetic flux within a magnetic surface and { as the toroidal angle ¢ which appears in the geometric
cylindrical coordinate (R, ¢, Z), while 8 is determined by the condition that the lines of force are straight
in the @ — ¢ plane.
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We decompose the displacement vector £ as

BxV
£ =6y g+ gr . + 6B (7

Furthermore we expand &y, &, and & into Fourier series with respect to § and ¢

£p =Y E5™ () exp{i(mb + n()}

€ =3 €r(%) expli(md +n()} (3)
& =3 & () expli(m +n0)}.

We also define the vectors X and Y as
X =T, Y =7 (9)

X denotes the plasma displacement vectors normal to the magnetic surface and Y in the magnetic
surface. When we truncate the Fourier series at —mg < m < mg and —ng < n < 0, the vectors X and
Y have My = 2mgng + 19 + mo + 1 and My = 2(2mong + np + 1m0 + 1) components , respectively.

Let V = (H1(0,a;d)) ™™ x (L2(0,a;d4))""", where H' denotes the Sobolev space of the order of |.
.. We introduce Z € V, and we use the notation Z = (X,Y) for an'element of Z. For any trial function
W = (U,V) €V, eq.(4) reduces to the following bilinear form

alZ, W) = Mb[Z, W], (10)
where L
D cif cf X'
dz,w)=| (u* vH vE )| ¢ an Aff X | dv
0 Cz: An Ap Y
(11)
and .
b[Z,W]:[ (UY.B,-X + V¥.B;.Y}dv. : (12)
D]

Here the prime indicates the derivative with respect to 1 and the superscript H refers the Hermitian
conjugate. D, Ayy, Aso, By and B; are Hermitian matrices. We assume that coefficients in eqs.{11) and
(12) are sufficiently smooth. The bilinear form a[Z, W] is continuous and coercive; b{Z, W] is continuous
and positive definite. The boundary conditions are given by

X(0) =0, X(1)=0. (13)

We note that the bilinear form a[Z, W] is related to the Fourier Expanded operator of the linearized
MHD F as

a[Z, W] =b{FZ,W]. (14)

3 Definition of the Good Approximation

The spectra of the linearized MHD operator F in eq.(2) are to be approximated by means of a finite
element method. We here define properties that the approximated spectrum should possess.

Let o(F) C R be the spectrum of the operator F', and ¢(F) C R the spectrum of the operator Fy,

where F, is the operator approximating F. It should be noted that the ideal linearized MHD operator
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F is non-compact. Therefore, the approximated spectrum o(F}) can be polluted, i.e. there exists the
series of eigenvalues of Fp which, converges to a value which belongs to the spectrum of F. We say
that o(F) is "a good approximation” of o(F) when the approximated spectrum o(F}) satisfies the
following properties to the spectrum g{F'};

i)For all i € o(A), there exist the series of eigenvalues of A; which converges to .

ii) There do not exist the series of eigenvalues of F), which, converges to an eigenvalue which
belongs to the spectrum of F(Non-pollution property).

iii) The numerical errors in the eigenvalue scale as N ~2(#2+1) where N is the number of elements
and p; refers the degree of base function for the unknown function Y. If the coeflicients belong to
H*(a < 2(p; + 1) + 1) but not to H*+!, the numerical errors scale as N ~(et1),

4 Approximation of Function Spaces

When we apply the finite element method to eq.(10) the mathematical problem is that unknown
functions X and Y belongs to different function spaces, i.e., there does not exists Y’ in eq.(10). We
here discuss the approximation of function spaces.

The integral region [0,1] is divided into V intervals. There are N+1pointsiyy = 0 < ¢, < --- < ¢y =1
in [0,1). The i—th interval is written as (¢;—1,%;). For a given integer p we introduce the following finite
dimensional function space K};

K} ={f| f is a polynomial of degree < pon (¥;_1,¢;) i=1,2,...,N}.

Furthermore the following two kinds of finite dimensional function spaces SI*'** and 77" are defined;
For given integers p1,pe,c1{1 < ¢; <y ) and ¢3(0 < ¢z < ps2)

Sroet = {fIf € KB nH, £f(0) = f(1) = 0}, (15)

TP = [f|f € KP* N He). ' (16)

Here ¢; = 0 denotes that base functions are discontinuous on borders of intervals. The dimensions ny (
of the function space 53" ) and ny ( of the function spaces T.>***) are given by

nx=Mm+1)N-—ea(N-1)—2=(p, —c1 + )N +¢; — 2, (17)

ny ={p+ 1IN —ca(N-1)=(p; —cz + 1)N + ca. (18)

We should note that the term —2 in eq. (17) is concerned with the boundary condition.

We apply Ritz-Galerkin method and define the finite element subspace V), of the function space V as
Vi = (Sp)Mx 5 (TP)My je. X and Y in egs. (11) and (12) are expanded with S; € S7**°* and
T; € T in the forms '

X(0) =Y XiSi), Y() = Z Y. (19)

We can state the following theorem.

[THEOREM]

Vi described above is applied for the finite element subspace of the Ritz-Galerkin approrimation of the
linearized MHD operator. It is assumed that D is positive definite at almost everywhere in [0,1], that
det(D) is not zero at almost everywhere in [0,1], and that there exists Cf such that C¥.CH =1.
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The sufficient conditions to obtain the good approzimation property are
me2pm+tlaga+l, (a2lp2c20) (20)

Base functions which have been used in most of linearized MHD stability codes correspond to the
parameters p; = 1,p2 = 0,c; = 1 and ¢z = 0. In [9], it has been pointed out that the combination
of the Hermite functions of the third order and of the second order prevents spectrum pollution, i.e.
p1 = 3,p2 = 2,¢; = 3 and ¢g = 2. It has been proved by J.Rappaz in [8] that the sufficient condition for
the non-pollution property is py = p,p2 =p— 1,c1 = 1,¢2 = 0,p > 1. We note that all these conditions
satisfy the conditions (20).

5 Proof of the Theorem for the Good Approximation Property

In this section we shall prove the theorem described in the previous section.

In section 2 we introduced the eigenvalue problem of MHD equation in the bilinear form eq.(10):
a[Z, W) = Ab[Z,W). We here consider 4[Z, W} = Ab[Z, W] instead of a[Z, W] = \b[Z, W] where
@ =a+Aband A = A+ A, with a positive constant \,. If the constant ), is large enough, we can define
the linear bounded non-compact operator F:\,_l where FA;., = F 4+ A,. On the other hand, @ is the
positive and continuous bilinear form on V = (H} (0, a; d))M* x (L*(0, a; dy))M~, so that according to
the Lax-milgram theorem, there exists an unique operator T : V — V such that

&|TZ, W) =b[Z, W), forany Z,W € V. _ (21)

Indeed the operator T accords with the resolvent FA,\,_‘l. In the following, we consider the spectral
approximation of T'. . . )

The linear bounded operator T is the non-compact operator. Therefore, the approximation of T
has the difficulty associated with spectral pollution [10]. Descloux-Nassif-Rappaz [7] have verified the
mathematical conditions which ensure the efficiency of approximations of the spectrum for a non-compact
operator including the linearized MHD operator.

[THEOREM(Descloux-Nassif-Rappaz)] .
Let U be a Banach space with norm || [|. Let A be linear bounded operators in U. Then sufficient
conditions for the good approzimation properties are the following two conditions,

P2:Yu e U, lim 6(u,Us) =0,
h—s0

P3:lim sup d&(Au,U)=0. (22)
h—0
u € Uy
lell =1~

We apply this theorem to the operator T. Let V = (H(0,q;dy))™x x (L*(0,a;dy))M¥ and Vi, =
(SPreyMx x (TPr2)My where SP'°' and TF*** are the function spaces introduced in the previous
section. Then we shall verify that the conditions P2 and P3 are satisfied.

The property P2 is the basic property of the finite elements. We entrust the proof of P2 to text-
books [11]. It remains to verify the P3 property.

As an example Descloux-Nassif-Rappaz have referred to the two-dimensional linearized MHD eigen-
value problem with three components in [7]. We trace the way of the their proof of P3 property in our
case.
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We consider the region 2 = {|¢ € [0,1);Vv € CM¥, (v, D(¢)v) > 0,|D| # 0}. In 9, &[Z, W] which
is introduced in section 5 is coercive, so that according to the Lax-milgram theorem, there exists an
unique operator T : V — V such that '

a[TZ, W) = b{Z, W], for any Z, W € V. (23)
We supposed Vi = (SF0)Mx x (TP2°)My ¢ (HO)Mx x (H2)My  Z eV, Z = (X,Y)=TZ,ie.
a[Z, W] =b[Z,W]for any W € V. (24)
Setting IJ = 0 in eq.(24), we obtain
?:A}{‘-(B?-Y—cg-i('-A21-}'t), - (29)

where Ap2 = Az + A, B». Substituting this relation for ¥ into €q.(24) and setting V' = 0, we obtain
for any U € (Hg') My

-C[X,U] = f[U-Bl-X + U-{Agu‘fn—l Ay — (A + A,B)) + C)
o

—(Af Ay l.Co+ AR .CH.G)}. X ) (26)
+U{CF A An - A AT Cr+ O -CH — AR CH.G) X
~U'-CH Ay By Y —U-AN Ay ' B, Ydy

with
c{¢x,¢y]=[{¢;-G-¢'X+¢Y-A£‘I-cé”-c-¢3cd¢ | e

where C2 is the matrix satlsfymg 6'2 Cf=1andG=D-CH . A,,7"-C,. Hete G is positive definite
because D and B, are positive deﬁmte and the constant /\3 mcluded in A, is selected large enough.
Hence c[¢ x, ¢y ] is a continuous and coercive bilinear form on (H)Mx. We here introduce a function
w € (H§')M* and a function ¢ € (S’”"‘1 C’H)MY. Under the cimdition (20), ¢ € (Sﬂ""l’c“"'l)MY C
(SP1)YMv and @' € (TP**)Mv . Substituting X = w—G~".CH A22 "By¢andY = ¢ € (The2 )My
into éq.(26), we get

clw,U) = /Q[U-Bl-x +U (AL A" Ay — (A + A,B) +C — (A2 . 4,7 . CLY

—(Ag-(ff-G)’}-(w ~G'.CH. An "' By-¢)

+U'{CF A3 Ay ~ A Ay 0+ 0 - CF (28)
—-Afl-C:f-G}-(w - G_I'CfrAﬂzztl'Bz‘fﬁ)

-U'G-(G™'-Cf Ay By)-¢

~U-Afl-CH-G-(G™-C¥ A" Byy-¢)dy

for any U € (H§)M~. Then the right member dépenc_ls on ¢, but not on ¢'. We note that the mapping
V = (H{)Mx | Z 5 w is compact, so that there exists p € (SPYMx with ||p - W||(geymx < enll 2]l
where €, denotes a genetic sequence converging to zero. Since SP'*! satisfies the Nitsche-Schatz property
(see appendix I), there exists g € (S2"“")Mx with )|G~'-CH A, ™ By - q“(Hq)MX < chlldllgsreryoey ;
setting » = p + ¢, we have || X — Tllggeymx < er||Z]|- In order to approximate Y, we approximates X
in eq.(25) by r. Since Ty™* satisfies the Nitsche-Schatz property, there exists s € (TF**“*)Mv guch that
Y - 8l geayy < €nllZ]|. Setting g = (r,s) € Vi, we have ||Z — g|| < €]|Z]|, which proves the P1

property. Finally, we extend the region §) to [0,1] by analytic continuation. -
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6 Convergence Property

We here estimate the errors included in the energy integral a[Z,W]. It is assumed that the
coefficients are sufficiently smooth, i.e., the coefficients belong to HP2+1+1_1f the solution Z = (X,Y)
is sufficiently smooth, i.e., X € HPt*1Y € HP2, Galerkin approximations of the solution X, € Spe
and Y, € T>® satisfy the following relations

X = Xalls £ CNTPHIXpy 415 (29)

Y = Yallo < CNTP2FHY ||y, (30)

Here C is a constant and II. |l denotes the Sobolev’s norm of the order of {. The errors included in
the energy integral o[Z, W] is determined by the order of base functions of ¥ because of the condition
p1 > p2 + 1. When we select Z = (X,Y) itself as the trial function W = (U,V), the errors in the
eigenvalues scale as

lp—p"| < CNTHPatD), (31)

where p and g* denote the eigenvalue and the approximated one, respectively.
If the coefficients are not sufficiently smooth, however, the estimation (31) tends to

lu— p*| < CN~let), (32)

provided that the coefficients belong to H(a < 2(p; + 1) + 1) but not to H*+1.

7 Influence of the Numerical Integration

The integratidn in €q.(10) is numerically carried out by using the Gaussian quadrature formula over
each element. We shall select Z itself as the trial function W. If the polynomials of degree p are employed
as the base functions of X in eq.(10) and the condition (20) is satisfied, the highest degree which appears
in the integrand in eq.(10} is 2p. It is not required that every polynomial which appears be integrated
exactly. According to the theory of the finite element method, the condition for the converge of the
calculated lowest eigenvalue is that the quadrature formula should be correct at least through degree
2(p—1) in the present problem. If we use the g(> p)-point quadrature formula, every polynomial must be
integrated exactly. Then it is found by the minimax principle that the lowest eigenvalue is approximated
from above. But if we employ the just ‘p-point quadrature formula, the term of the highest. order is not
estimated correctly. Although the convergence of the calculated lowest eigenvalue is ensured, the lowest
eigenvalue is no longer approximated from above. Whether the eigenvalue is approximated from above
or from below will depend on the situation.

It is reported that the lowest eigenvalue is approximated from below in most calculations of ERATO
code and TERPSICHORE code [14]. This will be caused by the fact that the quadrature formula which
can not integrate exactly the polynomials is applied in ERATO code and TERPSICHORE code.

8 Nurﬂerical Example

In order to show the applicability of the present scheme, we applied it to the eigenvalue problem of the
cylindrical uniform plasma bounded by a conducting shell. We consider the only one Fourier component
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with the dependence of exp{i(nz + m#6)]. Equations (11} and (12) reduce to the following quadratic form

1

2
B? 4 7w —:—f} -Qz%;’ﬂ —ypF X!
2 r
az,2)= | (X X%, 7) PR - 0 Xl ar
LT r52 _ 2-§7ng _21’1’.-89 n? + gra:_ + 1BEG"’ nyBGF Y
~ypF 0 ik TpF? Y
0
(33)
1 2 2
X Y,
bZ,2]) = ,\/0 {(—+ r(B—g + B*Y?)}dr (34)

where F = 28 4+ nB, G= =B _ 5B,
We shall examine that the coefficients in {33) satisfy the conditions for coefficients in present theorem
(see section 4).
D=B*++4p>0 allmost everwhere in [0, 1]

We determine the equilibrium by giving two profile functions, ie., the pressure p(r) and the safety
factor ¢(r). Here we consider the case that profile functions are taken as

plr) = p(O)(1 — 72), (35)
a(r) = qO)(1 + or), = % 1 (36)

where the parameters are p(0) = 0.1,¢(0) = 1/6 and ¢(1) = 2/13. Hereafter we deal with only the case
that m = 2 and n = 1. This equilibrium is chosen so that the following three spectra — the Alfvén
continuum, the slow continuum, the Sturmian discrete spectrum of fast waves which clusters at the
infinity — do not overlap. The schematic picture of these spectra is shown in Fig.1 [12].

eigen value

Slow Alfven Fast

| m—— | Continuum

s=rer Sturmian Discrete Spectrum

wwnlpfemm  Clusterpoint

Figure 1: Schematic picture of the spectrum.

First the non-pollution property of the present method is examined. The number of the point of the
Gaussian quadrature formula is fixed for ¢ = p+ 1. When we fix the parameter p, = 2, we can take the
four kinds of combinations of base functions under the condition (20);

3] m=2,ps =0, =1, =0,
[b] p=2,pa=1,¢;=1,¢;=0,
€l m=2,pp=1,e1 =1L ez =1,
dl pp=2,pp=1,6=2,62=1.
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Figures 2 and 3 show the numerically calculated spectrum for the cases [b] and [d] versus the number of
intervals. From figures 2 and 3, we can see two eigenvalues of fast waves, as well as the spectra associated
with the continua of the Alfvén waves and the slow waves. Figures shows that the spectral pollution
does not occur. Similar results are obtained for the cases [a] and [¢].

Next, we investigate the convergence property. The results of the numerical convergence are shown in
Fig.6 for the minimum Sturmian discrete eigenvalue. The logarithm of numerical errors versus log,o N -1
is presented. In Fig.6 [a], the parameters are chosen as py = p,pp = p—l,aa=land 2 =0 for a
integer p(= 1,2,3). The line with the symbols o represents the case (; = Lpr = 0,61 = Lz = 0),
while the line with the symbols O and o represent the case (1 = 2,p2 = l,¢; = 1,¢2 = 0) and
(p1 = 3,p2 = 2,¢1 = 1,6, = 0), respectively. The inclinations of these convergence curves are about
2(ps + 1). In Fig.4 [b] the parameters are selected as p» = p,p2 = p—L,c1 = 2 and ¢z = 1. The
line with the symbols o represents the case (p; = 2,p» = l,¢; = 2,¢2 = 1) and the line with the
symbols O represents the case (p1 = 3,p2 = 2,61 = 2,¢2 = 1). The inclinations of these convergence
curves are also about 2(p2 + 1). In both cases the numerical errors are in agreement with analytical one
A = A% = O(N-2(m+D))

Thirdly, we discuss the influence of the numerical integration. In the equilibrium considered above,
the lowest eigenvalue belongs to the continuum, so that it is difficult to discuss about the convergence
of the lowest eigenvalue. Hence we consider the other equilibrium characterized by the following profile
functions

(r® = 1){¢'(1) — q(1) + q(0))(1 — ys)
(r? — y,)

where y, = (¢' (1} ~¢(1)+q(0))/(¢' (0)+¢'(1}—2(g(1)—q(0))) and the parameters are p(0) = 0.0015,4(0) =
1.45,¢(1) = 1.65,¢’(0) = 0.2 and ¢'(1} = 0.2. When we select the Fourier modes as m = 3 and n = -2,
the interchange mode becomes unstable. Figure 5 shows the numerically calculated eigenvalue versus
N~—%, The parameters associated with base functions are chosen as p; = 2,p2 = 1,y = 2 and ¢; = 1.
The symbol o represents the numerically calculated eigenvalues in the case of using two point quadrature
formula, while the symbol O in the case of using three point formula. We note that in this case the
eigenvalue is approximated from below under the influence of the quadrature formula which can not

p(r) = p(0)(1 = r?)?, q(r) = ¢(0) +r(g(1) — (0) +

) (37)

integrate exactly the polynomials.
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Figure 2: The numerically calculated spectrum in case of the cylinder model by using the present method
as a function of the number of intervals N. The parameters are p; = 2,p2 = 1,¢; = 1,c; =0 and ¢ = 3.
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Figure 3: The numerically calculated spectrum in case of the cylinder model by using the present method
as a function of the number of intervals N. The parameters are p; = 2,p3 =1, = 2,c2 = 1 and ¢ = 3.

—113—



[a] O:p=1 O:p=2 O ip=3 [b] O!P=2 D:p=3
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Figure 4: Numerical convergence for the minimum discrete eigenvalue in the cylinder model. In [a],
pl=P,P2=P—1,01:1152=an=P+1={°:P=1},{DC p=2}:{<>: P=3}- In[b]1
m=pp=p-la=2c=1l¢=p+},{c:p=2},{0:p=3}
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Figure 5: The numerically calculated eigenvalue of the interchange mode as a function of the number of
intervals N~¢. The symbols o(O) represent the case of using two(three) point quadrature formula. The
parameters associated with base functions are py = 2,p2 =L, =2and ez = 1.
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9 Conclusion

In this paper we have discussed a scheme to calculate the spectrum of the linearized MHD equations
with higher accuracy. In the present method, 2-D (or 3-D) stability problem is reduced to 1-D multi-
variable problem by using the Fourier expansions with respect to poloidal and toroidal angles. Then
the finite element method is applied to the minor radius direction. The two kinds of spline functions
are employed as the base functions of Ritz-Galerkin approximation; the sufficient conditions (20) for the
spline functions to obtain the good approximation property is presented. In most actual calculations
the integral can not be carried out exactly because the equiliblium is given numerically. The present
method makes use of the Gaussian quadrature formula to evaluate the integral over each elements. The
influence of the numerical integration upon the convergence of calculated eigenvalues is discussed.

As an example the present method is applied to the eigenvalue problem of the cylindrical plasma. The
good approximation has been obtained, i.e., the spectral pollution is not observed and the numerical
errors in the discrete eigenvalues are in agreement with analytical one :|A — A*| = O(N~2(Pz+1)), The
eigenvalue of the interchange mode is approximated from below when we use the quadrature formula
which can not integrate exactly the base functions. This is a typical example that the calculated lowest
eigenvalues is approximated from below under the influence of the numerical integration.
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Stability analysis of a hollow electron
column in a sheared magnetic field
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Department of Quantum Engineering and Systems Science,
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Abstract

- Stability of the diocotron modes of a hollow cylindrical electron cloud in a sheared
magnetic field is analytically investigated. For the first step of the stability analysis, we
analyze electrostatic behavior of an electron column. It is found that, under the elec-

trostatic limitation, the azimuthal magnetic field makes the electron column unstable.

Key Words: non-neutral plasma, diocotron instability, magnetic shear

1 Introduction

Proto-RT (Prototype Ring Trap) is a new-type toroidal device for non-neutral plasma confine-
ment[l]. In this device, the magnetic field is produced by the internal ring, six toroidal coils,
and two vertical field coils. The ultimate purpose of this experiméntal device is to investigate the
possibility of high-g plasma confinement due to the hydrodynamic pressure of the E x B flow{2].

One of the most common instabilities of non-neutral plasmas is the diocotron instability[3]. It
is known that[4] two surface waves on the both sides of a non-neutral plasma sheet interact with
each other thirough the electrostatic field and the consequent E x B drift of charged particles,
and this interaction causes the two surface waves to grow, which results in instability. In the
cylindrical geometry, it is also known that hollow density profiles tend to be unstable[3,5-7].
Proto-RT provides hollow electron plasmas surrounding the internal ring, therefore the diocotron
modes can be potentially unstable. . .

Fortunately, Proto-RT has a sheared magnetic field, because the poloidal magnetic field de-
creases as the distance from the internal ring increases but the toroidal magnetic field is almost
uniform around the plasma region. Such a magnetic shear has been shown(8] to have a stabilizing
effect on the diocotron instability for the special case that electrons form a relativistic beam and
the azimuthal magnetic field is much weaker than the axial magnetic field. However, effects of the
magnetic shear are still unknown for general cases including the case of Proto-RT, where electrons
are non-relativistic.

The purpose of this research is to analytically investigate the effect of the magnetic shear on

the diocotron instability especially for the case of Proto-RT. For the first step of the analysis,
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we electrostatically examine how the hollow electron column behaves if we apply the poloidal
magnetic field as well as the toroidal magnetic field.

The analysis reported in this paper is an extention of two previous articles on the diocotron
instability[3, 5], which consider hollow electron plasmas in the uniform axial magnetic field. We

add the poloidal magnetic field to the two previous analyses.

2 Assumed configuration

r  Electron column We assume a hollow cylindrical elec-

" Rotating tron plasma as shown in F ig.1. We con-
0 { Ay sider the limit of the infinite aspect ratio
\
/ I; HER Z (R/a — o), thus any toroidal effects
H—

e II ) ]
M Boe —_— :\\e y are neglected. The toroidal magnetic

field B, is assumed to be uniform and

straight in the z-direction, and there is

Figure 1 : The assumed hollow electron plasma. a linear line current at the center of ax-

isymmetry, which provides the azimu-

thal (poloidal) magnetic field given by

BB — JUOIZ ) A . o . (1)

2ar’
where I, is the linear line current at the axis of symmetry and r is the distance from it.
, ‘The electron column is assumed to he
— 0 ~ density profile . infinitely long in the z-direction. The
ne(r) P . .
N density profile is assumed to be rect-

conducting wall ) o ]
= angular in the r-direction as shown in

Ne|————n
N ‘ - Fig.2. The radii of the inner and outer
plasma surfaces are defined as Ry and
R, respectively, and it is assumed that

a conducting wall is placed at r = R,.

0 R R R ~I The electron density on the flat top is
0 p e assumed to be T, and no background
Figure 2 : The assumed rectangular density profile.  jons and neutral particles are assumed.

3 Fluid equations and equilibria
The fluid equations for non-neutral electron plasmas are

' dA
%v—i-(v-v)v:—%(—vﬁ—g"‘UXB)a : 2)
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Yy + V- (n.w) =0, (3)
2, €Me
V ¢' - £0 ? (4)
A

where v is the fluid velocity, n. is the density of particles, ¢ is the electrostatic potential, —e and
m are the charge and the mass of an electron, respectively. The pressure term V- P /(mn) has
been neglected in Eq.(2), because we assume a cold plasma.

Under the assumed steady state described in Sec. 2, the r-component of Eq.(2) is identical to

- m_:é = —e(E, + vgB, — v.By), (6)
and Eq.(4) can be written as
0 (0 <1< Ry)

0 (R, <7 < R.)

in the cylindrical polar coodinates. Integrating Eq.(7) gives

(0 (0 <r < Ry)
€Tl R2 :
E,=—-%5:i=<-_2so(r_7) (Rosr<h) (8)
| (R -E) (By<r<R)

Substituting Eq.(8) and v - B = 0,-which can be expected since the'E-x-B flow is perpendicular

to B, into Eq.(6), we obtain a quadratic equation for the angular velocity we = vg/r as follows:

Ja(r) + B (1 - T&f) — (Rewelr) = 20u) =0 (RoS7 <Ry, (9)

where wpe =1/ €*7, /egm is the electron plasma frequency, and Qqp(r)=eBy(r)/m and Q.. =eB, /m

are the f-component and the z-component of the cyclotron frequency, respectively. The solutions

to Eq.(9) are ‘
Q a? 2wl r*(r? — R2) 7
+ _ ez pe (1]
Wa (T) = 2 (1 + 1"_2) {1 + [1 - QEI(T2 n a2) } y (10)

where a is a constant defined by

kol Qeo(r)
“orB, | O, -

a
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Under the condition wpe < {2.:, the low-frequency mode wg in Eq.(10) can be approximated by

(12)

where w, = wf,e/ZQez 15 called the diocotron frequency. Equation (12} gives the equilibrium
rotation frequency profile. Note that in the limit a — 0, Eq.(12) is identical to Eq.(2.10.17) in
Ref.[3].

4 Stability énalysis

4.1 Equation for perturbed electrostatic potential

Now we consider stability of the equilibrium state derived in Sec. 3. All perturbed values ¥(r, t)

are decomposed into equilibrium values ¥°(r) and variations §¥(r,¢) from them:
¥ =00+ 480, (13)
Then the fluid equations Eq.(2)-(4) are linearized as

3
é—féne + V. [ngéve + 6ne(vgaefg + vgzez)] =0, (14)

5 |
5780 + [(veoes + v5e:) - V]dve + (bve - V)[useq + v}, ;]

=— {VM) + 36A bve x (Bpeg + Ble,) — (vleq + 3 e,) x 53} (15)

€

V- | Vég(z,t) + —géA = 16 ‘ (16)
* at Pk

where we neglect 8(6A)/8t and §B in order to analyze electrostatically. Furthermore, we Fourier-
decompose. all .the.perturbation terms §¥ as

6U(r,0,z,t) = Z Z §WH(r, k, )exp[z(w + k.2 — wt)]. (17)

I——oo k:=-o0

Then some partial derivative operators and all the perturbed quantities can be replaced as follows:

a d a . !
— - =i _—— - . : 18
vl A ik, 30 i, & — 6 (18)
Equation (15) can be expressed as
e 06
(('9 — lwe — k,v2)) Q.. — 2w —§0 5,0‘:3? EF’?_
1 , 75 4
;é—(rvga) — Q.. —t{w — lwe — k,0],) 0 bvky | = e ilbg
e m T
e 4 0, 0 —ifw — lwe — k,20) |\ Sve. £ ik, 64"
ar ] s - .
(19)
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Making use of Egs. (16) and (19), we eliminate v’ and én! in favor of é¢'. Then we obtain the

equation for the perturbed electrostatic potential:

Ov,
10 [( e 6¢ 2L whe I_Qe"(a +Q”) 6
ror [\ 0 Rl L TR P
el Whe V2 + Qe (80207 + Qep) 56
(w — lwe — k,v?)? V2
k, 80/ 07 54! Qeok, whe\ 864
w — lwe — k10 w — lwe — kv - or
_ l I 1 3 wpe Qeak l'-’-"13e ]. 8
o r6¢ w— lwe — k00 {3 [ (=S + 2we)] (w— lwe — k,v9)208 | T T or 7y (Twe) — Qe
(= Qe + 2we)kwhe {002 A | |
+ (w — lwe — k,v0)1k ( ar T e | 1 (20)

where v2(r) is the determinant of the matrix in the left-hand side of Eq.(19), which is given by

2 042 18, , 3”2
Vi) = (w — lwe — kov))* + (Qe; — 2we) ;—é—;(r we) — $2ez| — oo o e0 | - (21)

Here we make further assumptions for simplicity as follows:

whe(r) < Q2 (22)
w;e(r) < Qg _ - (23)
k, =0, . (24)
|w — lwe(r)]? <« Q2,, (25)
|w — lwe(r)]? <« S, ' (26)
we(r) =we(r) , | (27)
dv?
oz 28
ar ( )
Undér the assumptions above, Eq.(20) is reduced to
' 2 2 : 2.0,
ror  (w — lwe)? 2, + 92 2 w — lwe Or \ Q% + 02,

Substituting = r/Ry, Eq.(12), and the assumed rectangular density profile (Fig.2) into Eq.(29)

gives

: 2

é% (;,;Jixw) - .3%&;5‘ =0 (0<z<l or z,<z< 1) (30)
& 2 .

S(@r6g) — {( Z+ iy '55} (z76¢) =0 (I <z <zp), (31)
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where ¥ = Q2. /Ghe, o = wfw, =1, B = (I*-1/4)/’, v = 2al/Ry, z, = R,/Ry, and
. = R./Ro are dimensionless parameters. These are the reduced equations for the perturbed

electrostatic potential.

4.2 Dispersion relation

While Eq.(30} can be analytically solved as

e (1)

‘ C
I 6¢' = Br' + =, | 32
INEEE SR IN 7 (#2)
(‘q)e B Conducting where B and C are arbitrary constants, solutions to
/ Wall Eq.(31) are unknown. However, we can make use of the
"
/ Wentzel-Kramers-Brillonin (WKB) method on Eq.(31),
// .r if v >»> 1. Then an approximate solution to Eq.(31) is
0 R R R given by

(x=0 1 X Xc) - z26¢' ~ P(z)7%(B' expl(int) + C" exp(—ik7)), (33)

Figure 3 : The assumed density profile 2 :
- P(z) = J s 34
and regions I, I1, and IIL, @ =Nz (39
T(.’E)=/ P(:c)%d:c. (35)

o 3

We have to connect Eqgs. (32) and (33) atz =1 and T = :1:P under certain boundary conditions.

Boundary conditions for Eq.(32) are
§¢'(0) < oo, ' (36)
5¢'(zc) =0, I ¢ 19

and that 6¢' is continuous at z = 1 and z = x,, i.e. Eqs. (32) and (33) have the same values at

=1 and r = z,. Under these boundary conditions, Egs.(32) and (33) become

[ 8¢, = gl (1)t (0<z<1)
5t = by = (z2P(z))"%[B exp(irt) + C'exp(—irt)] (1 <z <z,) _ (38)
! ! x! ; Iﬂ
$1p = 5‘?511(5%):52—;_?_; (113 - m—c‘) : (xp <z < x,)
. P € - R

where I, II, and III are the names of the regions as shown in Fig.3. Furthermore, there are jump
conditions of d6¢'/dz at = 1 and = = x,. Multiplying Eq.(29) by r, integrating from Ry — £ to
Ry + £, and taking the limit & —'0 give

L

— 39
1+ 6%’ (39)

d d Wp
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where b = a/Ry. Note that

dw ‘ S
dfe = Wpe(6(r — Ro) — 6(r — R;)). (40)
In the same way, multiplying Eq.(29) by r, integrating frem R, — ¢ to R, +¢, and taking the limit
g — 0 give : :
d .. ood 2upz8¢1r(x,)
e N_ 2 - _ 11
[dm S9mn(=7) dx5¢II(Ip)] (W — lwe(zy)) (@2 + b7) ()
Substituting Eq.(38) into Eqs.(39) and (41), we obtain
Al Al B _ 0 , (42)
Ay A C’ 0
where
_ 1 P(1) . 2we .
Ay = e S 7 T P B : 43
11 = exp(ik7(1)) {2 + aP(1) + T+ kP(1) } , (43)
_ 1 P'(1) 2lwp ) L
Ay = exp(—ikT(1)) { = + et [ ———2__ 1 ixP(1 44
i = oxp(inr(1)) {3+ s 1 e+ kP (14)

24+ 22 1 2 P'(z,) wpa? .
_ ) i p c L j o p/ P — 3 P F 5
Ag1 = exp(s7(Zp)) { :1:12,’ — 22 + 9 + P(z,) (w— lwe(:r:p))(-’rg + b?) iz P(zy) } ’ 42)

o+ 1 g, P'(x,) 2dwpz? .
Ago = —1 2 < 4 - P LA P Note o od 7. (46
22 = exp(—ikT(z,)) { po + 2 + Plz,) o o) (7 + 5 + KT, (Ip)z} (46)

In order for Eq.(42) to have non-trivial solutions for B’ and C’, the following is required:
'detA,-J- = A11A22 - A12A21 = 0, (47)
which is identical to

exp(r7)( A1+ £Q(1)}) (42 — 52, Q(z;)?) — exp(—rT)(A; - KQ(L)F)(A2 + 52,Q(z,)}) =0, (48)

where
Q=) = —P(z) (49)
1 Q1) 2
A=t ——"+—- 57— 30
=3t on T T (50)
tp
1 z,Q(z,) z¥+z 2zl
A, = = 4 P P ! P — p . 51
TRl T T T 13- )

Equation (48) is the dispersion relation.

— 122 —



4.3 Stability

Now we can analyze stability of the hollow electron column assumed in Sec. 2. Although we
derived the dispersion relation Eq.(48) in the previous subsection, we make use of the equation
for the perturbed electrostatic potential Eq.(31) directly and do not use the dispersion relation
Eq.(48), because we cannot discuss about the limit By — 0 using Eq.(48). It is a violation of the
condition kv 3> 1 to take the limit By &< v — 0 in Eq.(48).

Using the boundary-conditions described in Sec. 4.2, i.e. Egs.(36), (37), (39), and (41); we
numerically calculate the eigenvalues w for the characteristic equation given by Eq.(31). The
numerical scheme we adopt is a combination of the Newton method and the fourth-order Runge-
Kutta method. The Newton method is used to determine w, and the Runge-Kutta method is used

to solve the differential equation (31).

F igure 4 shows an example of the obtained eigenvalues normalized by wy plotted as a function
of a/Ry x By. Here n, = 10"?m™3, B, = 300G, k = 294.4, | = 2, zp = 1.3, and z, = 1.5. In the

toroidal geometry, the quantity a/R; can be expressed as

a [
_ = 32
RQ 27 A’ ( )

where ¢ is the rotational transform, and A is the aspect ratio of the toroidal plasma. The real

part of w is the frequency of the diocotron mode, which is on the order wy, and the imaginary

| 1=2, xp=1.3, x.=1.5
100

100 Re (w/w,)
wjw, 1| 1

Im (w/w,)

0.01 - : : :
10° 10* 10° 10% 10
a/Ry(= /21 A)

Figure 4 : The eigenvalues as functions of By.
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1=2 , x,=7.0, x=10.0
1.001115

1.001114

Rl @ 1.001113
e(E)T;))Loonlz

1.001111
1.001110

6106

Im(%b )

0 2 4 6 8 10
X1
a/Ro(= ¢/27A) 0

Figure 5 - The eigenvalues as functions of :Bg

part corresponds to the growth rate. As we can see from Fig.4, the imaginary part of w, i.e. the
growth rate, increases as the rotational transform of the magnetic field increases. In this case,
therefore, the poloidal magnetic field By makes the diocotron made unstable in the electrostatic
territory. o

Another example of the eigenvalues is shown in Fig. 5. The parameters are & = 294.4, [ =
2, z, = 7.0, and z, = 10.0. The first figure in Fig. 5 expresses the real part of w, which
is the frequency, and the second one expresses the imaginary part, which is the growth rate.
The transverse axis is +/27A again. In this case, the diocotron mode is stable in the limit of
t = 0. However, a very small rotational transform makes the diocotron mode unstable, since the
imaginary part becomes non-zero. Therefore, also in this case, the poloidal magnetic field makes
the diocotron mode unstable. ' |

From these two examples (Figs. 4 and 5), we can conclude that the diocotron mode tends to
become unstable because of the poloidal magnetic field in the electrostatic territory. We do not
know the physical reason why the diocotron mode becomes unstable if the poloidal magnetic field
is applied. Note that we have ignored some important effects such as the electromagnetic effects,
the existence of the inner conductor|5], the wave propagation in the z-direction k., etc. We have

to consider these effects to know more practical behavior of the hollow electron column.
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5 Summary

We have analyzed stability charactaristics of a hollow electron plasma placed in a sheared mag-
netic field. The magnetic field is a combination of the axial uniform magnetic field (i.e. the
toroidal magnetic field) and the azimuthal magnetic field (i.e. the poloidal magnetic field) pro-
duced by a linear line current at the center of axisymmetry. We have determined the equilibrium
state, linearized the fluid equations, derived the dispersion relation, and calculated the complex
eigenfrequencies electrostatically. We have obtained the results that, in the electrostatic territory,
the hollow electron column tends to become unstable due to the poloidal magnetic field.

The author would like to thank Professor Zensho Yoshida, Professor Yuichi Ogawa, and Dr.

Haruhiko Himura for their useful discussions and suggestions.
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Abstract

There are two cases that Mercier criterion for localized interchange modes in stellarators
is useless in ideal MHD plasma. One case is non-resonant pressure-driven instabilities with
low mode numbers which become unstable even if the mode resonant surface does not, exist
inside the plasma column. The other case is interchange instabilities when the pressure
gradient vanishes at the mode resonant surface due to small magnetic islands and so on.
If the pressure becomes flat in a narrow region around the mode resonant surface, low
mode number instabilities are suppressed and the beta limit at the particular resonant
surface increases. Also radial mode structure at nearly marginal beta changes significantly.
Properties of the resonant and non-resonant modes are clarified with a cylindrical plasma
model for a low shear stellarator with a magnetic hill,

Key Words: ideal MHD, straight helical configuration, Mercier criterion, non-resonant
instability

1 Introduction

While Mercier criterion is used for investigating interchange instabilities in tokamaks (1] and
stellarators [2], there exist some cases for which the criterion does not predict the correct beta
limit within the ideal MHD model. For deriving the Mercier criterion it is assumed that the -
unstable mode is radially localized near the mode resonant surface. However, this situation
does not occur when the pressure gradient becomes locally flat at the mode resonant surface.
Details of pressure profile effects on the interchange modes will be shown in this paper with-
use of a cylindrical plasma model for a low shear stellarator with a magnetic hill.

In order to destabilize the interchange mode, the resonant surface is not always neces-
sary. It is reasonable that in a low shear region, non-resonant modes approximately satis-
fying the resonant condition can be destabilized. First non-resonant resistive modes were
demonstrated for a Heliotron-E plasma with a highly peaked pressure profile [3]. Recently
ideal non-resonant modes were shown unstable in the central region of Heliotron-E, which
seems consistent with the m = 2/n = 1 mode triggering the sawtooth [4). Non-resonant
modes usually have global mode structures, which requires numerical analysis to clarify the
property. We have studied the details of ideal non-resonant instabilities in the cylindrical
configuration. )

In section 2, we derive an eigenvalue equation for studying linear interchange modes in
stellarators, which is derived from the reduced MHD equations [5]. In section 3, we first,
solve the eigenvalue equation analytically in the low shear limit, and discuss about the non-
resonant mode. Next we solve the same eigenvalue eguation numerically for a finite shear
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case. In section 4 we show examples to clarify various properties for the resonant and non-
resonant modes with standard pressure profiles. In section 5, we concentrate on the effect
of the pressure flattening on the mode structures and the beta limits. Finally in section 6,
we summarize the obtained results and give a physical mterpretatlou for the behavior of
non-resonant modes.

2 Eigenmode equations

For apalyzing pressure-driven instabilities in stellarators, we use the ideal reduced MHD
equations [5]. We will neglect the toroidal effect in the reduced MHD equations. In this
case the equilibrium quantities do not depend on the poloidal angle #. 'This assumption
corresponds to the situation that the average flux surfaces have circular cross section in the
large aspect ratio limit. Then the rotational transform is written as
= HRo dio
ur) = rBy dr’ (1)

where the equilibrinm poleidal lux function is given by i(r). Since the correction due to the
diamagnetic current becomes higher order, the rotational transform in this approximation
includes only the vacuum helical field contribution.

After the appropriate normalization, the linearized reduced MHD equations in the cylin-
drical approximation can be written as

¥(Viuw) = — 202 0 — o) ] — %—u, @)

where D, and the averaged helical curvature §2 are expressed as

p.=-2ya, ®)

Q=N (r2c + Z[N dr). (4)

Here € = a/Ro denotes the inverse aspect ratio, 8¢ = 2uopo(r = 0)/ B3 the central plasma
beta value, N the toroidal period number of the helical field, respectively. Also all perturbed
quantities are assumed to be proportional to exp[yt — i{m#& + n()], where m(n) denotes the
poloidal{toroidal) mode number. Here and after, the prime denotes the derivative with
respect to the normalized minor radius r. The perpendicular Laplacian operator in eq. (2)

is shown as )
2 1df dy_m°
Vi= rdr (Tdr re’ (5)

Thus the O.D.E. (2) for the stream function u with the mode number (m,n) is written as

d*u [1 2’ (n — me) ] du

dr? ;_72+(n—mt)2 dr

2 ! " Ds 2
R |

Here the boundary condition at the plasma surface r = 1 is u = 0 under the fixed boundary
condition. At r = ( we impose the boundary condition » = 0 from the regularity of the
solution. With these boundary conditions we can set up an eigenvalue problem for the
eigenvalue or growth rate % and the corresponding eigenfunction u.

3 Analytic solution of Eigenmode Equation

In this section we assume ¢ =0 for obtaining an analytic solution, then eq. (6) is written as
g

2 2 '
dz  1due m D, )—-l}u=0. )

it ¥+ (n—mu)?
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For the parabolic pressure profile, p = po(1 — 72), the analytic solution is readily obtained
with the transformation 7 = {ﬁ,'mz/{",'2 + (n — me)?]}?r, where D, = 4By Nu. From the
solution % o< Jm (#) for the {(m,n) mode and the boundary condition u = 0 at r = 1, the
growth rate is written as
72
T = gy — (- ®)
where Z(m, k) is the kth zero point of the mth order Bessel function of the first kind Ji (7).
It is noted that, since there is no resonant surface for mode (m,n) in the plasma column,
the unstable mode has a global structure without localizing in the radial direction unlike
the resonant mode. Further we notice that, when there is no magnetic shear, the radial
mode structure, J..{Z(m, k)r), is not affected by the beta value. The more unstable mode
has the less node number, and the eigenvalue is discrete with respect to k for the specified
(w2, m), which is also shown in the case of ¢’ # 0 in the Appendix. Sinee the LHS of eq. (8)
is proportional to 2 and the RHS is linear with respect to the plasma beta, the relation
(8) becomes parabolic in the (8, ) space. Thus a small variation in Jy from the marginal
equilibrivm may cause an abrupt increase of growth rate.
The beta limit for stability is obtained by substituting 4* = 0 into eq. {8), which yields

Z2(m, k}(n — me .
floc = 2L RN R Z 1) ©)

In order to examine the beta limit of the higher harmonic modes with the same helicity, we
use the transformation of the variables (m, n) — I(m, n), which yields

B = Z% (b, k) (n — )
0c 4Nvm? '

(10)

Since Z(Im, k) > Z{(m, k) for | > 2, the beta limit of the higher harmonic mode, 8. is higher
than the I = 1 case, Jo.. This is different from the resonant modes with the same helicity,
which give the same beta limit from the Suydam criterion [6].

4 Resonant and non-resonant eigenmode for stan-
dard pressure profiles

We have solved eq. (6) numerically by the shooting method using the fourth order Runge-
Kutta formula. At first we picked up the same eigenvalue problem as shown in section 3
in order to validate the numerical code. The obtained growth rates for the (m,n) = (2,1)
mode coincide well with the analytic solution, eq. (8), and the radial mode structures are
described by the Bessel function J2(7) seems to be unchanged by the variation of fp. Since
it is shown that the more unstable mode has the less node number with the specified (m,n)
(see Appendix), we have concentrated on the most unstable mode without node.

Next we have investigated the effect of the magnetic shear on the non-resonant modes
assuming the standard parabolic pressure profile. For the assumed rotational transform
profile, + = .51 + or?, ¢ is changed from 0.05 to 2.0. The rotational transform profile
in the case of ¢ = 1.69 is approximately coincides with that in Heliotron-E. When the
beta value is fixed, the growth rate of the non-resonant (2,1) mode is decreased as the
magnetic shear intensity o increased. Thus the beta limit is increased almost linearly with
the increase of & as shown in Fig. 1. The mode structure is shifted to inner region when
o is increased (see Fig. 1). This result can be interpreted in the following way. When o is
increased, the stabilizing effect is enhanced in the outer region, and the radial mode structure
is shifted to the inner weak shear region at the same fp. Also when fp is decreased, since
the destabilizing effect due to the plasma pressure gradient becomes weak, the non-resonant
mode can be excited only in the inner region. However, since there is no resonant surface, the
radial mode structure is not highly localized and still has a global structure. The behavior
of the growth rate near the marginal beta value for the non-resonant mode is different from
that for the resonant mode as shown in Fig. 2. The growth rate of the non-resonant mode
decreases suddenly to zero at Bo 2 Boc, where Poc is the beta limit for the non-resonant
{(2,1) mode.
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Figure 1: (a) Dependence of the beta limit on the magnetic shear parameter ¢ for the non-
(b) Radial mode structures in case of ¢
parabolic pressure profile with Sy = 0.03.

resonant (2,1) mode.

= 0.05, 0.5, and 2.0 for the

Here we study transition from the resonant mode to the non-resonant one. For current-
less plasmas in Heliotron-E, MHD equilibria show that the central rotational transform is
increased with the increase of beta value. When the vacuum rotational transform at the
plasma center is lower than 0.5, the resonant surface for the (2,1) mode exists inside the
plasma column. The resonant mode may not be excited due to the low beta value at the
initial state. Experimental results show that the (2, 1) mode becomes unstable for 8 2 0.7%
in the neutral beam heating plasma, which leads to the occurrence of sawtooth. However,
when the ECRH is applied to the central region and the pressure profile becomes more
peaked, the (2, 1) mode is stabilized. These data could be understood with disappearance
of the + = 0.5 surface according to the increase of the central beta value. Linear stability of
the ideal (2,1) mode in the toroidal geometry shows that the resonant mode appears first,
then it changes to the non-resonant mode with the increase of 3. Finally the non-resonant
mode becomes stable, when ¢(0) is deviated far from 0.5 [4].

In the cylindrical model we simulate the above situation by changing the central value
of the rotational transform artificially. Numerical results for both the resonant and non-
resonant modes are shown in Fig. 2. Our aim is not to explain the experiment exactly,
but to study the behavior of the non-resonant instabilities. Therefore we mainly consider a
weak shear configuration where the resonant mode is hard to be excited. For clarifying the
property of the non-resonant mode, we first consider a weak shear configuration with the
resonant surface for the (2,1) mode in the plasma column. Then we exclude the resonant
surface of + = 0.5 by increasing ¢(0). Figure 2 shows the numerical results for the parabolic
pressure profile. White squares correspond to the growth rate for the equilibria with ro-
tational transform profile, » = 0.499 + 0.2r®, which has the resonant surface for the (2,1)
mode at the normalized radius r ~ 0.07. Black squares correspond to the growth rate for
the equilibria with ¢ = 0.501 ++ 0.2r%, which has no resonant surface for the (2, 1) mode. The
beta limit in the resenant case seems to be 1.15 x 107% or less, while in non-resonant case
it seems to be 2.51 x 10™*. The difference between these beta limits comes from the role of
resonant surface. In the small growth rate regime, when 8y becomes small, the radial mode
structure of the resonant mode becomes more localized. Thus the highly localized mode
with an extremely small growth rate is possible as shown in Fig. 2(b). Thus, in the gy
space the line showing the growth rate for the resonant case extends to the low beta side.
On the contrary, since the non-resonant mode cannot be localized at a particular surface,
the growth rate abruptly decreascs to zero with the decrease of 5y. The dependence of the
growth rate on By is nearly parabolic as mentioned for the shearless case in the previous
section.
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Figure 2: (a) Dependence of the growth rate of (2,1) mode on the central beta value By in
case of parabolic pressure profile. Squares denote numerical results. The white ones correspond
to the resonant case and the black ones to the non-resonant case. (b) Radial mode structures
corresponding to the resonant (o = 1.25x107%), and to the non-resonant case (fo = 2.51x107%).

We may apply the Suydam criterion for resonant modes, which can be derived from the
indicial equation of eq. {6) at the singular point, or the resonant surface. It is written as
D, 1
7 <7 (11)
for stability, where D, and ¢/ are evaluated at the resonant surface, ¥ = r, for the corre-
sponding mode. In the case of Fig. 2, the resonant surface of the (m,n) = (2,1) mode is
t+ == 0.07. Thus the beta limit obtained from the criterion (11) is fo = 1.05 x 10™*. Gener-
ally the beta limit for the resonant mode is difficult to be calculated numerically. One reason
is the extension of the small growth rate to the low beta side as mentioned above, and the
other is the localization of the mode structure in the low beta regime. In Fig. 2, however, the
difference between the analytic evaluation and the numerical calculation is less than 10%,
and the growth rate of the mode at numerically calculated beta limit is 5.43 x 107}, which
is normalized by poloidal Alfvén timne.

5 Resonant modes for locally -flattened pressure
profiles

Here we will consider equilibria with the resonant surface of ¢ = 0.5 in the plasma column,
but without the pressure gradient on the resonant surface. In the experimental situation of
Heliotron-E there may exist small magnetic islands due to resistive instabilities at the low
order resonant surfaces [7], which may be nonlinearly saturated at low fluctuation levels [4].
In such a case the equilibrium may not be violated by the resistive mode, however, the
local plasma profile will change and the pressure gradient becomes small near the resonant
surface [4]. For this situation the Suydam criterion (11) predicts complete stability at the
¢ = 0.5 surface. Here we will show that low m modes can be unstable due to the finite
negative pressure gradient in the region different from the resonant surface. For simplicity
the pressure profile is assumed as

2
p=1 —r2+A(r—r,)ex1){—% (r;fr,) ],

where r, is the position of the mode resonant surface, and X is determined to make the
pressure gradient vanish at the resonant surface. The width of the flat region is controlled

(12)
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Figure 3: (a) Pressure profiles given by eq. (12) for A = 1, and W = 0.0, W = 0.01, W = 0.1. (b)
Suydam beta limit for the pressure profiles given by eq. (12) for A =1, and W = 0.0, W = 0.01,
W =0.1. :
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Figure 4: (a) Dependence of the growth rate of (2,1) mode on the central beta value 3, for
W =0, 0.01 and 0.1. (b) Radial mode structures for W = 0 (8 = 5.62 x 10~*), and W = 0.01
{Bo = 1.05 x 1073). The radial mode structures for W = 0.1 are shown in Fig. 5.

with the parameter W. Several pressure profiles given by eq. (12) are shown in Fig. 3(a). To
investigate the effect of the pressure flattening we have calculated the Suydam beta limit for
these pressure profiles (see Fig. 3(b}). In these cases the Suydam criterion shows stabilization
in the flattened region, while the beta limit decreases in the neighborhood of the (2, 1) mode
resonant surface. We assume ¢ = 0.45 + 0.2r% and consider the (m, n) = (2, 1) mode again.
The resonant surface exists at v = 0.5 where the pressure gradient vanishes. For three cases
with W = 0, 0.01, and 0.1 shown in Fig. 3, growth rates are shown as a function of fy in
Fig. 4. Although the highly localized mode structure is observed in the case of W = 0, it is
not localized even in the case of W = (.01, and the beta limit is increased with a factor of
2. Furthermore, in Fig. 4 the growth rate decreases to zero abruptly near the beta limit for
W = 0.01, while the growth rate in the higher beta regime is not affected by the fattening of
the pressure profile. The radial mode structure and the growth rate in the case of W = 0.1
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Figure 5: (a) Dependence of the growth rate of (2,1) mode on the central beta value 5 for
W = 0.1. (b) Radial mode structure of the first growing mode (8 = 2.72 x 1073} and that of the
second growing mode (& = 2.76 x 1073). It is noted that the growth rates of the first growing
mode are the same as those in Fig. 4(a).

are shown separately in Fig. 5. Also shown in Fig. 4(b) it can be seen that the radial mode
structure is quite different from the case with no step. The mode structure is restricted in
one side of the mode resonant surface, and sharply changes their value at the mode resonant
surface in case of W # 0. It is considered that, since the average magnetic shear is weak in
the inner side of the resonant surface, the first growing mode is restricted to the region [0, r,]
in case of W = 0.01, whereas in case of W = 0.1, it is restricted to the outer region [r;,1]
© since the average pressure gradient seems larger in the outer side. In the W = 0.01 case
since the beta limit, foe = 1.0 x 1073, is lower than that of W = 0.1 case, fo. = 2.7 % 1073,
the destabilizing effect of the pressure gradient hecomes weak in the outer region and the
mode is considered to be excited in the inner region [0, 7). In both cases the second growing
mode appears in the opposite region to the first growing mode.
 To investigate why the steep mode structure appears at the resonant surface, we expand
the coefficients in eq. (6} in the ncighborhood of the mode resonant surface r = 7,. Since
the rotational transform is expanded as t(r} = i{r,) + ¢ (ra){(r — ra} + ..., the resonant
denominator is expressed as

n—ms —m (Te)(r —Ta) . (13)

Since the pressure becomes flat at the mode resonant surface, p'(r.} hecomes zero, but p'(r)
is still negative in both sides of the mode resonant surface. Therefore p” is also zero at
r =1y, thus p’ is expanded in the neighborhood of the mode resonant surface as

p'zp—g"')(r—rs)2+..., (14)

where p"/{r;) < 0. Substituting the leading terms of eqs. (13) and (14) into eq. (6) yields

ar? r Y2+ m2(r — )% dr

[ e (me,
2 A2 mI(r—r)t\ 7
m2BoNp™ (dre + r)
4r?[y2 + m2'2(r — 14)?]

d?u [1 2m2 % (r — ra) ] du

{r—r.)z]u =0. (15)
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Figure 6: (a) Pressure profiles with the locally flat region around the mode resonant surface. The
solid line corresponds to eq. (16) (6 = 0) and the broken line to eq. (17) (6 = 0.2). (b) Radial
mode structure of (m,n) = (2,1) mode for the pressure profile corresponding to eq. (16) (6 = 0)
and to eq. (17) (6 = 0.2).

As seen here, the effect of the pressure near the resonant surface is in the higher order
with respect to (r — r,}). Thus the pressure is negligible and does not affect the steep mode

structure.
In order to confirm this situation, we have calculated the radial mode structure of nearly

marginal made for the following pressure profiles numerically. One is

%(1 - 4" +05  (r<0.5),
p= _ (16)

=105 (r>03),

and the other is

2
1 25 ,
p=4 05 (0.4 <r <08), (17)
2
1 25 2
3 [1 - T(r —0.5) ] (r > 0.6).

The latter pressure profile contains a completely flat region whose width is § = 0.2 at [0.4,0.6]
in order to eliminate the effect of the pressure gradient. Equations (16) and (17) are shown
in Fig. 6{a).

By assuming the same rotational transform profile as in Figs. 4 and 5, the obtained mode
structures are shown in Fig. 6(b). It is interesting that the mode structure with the sharp
decrease at r = 1, is obscrved even though the pressure is completely flat in a region with a
finite width around the mode resonant surface. This assures our conjecture that the steeply
changing profile of the mode structure at ¥ = r, such as seen in Figs. 5{(b} and 6(b) is caused
only by the profile of the magnetic shear, not by the pressure profile any more. We note
that the non-resonant feature is seen in the radial mode structure for the second growing
mode in Fig. 5(b} and the first growing mode for the pressure profile (17) in Fig. 6{b), since
the peak is shifted from the resonant surface. This implies that the mode is driven by the
negative pressure gradient roughly at the peak position of the mode structure.
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6 Concluding remarks

We have clarified the properties of the non-resonant pressure driven instabilities and the
relation to the resonant instabilities in the cylindrical plasma model. The behavior of the
non-resonant mode depends strongly on the profile of both the pressure and rotational
transform.

At first we have solved the eigenmode equation analytically with respect to the stream
function for an equilibrium with a constant rotational transform and a parabolic pressure
profile. It is noted that the non-resonant mode has a global structure, and the dependency
of v on @ is parabolic (see eq. (8)). In this case it can be shown that the mode with less node
number has the larger growth rate, and the higher harmonic mode with the same helicity
has the higher beta limit.

With the numerical calculations, it is shown that the growth rate of the non-resonant
type mode abruptly decreases to zero near the beta limit, while the resonant mode has a
fairly wide small growth rate regime expressed as y o exp[—const.//fo — f§] [6], where 55
denotes the central beta value given by the Suydam criterion. A physical interpretation is
as follows. Although the resonant mode becomes localized at the resonant surface with the
decrease of the beta value, the non-resonant type mode does not have such a surface in the
plasma column. Therefore the free energy due to pressure gradient necessary to excite the
non-resonant modes is always finite, although the parallel wave number along the magnetic
field line is also finite. Thus the growth rate decreases to zero abruptly near the beta limit.
In the resonant case, since the higher harmonic modes have larger poloidal and toroidal wave
numbers than the fundamental one, they can be more localized in the radial direction. Thus
the growth rates at the same beta value are larger than the fundamental mode. However,
all modes can be highly localized at the resanant surface as the central beta value decreases,
the beta limit does not depends on the mode numbers and agrees with the Suydam limit.
Oun the contrary, in the non-resonant type case, since the parallel wave number of higher
harmonic mode becomes larger than the fundamental mode in the region different from the
resonant sutface, the higher harmonics need more energy for excitation in low beta region.
Thus the beta limit of the non-resonant type mode with higher harmonics is larger than the
fundamental mode.

In case of the locally flattened pressure profiles around the resonant surface, the resonant
mode shows the non-resonant feature. The beta limit in this case is doubled even with a
small flat region. The nearly marginal mode structure is quite different from the case with
W = 0, i.e. it is restricted to the one side of the resonant surface. Such non-resonant
properties also appear in case of the nonzero but small pressure gradient at the resonant
surface.

A Radial mode structure of the most unstable
MHD mode

In this section we show that the more unstable mode has the less node number with the spec-
ified (m, n). We follow the proof shown by Goedbloed and Sakanala [8, 9]. By introducing’
a variable £ = u/r, the eigenmode equation (6) is written in the Sturmian form as

d df -
— (Ka) —GE=0, _ (A-1)
where
K(5r) =r°[" + (n— m)"], :
G r) = r{(m® — D[y’ + (n — me)’] + @ru'r + me"r?)(n — me) — Dm®}.

Let two solutions corresponding to two neighboring growth rates, 4% = 4} and +{ + 67 as
£ and & + 8¢, respectively, which only satisfy the boundary condition at r = 0. When we
substitute the first solution £; corresponding to the parameter 7} in eq. (A-1), we obtain

2 (K(fﬁ;r)%f%) - GOknE =0, (A-2)
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Substituting the second solution into eq. (A-1) and subtracting eq. (A-2) leads to

a6 _oe
o dr a~*
R

d dég d [ OK
ar (K(’Y?; T)F) — G{y1;7)8¢ = ~67° [E (3—12

2&] . {A-3)

Assume now that £,(r) = 0 at 0 < r; < 1, which is possible for an unstable case.
We make the product of é{ with eq. (A-2), £ with eq. (A-3) and integrate from 0 to r;.
Subtracting both sides leads to

2
— sy [M[oE (4, 80 ] o
- 67[0 [avz(dr) M R (A-4)

after some partial integrations, where we have used the fact that d£(0) = 0, K{(+{;0) = 0.
Here K, @7 and their derivatives with respect to 4% are all evaluated at 4% = 4%, Since
OK/9v* = r® and 8G/y* = r(m® — 1), the integrand is positive for m > 1 at all radial
points. Provided that §¥* > 0, or & + £ is more unstable than £;, the RHS of eq. (A-4)
becomes negative. Since K is positive in (0, 1), the radial position of & + € = 0 moves to
outer due to the increase of the parameter 4%, Since K and G are monotonic functions of 2
for . > 1, we can conclude that the radial positions of all zeros move to the outer direction
with the increase of the parameter 2. If we further impose another boundary condition at
r = 1, it is confirmed that the eigenvalue is discrete and the more unstable mode has the
less node number. In other words, the most unstable mode has no node.

K&f%
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Resistive interchange instability in reversed shear tokamaks
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Abstract

Resistive interchange modes become unstable due to the magnetic shear reversal in tokamaks. In the present
paper, the parameter dependences, such as g (safety factor) profile and the magnetic surface shape are clarified
for improving the stability, using the local stability criterion. It is shown that a significant reduction of the
beta limit is obtained for the JT-60U reversed shear configuration with internal transport barrier, since the
local pressure gradient increases,

Keywords : resistive interchange instability, reversed shear tokamak, beta limit, stabilizing method

1 Introduction

Reversed shear configurations[1, 2, 3] are the recent topic in tokamak experiments. In such discharges, improved
confinement is obtained with internal transport barrier. Furthermore large amount of bootstrap current is
driven by the steep pressure gradient around the transport barrier, which is considered to be favorable for
achieving a steady state operation of a tokamak. Thus it is important to investigate the properties of reversed
shear configurations. We investigate the stability properties of reversed shear tokamak theoretically.

In terms of the ideal MHD modes, such as ballconing modes and kink modes, the stability study has been
done by several authors[4]. It is shown that the beta limit due to ballooning modes can be increased by
broadening the pressure profile. Also it is shown that kink modes are stabilized by placing a conducting wall
at suitable position from the plasma column.

Qur interest here is the resistive MHD modes, especially resistive interchange modes; the methods to stabilize
the ideal modes are well investigated, and when the ideal modes are suppressed, the resistive modes become
important, especially in long time discharges.

We found that resistive interchange modes become unstable in reversed shear configurations. The local
stability of the equilibria calculated by the VMEC (Variational Moment Equilibrium Code)[5] is examined with
the stability criterion derived by Glasser, Greene, and Johnson([6]. In Sec. 2, we show the procedures to calculate
the MHD equilibria and to examine the local stability. In Sec. 3, it is shown that the resistive interchange
modes become unstable in reversed shear configurations, and we investigate the parameter dependences, such as
safety factor profile and flux surface shape, on the resistive interchange modes and discuss methods to improve
the stability. Also we estimate the beta limit due to the resistive interchange modes. It is found that a low
safety factor with a weak negative magnetic shear in a D-shaped tokamak seems to be favorable to stabilize
the modes. As for a realistic example, we use the JT-60U reversed shear discharge with internal transport
barrier, and the beta limit is estimated in Sec. 4. The beta limit is significantly lower than the that obtained
in experiment. Concluding remarks are given in Sec. 5.

2 MHD equilibrium and local stability criterion

MHD equilibria for studying the local resistive stability are calculated by the VMEC (Variational Moment
Equilibrium Code)[5]. An equilibrium can be calculated by specifying the plasma pressure and safety factor
profiles. Also needed is the boundary condition. Although the VMEC can solve the free boundary problem,
we use the fixed boundary condition in the present paper, because it is easier to study the resistive interchange
modes in tokamaks with different cross-sections systematically.
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The plasma pressure profile is assumed as,
p(s) = po(1 - s)* (1)

for the most calculations, where s = &9 /@ edge 15 the normalized toroidal magnetic flux and pg is the plasma
pressure at the magnetic axis where s = 0. Note that the pressure profile used in Sec. 4 is different and is
shown below. A typical pressure profile is plotted in Fig. 1.

For the fixed boundary condition, the outermost flux surface shape is given as follows,

Ry = Ryg + Ry cos 8+ Ry3 cos 20, (2)
Zy = Zpy sin#, (3)

where R and Z are usual coordinates in the cylindrical coordinate system, and § is the poloidal angle used
in the VMEC. The definitions of the aspect ratio A, the ellipticity «, and the triangularity 4 are similar to
those given in Ref. [7]. In principle, more Fourier components must be retained for expressing the complicated
plasma boundary shape, however, we retain only a few Fourier components for simplicity. We consider that
the above components are sufficient to investigate the basic dependences of the instability on the outermost
flux surface shape. Note that the ellipticity is determined by the ratio of Ry and Zy,;, and the triangularity

corresponds to Rys.

The final assumption required for the MHD equilibrium calculation is the safety factor profile. This is
shown in Figs. 2, 6, or 11.

Next we mention about the local MHD stability criteria used in the present study. They are derived by
GGJ(Glasser, Greene and Johnson)[6], and given as

1
DIEE+F+H‘-2<0, (4)
Dr=E+F+ H? <, (5)

where the subscripts *I’ and 'R’ represent ’ideal’ mode and 'resistive’ mode, respectively. E, F, and H are
defined as,

2 2 B2 .
_(BYIVVEY [, 4rs 2, (eBYIVV? /1
r= BTV (<aB vy~ e+ 6 (). ™
_{(BY|VV]) ((eB%/IVV])  (eB?)
TR ( (B 1vV)  (B) ) ©

Here prime denotes the derivative with respect to the plasma volume V, B is the magnetic field strength, v
and x are the toroidal and poloidal fluxes respectively, 7 and J are the toroidal and poloidal current fluxes
respectively, A = ¢'x" — x'¢y" is the magnetic shear parameter, & = j- B/B? is the parallel current, and the
angular brackets denote the flux surface average. The factor 1/4 in Dy represents the shear stabilization effect.
The difference between Dy and Dp is seen by rewriting Eq. (5) as

DR=D1+(H—%)2. %)

The stability criterion Dp < 0 means that the resistive mode is always more unstable than the ideal modes.
In the present study, we use the stability criteria normalized by —(¢')?, i.e.,

Dy (ideal) = Dp(E) + Dyg(F) + Dp(H) + Dpg (shear) > 0, . (10)
2
Dy (resistive) = Dpr(E) + Dy (F) — (P-“:E-Sﬂ) >0, (11)
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where Dar(E), Du(F), Da(H), and Dp(shear) are given by,

Du(E) = — (") E, (12)
Dy(F) = ~ (') F, (13)
Dy (H)=— (')’ H, (14)
Diar(shear) = —% ('c')2 . (15)

It should be noted that these criteria can be examined by the equilibrium quantities only. Although the beta
limit estimated by these criteria, i.e., Dps(ideal) > 0 for ideal interchange modes or Dy (resistive) > 0 for
resistive interchange modes, is considered to be optimistic, because the assumption of the localized plasma
displacement is used in the derivation. It is pointed out that radially broadened modes, such as ballooning
modes, become unstable even when the localized stability criteria are satisfied.

3 Resistive interchange instability in reversed shear tokamak

In this section, we show the numerical results. The resistive interchange mode becomes unstable in the shear
reversal region in reversed shear tokamaks. It should be noted that all the MHD equilibria investigated in the
present paper are stable with respect to the ideal interchange modes, i.e., Dar(ideal) > 0.

First we show the safety factor, g, profiles assumed in the MHD equilibrium calculations i Fig. 2. In this
sequence of g profiles, gmin = 3.8 is fixed and go is varied as shown in Fig. 2. The outermost flux surface shape
is also fixed to be circular and the aspect ratio is A = 3. The pressure profile is given in Eq. (1} and Brq = 3%,
where Bro = 2uopo/Brg: Bro is the vacuum magnetic field at the plasma center R = Rp. The radial profiles
of Du(resistive) is plotted in Fig. 3.

It can be seen that the resistive interchange modes become more unstable as qg is increased. This is explained
as follows. When g is increased, the Pfirsch-Schliiter current increases by which the geodesic curvature becomes
large. In a conventional sense, the interchange stability is determined by the competition among the pressure
gradient, the magnetic well, and normal curvature. Usually Pfirsch-Schliiter component, or Das(H), have a
small contribution. In fact it is the case for the normal shear or monotonically increasing g profile equilibrium.
However, the Pfirsch-Schliiter component has a significantly large contribution to the stability for the reversed
shear equilibrium. This can be seen from Fig. 4.

Also we show the normalized beta, Sx[%mT/MA], limit of the resistive interchange modes is plotted versus
go in Fig. 5, where 8y = {(8)aBrg/Iz, {B) is the volume averaged beta, a is the horizontal minor radius on the
midplane, and Ir is the toroidal plasma current.

Beta limit in Fig. 5 is estimated by Dpr(resistive) = 0. It should be noted that the lower go gives the higher
Bn. Note that the go = 3.1 case in Fig. b corresponds to a'normal shear equilibrium. In this case, the violation
of the stability condition occurs around (r)/(r)eage = 0.3, not near the magnetic axis. Since our interest here
is in the reversed shear tokamak, we will not consider positive shear equilibria in the later part of this paper.

It is important to know how to stabilize these modes. In the following we propose two stabilizing methods.
The one corresponds to the safety factor profile control, and the other to the outermost flux surface shape
control.

First we show the safety factor dependence of the resistive interchange mode. Since gp dependence is already
investigated for the fixed gynin in Fig. 5, here we investigate the gm;, dependence. The g profiles assumed for
the equilibrium calculations are shown in Fig. 6.

In this sequence, the ratios go/gmin = 2.0 and gedge /Gmin = 1.8 are fixed and g.in is varied. This corresponds
to the situation that the current density profile is fixed and the total current is varied. The aspect ratio is -
A = 3, circular cross-section, and frg = 3% are also fixed. The corresponding Dpys(resistive) profiles are shown
in Fig. 7. It can be seen that the resistive interchange modes become more stable when gmin is decreased.

Thus in terms of the g profile, lower go and gm:n are favorable to the resistive interchange mode. However,
it should be noted that the ideal modes are stable if the g, or gy are larger than a critical value, typically

- about unity in a low shear system from the Mercier criterion for circular tokamaks[7},

(%q') 2 +4r@'(1-¢%) >0, (16)
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where r is a minor radius, 8 = 2p9p/BE, and the prime denotes the derivative with respect to r. It seems to
be possible to obtain an optimized g profile. This will be discussed in a separate paper.

Next we consider the outermost flux surface shaping. Since we retain only a few Fourier components to
express the outermost flux surface shape, the possible shape is somewhat limited. However, we can treat three
types of the deformation, i.e., ellipticity , triangularity 4, and aspect ratic A. First we mention about the
effect of the ellipticity. In Fig. 8, the normalized beta limit is plotted versus « for the equilibria with A = 3,
6 = 0, and the ¢ profile with g5 = 5.35 in Fig. 2. It should be noted that the excessively high x leads to the
vertical instability. Thus we consider the equilibria with x 2. Also, excessively small x is unfavorable from the
view point of the plasma volume, i.e., the plasma volume becomes smaller for such a small x. By increasing «,
the Pfirsch-Schliiter current decreases although the magnetic well stabilization is not affected so much. Thus
the resistive interchange modes become more stable and the higher beta limit can be obtained as « is increased.

For the effect of the triangularity, it is expected that the magnetic well stabilization is enhanced and that
the higher beta limit can be obtained. This is shown in Fig. 9. The considered equilibria has A = 3, x = 1.6,
and the ¢ profile with gop = 5.35 in Fig. 2. The value of ¥ = 1.6 is chosen because it is close to an optimum
value. The beta limit is higher for the larger 4 configuration. It is noted that the range of 4 is limited by the
number of Fourier components in Eqs. (2) and (3). In our equilibrium calculations, maximum obtainable § is
about 0.4.

Finally we consider the effect of the aspect ratio. Similar to the triangular deformation, the magnetic well
becomes deeper as the aspect ratio is decreased. The beta limit is plotted in Fig. 10 for the equilibria with
circular cross-section and the ¢ profile with go = 5.35 in Fig. 2. For this sequence, the plasma minor radius
@ and the vacuum toroidal field at the plasma center Brg are fixed and the major radius Rg is varied. The
normalized beta limit has a maximum around A ~ 2, although marginal 879 becomes larger as A is decreased.
This is due to the normalization by the plasma current in Bx. It is noted that the plasma current becomes
larger for the lower aspect ratio configuration. Thus the higher central plasmsa pressure can be obtained for
lower aspect ratio when the toroidal field strength at the plasma center and the plasma minor radius are fixed.

In summary, though the parameter ranges are somewhat limited, the configuration with higher %, higher 4,
and A ~ 2 is considered to be favorable for the stability of the resistive interchange modes. In addition, from
the view point to obtain higher plasma pressure, low aspect configuration is attractive.

4 Beta limit estimation of JT-60U equilibrium with internal trans-
port barrier

In this section, we study the stability of the MHD equilibrium using the JT-60U improved confinement
discharge[1] profile with internal transport barrier (ITB). The pressure and g profiles are shown in Fig. 11.
The parameters such as the major radius and the magnetic field are chosen to be consistent with JT-60U. The
numerical result show that the normalized beta limit is By = 0.387[%mT/MA], which is much lower than the
value obtained in the experiment, By ~ 2.4. The decrease of By is attributed to the steep pressure profile
near the ¢pm, surface. Thus it is considered that there are some stabilizing effects for the resistive interchange
mode, such as finite Larmor radius effect. Also the growth rate of these modes should be compared to the
experimental time scale. These are our future subject.

5 Conclusions

In this paper we investigate the parameter dependences of the beta limit for the resistive interchange modes.
As mentioned in Sec. 3, the large amount of Pfirsch-Schliiter current produces large geodesic curvature, which
leads to instability. Thus the beta limit can be increased by reducing the Pfirsch-Schliiter current, or reducing
9o and g;n with an increase of k. The magnetic well also has a stabilizing effect, thus larger § and smaller A
are favorable. Our studies show that for the equilibrium with 4 = 3, k = 1.6, § = 0.4, go = 5.35, gmin = 3.8,
and gedy. = 6.0, the normalized beta limit Ay ~ 2.3 is possible.

Also shown is the beta limit for the JT-60U reversed shear discharge with I'TB. In this case the beta limit
drastically decreases because of the presence of the steep pressure gradient. The obtained result of the beta
limit is By ~ 0.387 [%mT/MA] or Bry ~ 0.8 (%]
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Fig. 1: Typical example of the pressure profile is plotted. The horizontal axis label (r)/(r).dge is the normalized
average minor radius. :
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Fig. 3: Das(resistive) is plotted as a function of normalized minor radius {r)/{T)edge. It is seen that the
resistive interchange modes become more unstable as gq is increased. For (r}/()edge < 0.2, the numerical
accuracy is not sufficient in the VMEC code, thus Dps(resistive) is not plotted here.
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Fig. 4: Components of Dys -are plotted separately as a function of qo at (1-)/ (r),dg, =0. 5 It is'seen that the
Dar(H) term has a significant contribition for large go. . ‘
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Fig. 5: Normalized beta Sy near the stability limit is shown as a function of go. Equilibria have the aspect ratio
A = 3, and circular cross-section. It is noted that the go = 3.1 case corresponds to a normal shear equilibrium.
In this case, Dar(resistive) < 0 appears around (r}/{r)edge = 0.3.
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Fig. 6: ¢ profiles for studying gmin dependence of resistive interchange mode are plotted. The ratios gp/gmin =
2.0 and gudge/Gmin = 1.8 are fixed.
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Fig. 7: Dps(resistive) profiles calculated from the equilibria with ¢ profiles shown in Fig. 6, A = 3, circular

cross-section, and Brg = 3% are assumed.
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Fig. 8: Normalized beta near the stability limit is plotted versus x. The larger « gives the higher beta limit.
The equilibria have A = 3, § = 0, and the ¢ profile with go = 5.35 in Fig. 2. ’
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Fig. 9: Dependence of the normalized beta near the stability limit on & is shown for the equilibria with A = 3,
x = 1.6, and the ¢ profile with go = 5.35 in Fig. 2. The higher beta can be obtained by increasing 4.
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Abstract

A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and
shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting compenents
around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this
code. The code can analyze the plasma position and shape control during the minor disruption in which the
deformation of plasma is not negligible. Using the ITTER (International Thermonuclear Experimental Reactor)

parameters, some examples of calculations are shown in this paper.

Keywords: tokamak, plasma, position, shape, feedback control, eddy current, equilibrium, numerical simulation

1. Introduction

A plasma with non-circular cross section has several advantages for achieving high performance plasmas in
tokamak devices. However, the plasma with non-circular cross section basically becomes unstable for vertical plasma
motion. In general, this instability is stabilized using the passive effects by the conducting components (the
conducting shell effebt) in the case of the instability with short growth time and the active feedback control by the
magnetic field coils in the case of the instability with long growth time. In the case of present machines, the vertical
stability is not critical since the conducting components and the coils for the feedback control can be located near the
plasma.

On the other hand, in the case of the [TER (International Thermonuclear Experimental Reactor), some in-vessel
components without passive effects are located between the plasma and the conducting components for protecting the
conducting components from the neutron damage. As a result, the conducting components and the coils for the
feedback control must keep away from the plasma and there is a possibility that the electric power of feedback control
exceeds the permitted limit. Therefore, the vertical stability is one of the critical issues and it is necessary for the
engineering design to analyze the characteristics sufficienty.

In general, the modeling for analyzing the vertical stability consists of three parts: a) the conducting
components, b) the core plasma and ¢) the poloidal coils for the active feedback control. One of the essential parts for
the analysis is the modeling of the conducting comﬁonents. The characteristics of the passive effects significantly
depend on the shape of the conducting components since the path of the eddy current in the conducting components

changes by the holes and the ports on the conducting components. That is, it is important to consider the three-
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dimensional structure of the conducting components. Furthermore, in the case of the minor disruption, it is also
important to treat the change of the plasma shape. Therefore, it is necessary for the modeling of plasma to treat the
deformation of plasma shape. At least, it is important for the plasma to consider the two-dimensional model.

In previous studies, there are some codes for the analysis of the vertical stability in the tokamak machine. For
examplé, some simulation codes are described by the linear model{1-3]. Although these codes include the three-
dimensional model for the conducting components, only the motion of plasma current center is considered and the
plasma shape is not essentially deformable by assuming the rigid model. Other simulation codes are described by the
non-linear model{4,5). In these codes, although all parts of numerical model are assumed the axisymmetric model, the
three-dimensional conducting components are not taken into account,

The numerical model used in this study is similar to the linear model. This model adopts the three-dimensional
model for the conducting components. Regarding the model of plasma, the motion of the plasma is essentially based
on the rigid model. However, the non-linearity of plasma is considered by calculating the MHD equilibrium at each
20~30 time-steps typically and then by renewing the plasma parameters used in this code. Therefore, this model
corresponds to the intermediate model between the linear model and the non-linear model. Furthermore, for extending
from the rigid model to the non-rigid (deformable) model, the relation between the plasma surface position (gaps) and
the plasma parameters is taken into consideration. In addition, this model is suitable for the design that we must
calculate many cases since the reduction of the calculation time is expected comparing the non-linear model.

The development of the numerical simulation code for the analysis of vertical stability on the ITER is
described in this paper as follows: The numerical model and method are described in Section 2. Section 3 presents

some examples of numerical results. Summaries are given in the last section.

2. Numerical model

The simuiation code consists of three modules: (1) a free-boundary MHD equilibrium calculation [6], (2) a
three-dimensional finite element analysis [7] and (3) calculation for the time evolution of the motion of plasma, the
eddy currents in the conducting components and the currents of the active feedback coils. The MHD equilibrium code
solves the Grad-Shafranov equation by the Green function method and estimates the deformation of the plasma shape.
The three-dimensional finite element analysis code solves the interaction between the plasma and the conducting
components by using the thin shell approximation and estimates the passive effects by the conducting components.

The calculation for the time evolution of the motion of plasma, the plasma éurrem, the eddy currents and the
currents of the active feedback coils is described as below. Regarding the motion of plasma, it is assumed the rigid
model, which the shape of the plasma does not change. Furthermore, the toroidal symmetry is assumed, and the

equations of the motion in the vertical (Z) and the horizontal (R) directions are given as follows:

d’z,

M, =% = -2r| RdRdZJ,B,, M
&R, 1, (3R, g -

MP?_E”OIP ln( a, +ﬁp+5(f1ﬂ"3) +2TEJ.RdeZJPB . 2
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where M, 1, Jo, to, Ip, ap, ﬁP and ¢, are the mass of plasma, the time, the plasma current density, the vacuum
dielectric constant, the plasma current, the plasma minor radius, the poloidal beta, and the internal inductance of the
plasma, respectively. B, and B, are the magnetic fields with respect to the horizontal and the vertical directions,
respectively. J,, By and B, are obtained from the two-dimensional MHD equilibrium analysis. The integration is
carried out over the whole area of the plasma. Here, by assuming the adiabatic compression and the conservation of

the toroidal flux in the plasma and by expanding the Eqs.(6) with respect to the small displacements of the plﬁsma
position, &Zp and R p, the following equations are obtained.

2 oM
p 4°0Z, = 2B, ,n8Z, — 278, ,koR, + 2 aMP' L z——ﬂii"- -2mR.B;,,
Ip dr’ T 92, I,

2
M, 2R _lomp,|1-L—n e T g Be s o, ko2,
I, dt A, 4R, 6 °'R,

N
_(Z”RPBVU + AUOIPBP)—J:

P

, 4

oM, I oM, I, ul ( 1 )
+I,y —EH L 4] Pk kL DU PLSE -8 |+27R.B
”Z R, 1, P2 R, I, 2 Be 2 P

where M., M,,, I,, I,, By, and B, are the mutual inductance between the plasma and the i-th feedback control

coil, the mutual inductance between the plasma and the &-th eddy current mode, the current of the i-th feedback control
coil, the current of the k-th eddy current mode, the radial and the vertical disturbance fields, respecuvely. Bvo .k

and A are defined as follows:

1
0 =_JdeZBZJP ; ®
IP
ne——» dedZRaB Jn, ©
1.B,, AR
1 JB.
k=— dRAZRZZ ], , 7
I,,Bvo'[ oz’ @

A, h{ J+B,, =(¢,-3). | (®)

Furthermore, for extending from the rigid model to the non-rigid (deformable) model, several gaps between the

plasma surface and the wall are defined as Figure 1 and the relation berween the gaps and the parameters (the plasma,
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the coils...) is previously estimated by calculating some MHD equilibrium states.

y=Cx , ©
where
(62, )
_ R,
& &P/IP
93 :
18 X=
y= 2. | L/, | : (10)
&5 :
8/ L/1,
\ Y,

and C is obtained from some results of the MHD equilibrium analysis with respect to the small changes of the
poloidai beta and the internal inductance, numerically. That is, C = Ay/AX, and six gaps in Eq. (10) are defined as
shown in Fig.1. ' ‘

The time evolution of the plasma current, the eddy currents of the conducting comp;mems and the currents of

the active feedback coils is described by the circuit equations as follows:

d d d . o o

E’;(LPIP)+ZZ(MPJ")"LZZ(MN[&)"'WPIP=0 ' (n
i k

L.£+£(M T )+ZM£+EM ﬂ*‘ﬂ-[-:V- (12

Yt dr T e gy T gy

where L,, 1,, L, M:J, n. 1 ; and T, are the plasma self-inductance, the plasma one-turn resistance, the self-

inductance of the i-th coil, the mutmai inductance between the i-th coil and the J-th boil, the resistance of the i-th coil,
the j-th coil current and the time constant of the -th eddy current mode, respectively. T,, M,, and M, are obtained

from the three-dimensional finite element analysis. V. is the voltage of the control coil and is applie.d by the PD

decoupled controller in this paper.

By assuming the toi"oidal flux conservation, Eq.(11) is expanded as foilows:
doR dér d[i d )
~(27R,B,, + ol .85 )_IF +1,L, sz +3 1M, I ZE(MPka) +m.80,=0. (19
i k

Furthermore, in Eqs.(12) and (13), the following approximation is applied:
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dM,, _ oM, dSZ,  OM,, doR,

dt oz,

dt

R,

dt

By neglecting the mass of the plasma, Eqs.(3), (4), (12), (13} and (14) are summarized as follows:

Ax+Rx=b.

where A, R and b are

i oM,
2nB,n, -2nB, k, 0, vy [p——=E o
vo VO P;ZJP P;ZP
| ,. M
=218, .k, ay, _(ZERPBVO +PoI.nBP)' T Ipﬁf—’ " nga':_k
0, _(27:RPBVO +“(OIP5P) LPIP’ s IPMPfs Ty IPMPko ot
A= :
M, oM ..
-, I, 2, IM,, o L 0
P.ﬂp P aR,, ‘ PITEP, . P
oM oM
I Pk , I Pk , I M , 0 . I T
‘P aZ—P P aRP . pi¥py g Pri
o - i 2mPBRd ]
i, £Y\.
0 & (SB,, +E')—2mR,,BM -
Im, 0 0
o _ _ 74
R= Iom; b :
0 E V.
I :
’ 0
where a,, i
5122:27531/0 l_l__n _luOIP _.Z”OIPﬁP'
A, 4R, 6 R,

— 150 —

r

3

(15)

(16

-

)

(18)

(19)



The caiculation sequence is carried out as in Figure 2. After giving the results of the initial equilibrium analysis
and the eddy current analysis, Eq.(16) combined with Eq.(9) can be solved by the Fehiberg formula and the Adams-
Moulton method with the 8-th order, numerically. If the displacement of the plasma current center or the number of

iteration exceeds a-certain vaiue, then the MHD equilibrium calculation is carried out and the coefficients required for

Eq.(16) are renewed, and the Eq.(16) is solved again.

3. Application results
To show some examples of the plasma position and shape control analyses by this simulation (TSPS) code,
the ITER design parameters in the Final Design Report (ITER-FDR) were used[8] in this paper. The main parameters
used are the plasma major radius 8.14m, the plasma minor radius 2.8m, the elongation 1.6, the triangularity 0.24, the
plasma current 21MA,, the toroidal magnetic field at the plasma center 5.68 T, respectively.
Figure 3 shows an example of the three-dimensional finite element mesh models used in the eddy current
analysis. This mesh model includes the blanket modules, the backplate and the vacuum vessel with the double layers.
The backplate and the vacuum vessel are electrically connected in the toroidal direction. The material used for ail

conducting components is the stainless steel and the value of the electric resistivity is 0.9 pm,
Figure 4 shows the frequency response of the stabilization index ng obtained by the three-dimensional finite

element analysis (the eddy current analysis). In Fig.4, n is the n-index, which is the strength- of the vertical
instability. The criterion with respect to the vertical stability is represented by n+ng=0, and in the case of the ITER,
Start Of Burning (SOB) plasma, the growth rate is 0.98 s-L. The feedback control by the. poloidal coils is applied to
the instability that has slower time constant comparing the growth rate.

Figure 5 shows the time evolution of (a) the poloidal beta Bp, the internal inductance ¢;, the ratio of the

volume averaged thermal energy, (b) the plasma current, (c) the total active power of the poloidal coils and (d) the six
gaps between the plasma surface and the wall in the case of minor disruption of the SOB plasma (Bp==0.9 and ¢;=0.9)
by the PD decoupled feedback control, respectively. In this case, the poloidal coils are used for the equilibrium and the
control. The minor disruption at SOB is defined as instantaneous step-like reduction of the poloidal beta by 0.2
simultaneous. with instantaneous step-like reduction of the internal inductance by 0.1. As shown in Fig.5, the
maximum total active power is about 180MW and the maximum gap is about 0.12m, and these results satisfy the

request of the [TER design sufficiently.

4. Summaries

The Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position
énd shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting
compoenents around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are considered in
this code. Regarding the model of plasma, the motion of the plasma is essentially based on the rigid model. However,
the deformation of plasma shape is considered by calculating the MHD equilibrium at each 20~30 time-steps
typically, and then the plasma parameters used in this code are renewed. Furthermore, for extending from the rigid
model to the non-rigid (deformable) model, the relation between the gaps and the parameters (the plasma, the coils...)

is previously estimated by calculating some MHD equilibrium states. Therefore, this code can analyse the plasma
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position and shape control during the minor disruption in which the deformation of plasma is not negligible. In
addition, this model is suitable for the design that must calculate many cases since the reduction of the calculaticn
time is ekpected comparing the non-linear model.

TSPS code is useful for designing fusion reactors and, actually, using the ITER (International Thermonuclear

Experimental Reactor) parameters, some examples of calculations were shown in this paper.
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Figure Captions

Fig.1 Six reference gaps between plasma surface and wall

Fig.2 Sequence of calculation

Fig.3 example of three-dimensional finite element mesh model

Fig.4 Frequency response of vertical stabilization index

Fig.5 Time evolution of (a) poloidal beta, internal inductance, ratio of volume averaged thermal energy, (b) plasma

current, (c) total active power of poloidal coils and (d} gaps between plasma surface and wall.
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abstract: Recent study on the nonlinear partial differential equations
has revealed a peculiar behavior of (approximate} solutions; the bubble.
This lecture describes the phenomenon for the system of chemotaxis. Re-
lations to other phenomena and to other systems of mathematical physics
such as compensated compactness and gauge theory e.g. are also presented.
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SRR EHAE R DI RW I LOBERTHZEBEDND,

i l<p<oo lZHLT

—V-(qulp_2Vu)=0 in Q, u=g on 99 4)

BELD, ENHICLDBEM ue WHP(Q) BERSh—BEHEEF TSN,
p=20rEZ(2) L2<ALIDTHZH, ZHTRNEE ofz) d C

OERME L BERV. CHIEE QIC Ve =0 22258 (RER) ¥

HIET 25 THED, TOI EHHET (4) DEFHRENCHEFEOATTH D,
Zho ORBEASD control BRITHNC G BEERZEEEFEI SN0 TH D,
EoTANT., FHPLOBESRIIERAPERESBILIA2THEAD
BENHNEVIIRD, COZLEERIEIZEDITEEE. —EifE-o
FEAFHBR IS LSCHEREEZLES RIThIERS R0, TRDE
TR L BT HBRBOEFE2BOHELO TR, BANIZEEDL ST
B— A KRNI HERE LTI L-EREERTA L TSHDRD
T#H%, '
TEBRRICIIF DI >R85 52530, (1) TEAEVED2DER
fbid we LL () 7 '

ju-(_A¢);fu-¢ forall ¢ e D)
1] ]
55V LD ue HYQ) 7D

/Vu-V¢:ff¢ forall ¢€ HMD -
0 o
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THADe WITNLHRER ¢ 2L 2 ZAIIERSDH D, HiEZ % Schwartz
#i. %E% Lax-Kato HEE>TH LV FIHIEL DAL, BERLIOK
BHBRITHZ. &0 LBEEHRPOSEFNTELLOEDBESECE->TH
FHI I D,

YEHFRICN T 2802 E Y BT & SEBSRATHIRET D ki & 2 2 DIk §EEh
RIFENTH D, FATRICLHATE2EEMELEAMcH - TR
FEFHERZES. JFERLEEEBA T, F-BMNZRIE T varifold,
Aleksandroff & o =IERICRBENERBLEEEET T3,

BiRIZBENWEEERBEROV L Dl Boltzmann 5RERICA T 2HE2RT
YO THEENOmD F R EEX S TEREHIIE WS EDTH b,
& 5 & Did Hamilton-Jacobi SEEXDMATICEHER T I LD THHITER
(3) 2HFBEEAE AV TERMELET E WS D TH D, HiFE % renormalized
solution, #& % viscosity solution ¥FEA T2,

IhoOBHRICL D ERREEP S M RBESINISNhEHD%
NIl T3 FE TR BHEShTETWE 201 L D,

1.3 EUUAF OB

BAPEROMEIC BN TELEBREMING bORFRE Y DL
EDBBPLNSERETH D, BATBHTIRT S LTHE & 6 X TERNE
EHIRLTEL LD TRENSTHS D0 TNTRIEND D F VPR
LECRYDLIBRILDBBIOTNBDES DB

BT LTHS b Shb ORI E 1= R TR DM R T
bHot. AERIELEIE LTI LA TES I Y bHL, BHKRE
SR Lo TAHT A2 L 5 B. WINICLABRIOPEL S
N2V L & DD 35 THZN < DDD/SF LI S NBDTH Bo

I THBESIDLEENE LTRO 3 DRIEMLTH<. TS

1 EAICHkITD
2. RET 3
3. T3

BHIDRIFHF L0 PTRVWEEIIEI %o B 21E~7 MUHEBEHKT 1
BOMADE < L EL BT Do FEBIEITX v LNV BTIHRIH DL
HBANIBH ¢ 2 L DST = compensated compactness L IHINW T 5, E3IH
MRS CHEEP R AL T 2@E 2T 2L L BT 2, &
BEBIZL DEPL T M (BRA) DRBEONFEFEL < control T2
Z & 1T &, concentrated compactness & FRHEN T2, DL DICHFIZ
Uk LAz iE AR DZ 85 control T ENIEREEDEWERTIEOPEL S
N2 ERROFE DI EOERIZ®RAL D, $RbbHiclZ S Ll
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LHRBIERNI L EDEDDEDHER L TWIFIEL V.
W OBEDL D SE IDOEMITOVTEDIPLLERLTEL

1. 2L REEE. FIXITERNTH RS L B b2 {EET 2FE
BRESs OBEP LB %, MURL AN TREBEESDXERNTH
ZOTIHLEIEHSBI5EDICE. LS B IRELULORT
VIR NEF-STWRITHERS 2V, B IOL D REIIREERD /v
LATIEWEZ T LB TES, T4H 5 concentration BB 5 FFROE
B 2 W ARBHAEHU L TH B, 25 LEBRIBORCBHTE
P STWBENTE L FOREEEA LT rigidness EWH:; EiZ3 B,

2 25 LEZ EIZNWANSOBFICRBMEICEZ 5. B> TRMIVE D,
Lo, YRZBI LD TEERERN THH>=HEPR AL D,
WD LERBTEENEARY M ADSEThD S TIIEDORA~D
UM D H B, concentration % Z DL 5T global BN EHZ
Z &t topology IZBNWTBRAICRENTE R, TITIHLEIER
ZOHTHIOL D OENEETH S bubble ICL > THT I LT 5,

3. 2O LEEER0EBI AN, KEEBEM (rescale) IZBT 5
HEEOTEMER->TEIIhERALTUEDUE DD bubble @
HROBTE L DFFEL  control T3 ETE B, rescale Shi=Bag
ZE AR EHOEREL2OTHEIPLH EOARERIFLT
BREXNTELFEPHEATE S, HIAIL double well ZRTH LWL,
BREALELTH I, E6IZHD—Erescale 23752 HTES, T
D& DR rescale ZRD ET AT AREIc LTI {AVWSLhTE
TEHFOFEIZFE > T blow-up analysis &FEREZ &129 5,

4. Bt81Z blow-up analysis OZEELW Lik{lT3H S matched asymptotic
expansion {2 2WTHNTH <. BEH blow-up analysis TIdIEH DM
INERSDE Lpbh & 74. — bubble DA TIXARIIFEIT decay
LTW<o REEDAFEDPRINT Z2ME I/ NEMsER Y bO—
WLTWBIEIIR3. #F53TRVWRAICRIOZ>OMEDEE. &
BHEOH = D IC KB REESBEhTWAI LIRS, 0EDDER
BITHAEDAF L ORMBBLIINTA—FEEDDZ L TH>THM
SAERAREONERIBEYNETHRINTELAETH D, TOAEE
#%F3 LT matched asymptotic expansion ¥ RIEhEFEEEIN T3,
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2 HEAEXOHE
2.1 Modelling

HEILEEE 7 A - —ROMEPTH S PORFICL D 2DDEF
DIZAPIDHPHTIRTEE>TROMRITEITT 2. BYELIEYEL
TR0l L TIHARINT 2 &0 EMTH 2 5 ZOEMOETED S HEHE~
DT RHAT 28D & LT 1970 451 Keller ¥ Segel 12k hiRHHE W=D
Y &7/ TE e '

u=V-(Vu-uVg®) in Qx(0,T)
Ty =Av—avtu in £ (0,7)
%:gu_”:n on a0 x (0,T)

u]f:O = uﬁ(z)'r vlt:[) = ‘UD(J':) in 0

(5)

THDo ERELWKODPDERE 1 & Lz, TIT QCR? ITER 00 Hig
SHPRERBIR. v A EBAIERD M. u=u(z,t) DBBAT 2z € Q. B
Zite (0,T) OMEOEREH SO L TWD, v =z, t) BIEORET S
EEWEORETH D COMEHEZERTELEEOREHSHATEL LN
F=DTH B

(6) TEERMDABAFRENTH D, 22T v ¢(v) IZEIISNTH
R E LiTN 2. é(v) =v. ¢(v) =vP, $(v) =logv BEDEHNSN D,
FT I0ABRAIR w Q. F=Vu—uVe(w) IZHLT

afe= L
THIIEBTT. TROE —F P ulz, t) ORREHLDOLTVWD, 2O
ALY MBI —Vu & uV¢(v) OMTH BN RIEITHEDFOHEIERIT L
EDOTAMNCBEIT A2 L. TROBIEE TR LEEDT ¢(v) OEELR
HRILTZORWARICEGRIZ ., ThbbENEHSD LTINS,
o(v) BANHEEB G R L IDOI LIS THRTEIDTH S,

IR L 2 BEHOFERIBIETH b, LEYE v(z, 1) BB L—FD
BSTHR L —BORETHEICL VERENE 2B 6D T, BRER
EHECEEYESE L TO2THOA~NFEREERWI L 2H 5D L. #]
HIRMHREE o Tnd, 7> 0 X+ D ERERT. JO&HI D E
KE»>TOREMSSRICE s TORBEE D ERBVWRAT—NTHATWRI
ERLTWEDTH B,

HEARE L TORRSDBAFRIH B LBEIETHRN. 0B
BHERITEERT. TEUMEM T D 2O B D smoothing effect (L ¥ 7+
HANZE <o TAHIR S D RATHAEIC A L C it RIRAT R SR D —
HETT LI TED, YHESEATHNIREERTH D, o Z0 25
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EBEHIET u(z, t) > 0, v(z,t) >0 25 I IIRAFRECHERICHATSH
2, 2O CRIZY S TCERETEARL WS I DFEEE RS, ERLED
BADEEE Toa EBE Tha < +oo O ¥ EEEIAMRETEETSZEW
Do Tmax = oo D& FIIRFEARIFIE L 125,

SRS 2ENEHoRPrOTHEA BRI ERENWRERIIL > TH
Frrt oy, VEHEDZOZRT/ IIVAEROD 2 )Lk L, RSz
FHLEFTII k2, COLIREE Tnax < +oo THIUIFED /)
DNEEEHIDS T 1E S IT LD 2T 4o IWRHT DI LTS, A
DEETEIDLBEEIO/ WVAITIESTIAELIRE 2ITERE L ORITNE
ReEV. LPLESZOERARICOVTIZ L® JIVATEN, LEb-o
TROBRNVRIDEEIZZD L™ VLD +oo IZRBTEI LIS,
DRI I E S REIIBTIZ L EISNLDTH S,

=2f% 1973 £ Nanjundiah [13] & Tmax < 400 D& FZEZDRERIHB W
T ulz, t) i 6 BEEORTARICR 2123 L FRLED, ZOESMEZED
HOBUERMEICLOFEILL TN I KRS,

2.2 IBRFFLERRE
(5) iIZBWWT L FER]
le®ll, = llwoll,  (0<t < Tmax) (6)
BRI TODRERT . MEDED ¢) = v & LEHIORE
1 = V- (uV (logu —v}))

Ll
‘ /u‘(logu—v}:—f u|V (logu — v)[*

0 0

BREND (6) 5

d ulo u©= 1
dt g u‘ B

d
wmr = — | uv— | uv
L dtL L '

BT (B)FE2ALD

juv, = .[('rvt—Av+av)vt
o

= [ v+ ;;t (lel2 -l-avz)

THhh
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THIPH
w= [ wiogu~ [ wot3 (IVol} +alol)
A W2
{2 Lyapunov B,
G+ [+ [ui9ogu-u) =0 &)
a - Ja Q

B D ID. 2O X (5) DROBSHIAISEESIC BV TEERLG—FED%
BERETILETRT, S50 (7) POEHBETRWNVESFHIIBVWTER >0
Z&D logu—v=logo £2h, LIEH>T B)E2RLD

—Av+av =ce’ in Q

BRE5ND.
CCTOWHERLT A=y, £B<Lo u=ae® B a=)/ [ e’ &1
D A&RIS A% L L THMNEERENR
- ) v
—Av +cw:)\e“/fe" in 2, — =0 on 80 (8)
0 _ v
DHET B (8) AFEIZEHAE v =2/ 2H>TW 3,
1981 £F Childress & Percus (2 h % Q : MR v : BHEHITE 2 SlE)
BEHATROLSITER =,

1. 0 < A < 81 Tl Z DBEEBUSITRT W)

2 BRPEZ 2 LT NITSEOFARIE M NFNIE S <X T CH D

3. @ TIEBRDBEIHIZBNT |luwll, < 87 264F (5) ICBWLTHEOERIZ
BB I fuol, > 8% D& EIEDOBRHIET HED

ZOOFRUE Jager-Luckhaus [7). Nagai [10]. Herrero-Velazquez [4] [5] 6]
WL DR ENT Ei=. 2 Nagai-Senba-Yoshida [12] iZRDZ & &R LT
W,

L Q: AR uo =uo (JZ]) vo =vo (|z]) DIBEHEDIT Nuoll, < 87 DL H
{d Tnax = +00 723 ,
2. TNEADBEE uoll, <47 D& E Thax = oo E123

BOBRIZ DT LEEORUT LI DL ERShTE . Fhicd bt
DEFRDEE 1 IHIL sharp THBZ &b S, L 2IHE Childress-Percus D
FhE D Wh PN AE 3 28 HiE Nagai-Senba-Suzuki [11] & b3 258
EERTED, ZORIXTHRDIEHRENTVS,

1. 47 < Jlugll, < 87 T Tnax < 00 D ¥ FHRIFER Ld 1 IR LT
X% | _ .

2. —fCTHERRII B VT u(z, )dz 12 ¢ T Tnax IWBWT 87 LI ED
mass &2 6 RIS EfET S
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2.3 bubble & UL TOIEEIRT

TOE2EYBEETAI L TH AN, BRI LRVERES 87 LK
H\ mass OFERH S TVWRND, JOIEPEISLEILIEIHDAR
WOTREVDPLVAFED L, 25 TH2L T3 EHEOEYERTI
bubble DT> LRWHIELEX SN E, FBE LD Jager-Luckhauss LISRD
352 rigidness (2B 25D TH D Herrero & Velazquez (245 2 DDRR
%l matched asymptotic expansion SV TVWADTHS ! EE
1J§ > B9 LT Childress-Percus @ MR ) (IDEEHIFRREDHEE X TW
B ¥ I 2125 b XA EVR ARSI S TER TRV E B H
26N D, THLEILEEETDZ LT (5) DEFROBBEORRIENELD
ZEERBRTHEND,

¥4 (8) ITIXTAHEITFET 2. THROLBZOMIE H(Q) LOREE

1 a
o) = 3 IVoll + 5 1ol — Mg ()

DEGETH Do SO & LI o(z) DED D OEIAERZL I2Q) W
DETHEEAE Axlv) THH H'() x H () LOTRHIER

£x@.0) = [ (IVaF —pt) + 5 (]{]w)zwlldﬁ

T2 8850 EL £ = far P= 2/ Jpe’ THDs HICE
BRI DWW T 2 OB LERRECEEREEE —Ay OFNLICLIDEDD
TEDTED, I LIHBHAEGE L ZEM S OBRIZIZ RO L 5 12E85%
»dH 5.

FEH 1 V() P A>0IHTS (8) DT Av(V) ODRIEEDTSTIETH
L3 DETHE (5) OEFRE (U, V) EELU =AY/ [, ¥ i3HE
THbd. TEROBYHHE (uo,v0) B

oy =3, fluo ~ Ullyrogs, €1 flto— Vilgpgay < 1
BEAHETEE Thnax = +00 THD
Jim_[(®) ~Ullyy = Bm_[fo(t) = Vil = 0
YBBo ZIT | - Npiogs & Zygmund 2V THBo
22T (8) OREADMETH DIRDZENBRITTH B,
FH 2 EEENSE a> 05U {va} & (8) ODREDET

A— X €el0,+o0), oall — +oo
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BELDETDLEAFEITH LT E=1,2,--- DEFEELT Ao =4nf L 12
o ¢ IR LOBBROERENBERSOERD 2EE2ELELDTH
b, BRRONE CHIRBUIIAIZES (—A + a)y D Green BEYT control
T&3,

:n%ﬁh%t&®$ﬁﬁ%T$%o

L0 <A CIEFERBIRIIEE LRV

2.Q:FBRELET A = Q{a+p3) < dr DEEF A € (A, 47) ITBNWT
Ja(v) DIEEH global minimizer HEELET S

3. O AREET M > 4 DEE X € (Am, M)\ 7N IZBWT Lafv) @
mountain pass R SDELET S

EREL s d -Ay OE2FAEEEH ST, PolyiSzegs DEFFIHA D
5 |Qu; SEr, £=1841. THH 0<ae <1 TR A <dn ERRBIEIC
FE.

RRIIRROEEMIZET 2 RBICEHEETH B,

3 Q:EEELTIL 6> 0DBEHELTRAE dn,dn+68) ICHL a> 0
PbaihEiFhid (8) DT <TORE v(z) DEIALERR Ar(v) IRADEH
fExy>

IO DERNPS (8) OROMEIZET 2 (3] OEESEICES < FED
WEL BCEShEBOEENESN. EEFRICLY (5) OROEHIT
BT 28T LRI S h ((14))o

3 F-UEGROYEBEKE:Troo-—4

(8) {243 2 ¥5T Euler #(D vortex points (ZB8 3 285 1% (propagation of
chaos) 3 L UHEBEEIZRET 3 Chern-Simons-Higgs D7 — S8R (multi-
vortices DFBLE) BT 2 ([1], [9], [16])o FEERBRINIFIEITH AR
QCRrR? ko

—Av = Ae¥/ f e in Q v=0 on 80 (9)
A “
. &L flat torus Q= R/eZ x bZ LD

nAu:A(i%Gj&) in 0 ‘Lv:p (10)

WRESh S, JCTREFI DLW IBBIHEELTBER W,
Z OHERE anyon model & Lifh. FO condensate (multi-vortex) A%
PREEECES. WAV RAFTRLERDTNDILDTH D, HFRIC
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it (2 4 1)-Minkowski ZER3C D SUBOEFRTH > T, Lagrangean (2K
5— (Higgs) 3. Yang-Mills (Maxwell) 3. 5L 7F Chern-Simons 7'— 4}
O coupling TH 2. B#%D Chern-Simons JAHERS charge (D multi-vortices
(anyon) ZRBEIETNZEEIGN S,

Z 0¥ FTld Buler-Lagrange SREADHMTH 35 Yang-Mills IFZEX
DRV 8 D (reduced Abelian Chern-Simons-Higgs ) @ condensate fi2
% 2 P U large distances & low energies TEEL LI TNV D, &
21 Taubes & D)7 vortex TR & FARO A I L D, HREMEMH)
% LB vortex BRO&R =T EHEARD Bogomoln'y ED self-dual 2$
Drizd L5 Higgs FF oo v VERRIENTED. JOLICLTH
shiEdORLTE R? 2B 5 2ROIERIEE MRS 12A T ground state
TR Y U THEMIT symmetric vacuume RN T\ 5,

I DHERITHNT electric charge % magnetic charge DB FEEN=AE
5 topological solution T3 9. non-topologjcal solution TlE I M6 15 fractal
T#Hd, ¥H 56 Spruck, Yang, Wang, Jackiw, Lee, Weinberg ZiZ L >T
FOHFEADERHSI N

'tHooft DB T b ERRMMLT S 5, Higes ROFREHEL
Chern-Simons @ coupling FE# k > 0 £+4/h& < L7z & & multi-vortex
BROEIET 2 &85 Caffarelli & Yang (2 X DIEFAZ T\ 5, [16] ZED
#1412 & b mountain pass type O 2 ORROEAEIBLEND k | 0 IZ1)
WUSEHT (10) 232 LTWE IR 0E DR, LEF2TIOLE
2 (10) OROHENS T THSPITRNIE, 5 2 O multi-vortex ARDIEE
22D (3E) HEOREIIREC 22, [16] i (9) IKBIT 3 [15] TS
HEER (—EM) RRELEY TOROMRTIOAKELTERETE
LSHHBLTWEZ PO >TE TS,

ABRFREECE D EFRFETHAORMRTTHCEDA, BURRCARLTHASD
BMEPERECAEIUREBFATLE U, CIRBRULLHIBOR L CHBERT
5HDTY,
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A Numerical Analysis of Time-Dependent Schodinger Equation
and Quantum Chaos

H. Igarashi, T. Yoshikawa and T. Honma
Graduate School of Engineering, Hokkaido University
Kita 13, Nishi 8, Kita-ku, Sappore, 060, Japan

Abstract

This paper describes a numerical analysis of the time-dependent Schrédinger equation
(TSE) governing the dynamics of an electron which ballistically moves in single electron
devices. The numerical methods considered here are the finite difference method (FDM)
with the explicit central difference scheme, and Trotter-Suzuki method (TSM). In the
TSM the exponential function of space differential operator, which is the formal solution
of the TSE, is approximately evaluated by eigenvalue analysis. The FDM is shown to
be conditionally stable when applied to the TSE. On the other hand, the TSM, which
computes the time evolution of the wave function by multiplication of unitary matrices,
is unconditionally stable. The convergence of the TSM of the lowest order is shown to be
slower than that of FDM when their spatial approximation is identical. The numerical
results show that the wave function of an electron in a stadium-shaped domain forms

complex spatial patterns, which suggest the quantum chaos.

Keywords: Time-dependent Schrodinger equation, Finite difference method, Trotter-Suzuki
method, Numerical stability, Quantum chaos

1 Introduction

Solids have two characteristic length: the inelastic scattering length [;,, and elastic one /.
The former is the characteristic length for which electrons are scattered by lattice vibra-
tion. If the scale of a solid is smaller than [;,, which strongly depends on temperature,
electrons can move through the solid without losing its phase information. In this situa-
tion electrons interfere with each other so that the quantum effects due to this electron
coherency can experimentally be observed. On the other hand, I, usually shorter than

I;n, concerns the elastic scattering of electrons by impurities and lattice defect. Nowadays
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devices smaller than [, can be produced by the micro electronics. In such micro-devices
electrons can ballistically move as if they were in vacuum. Under these situations elec-
trons behaves as individual particles rather than collective whose property is described
by the band theory. Since the engineering applications of this new state are expected to
open a door to novel semiconductor devices, considerable attention has been paid on this
research topic. ‘

The motion of an electron in the ballistic regime is expected to well be described by
the Schrédinger equation for single electron. For this reason the de\.ri_ces which operate in
the ballistic regime are called single electron devices or nanoscale devices. The electric
properties such as conductivity of the single electron devices immersed in magnetic fields
have extensively been investigated, e.g., (1, 2] since they provide useful data for the study
of the quantum chaos,

The behavior of a ballistic electron in magnetic fields has been analyzed by the bound-
ary and finite element methods [3, 4] provided that the system under consideration is in
steady states. In these analyses electrons are treated as waves so that the uncertainty of
the position of the electron is infinity.

In this paper motions of a wave packet, which stands for an electron having dual
properties of wave and particle, are numerically analyzed taking effects of magnetic fields
into account. Transient behavior of the electron wave packet is computed by numerically
solving the time-dependent Schrodinger equation.

Since electron wave packets are usually modulated by waves whose wavelength is
much shorter than the wave-packet width, the distance between space grids must be
much shorter than the wave-packet width. The resultant matrix, therefore, is expected
to become too large for implicit schemes. For this reason the Schréodinger equation is
here solved by two explicit methods : the finite difference method (FDM) with the central
difference scheme, and the Trotter-Suzuki method (TSM) [5, 6] based on matrix expansion.
The performance of the two methods is compared by computing motions of a wave packet
in a rectangular and stadium-shaped domain connected with electron waveguides. Finally
chaotic behavior of an electron wave packet in the stadium is graphically displayed.

2 Formulation

Let us consider an electron in a uniform magnetic field, confined in a two-dimensional
region spanned by coordinates system (z,y). The dynamics of the electron is governed by

the time-dependent, two-dimensional Schrédinger equation

., oY (—1hV +eA)?
ih— = — .
ot 2m

b, (1)
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where 9 is the wave function, A is magnetic vector potential, and m is the effective mass

of the electron. Equation (1) is written in a non-dimensional form as

oy

% =
where V, t and A are normalized by length d, period T corresponding to the electron
energy, and Bod, By is applied magnetic field, and a = AT/(2md?), B = eByd®/h. The
constant «, which determines the electron’s energy, can further be rewritten using the
relatioﬁships 2nh/T = R*k?/(2m) as '

ia(V +i18A)%%, (2)

2 :
T @

where k denotes the wavenumber of the electron.

2.1 Finite Difference Method

By employing the central difference approximation at a time step n, we have an explicit

scheme
n— . 6 n n 4] £ ™
ot = 9 1+210fE§('4’1 + 93 + 95 + Y5 — 44p)

)

—aﬁg[(Asz)? — (A:)5 + (A)y — (Ay¥)

+Azo{Yr — ¥7) + Ap(¥7 — ¥i)]

—i8aB? ALYT, (4)

where § and A denote the time-step and grid sizes, and indices 0, 1, 2, 3, 4 represent the
grid points (¢,7), (i +1,7), (i — 1,7), (5,7 + 1), (¢,5 — 1), respectively.

2.2 Trotter-Suzuki method

In this method we begin with the formal solution of (2) which can be regarded as a first
order differential equation with respect to time,

d}(t) — eita(V+iﬂA)2_ ) ) (5)
Note that the exponent in (5) is an operator. From (5) it follows that
¢(t + 5) — e.iéa(v-l-iﬁA)z-qb(t), . - (6)

for which we introduce approximation in the following. The operator in the exponent in
(6) is now decomposed into two components as

(V+iBA)" = Qi + Qq (7
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where

& 8 a 1., 4
Q.= a_:cf- +if [EL_-;A; + Aia_ﬂ:;] — Eﬁ AL, (8)

2 = 1,2 correspond to z and y, respectively. Introduction of the central difference approx-

imation in space for -Q, yields

5242 .
-5 - ﬁ+1182c11:I 0
: . A .
Q = a7 —iflay ‘%—ﬁ_zﬂ ﬁ-l-lﬁ,az; (9)
! 0 a5 —ifa, —%—‘B—-—ﬂ‘: cee

where a; = (A,; + Az i41)/(24), and Q; is expressed in matrix form in a similar manner.
We can see that the matrix Q; is Hermitian so that ¢¥*(Q+Q:) g unitary. We further

decompose Q; into two components in the form

Ml o ... 61 0
Q1= 0 M3 R 0 ]_\/"[2 SR I ‘ (10)
where the Hermitian matrix M; is defined by
& n+iG
- M; = . , 11
M [ 7—iG i (1)

&= —1/A— %A%, /4,7 =1/A® and {; = Ba;. The first and second matsices in (10) will
be denoted by Q; and Qi,, respectively, and matrices Q,; and Qa, are defined from Q,
likewise.

Now we have a product formula for the amplitude factor in (6), i.e.,

cda(V+iBAP a2, Qs
~ H eiéaQ;,-’ (12)
%]

where ¢ and j run from 1 to 2. The matrix €291t in (12) can be evaluated by performing

eigenvalue analysis as follows:

ei&aMl 0 .
edaQu _ 0 M ... , (13)
where . '
isam; _ €07 [ Acosy —ivsiny (G — in)siny
e 1 — . . ; . , (14)
A —({; +in)siny  Acosy + iv;siny

ui = (G + Ge1)/2, v = (G = G41)/2, 7 = Ma and X = (/p? + (2 + v?. Similarly =@
for {1,2}, {2,1}, {2,2}, can easily be evaluated. In conclusion the time evolution of Pis
computed from (6) and (12)- (14). Note that since %M j5 unitary, the resultant amplitude
factor (12) for this method is always unitary.
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2.3 Numerical stability

Theoretical analysis of numerical stability of the finite different scheme (4) is not easy
because it contains the vector potential which is a function of position, and because the
boundary condition would affect on the stability. When both effects are neglected, we can
apply von Neumann’s analysis to (4). That is, assuming the form ¥"(z,y) = P eilk=otkyy)
in (4), we obtain

©™ 4 2iAp™ — "t =0, . (15)
where A is defined by

Al = 40:% [sin2 (sz) + sin® (%)] . - (16)

From (15) it follows that ¢™"! = c¢™, where ¢ = (—Ai & v/—A? +1). It can be seen that
lef =1 if A <1 while [c| > 1if A > 1. Hence (4) is concluded to be conditionally stable.
The stability condition for A can then be evaluated to have

sa% <1. (17)

(In contrast the diffusion equation in which ia in (4) is replaced by a is proved to be
unconditionally instable for the scheme (4).) As mentioned above, this result is valid
provided that the effects of magnetic field and boundary conditions are negligible. In the
next section the stability of (4) will numerically be evaluated.

On the other hand, the Torotter-Suzuki method, in which the amplitude factor (12) is
unitary, guarantees unconditional stability being independent from the effects of magnetic
field and boundary conditions. '

3 Numerical Results

3.1 Numerical model

Figure 1 depicts the numerical model under consideration. A wave packet goes into a
domain 0 after passing through an electron waveguide. The uniform magnetic field is-
assumed to be applied only on Q. On the walls of the domain and waveguide the boundary
condition ¢ = 0 is imposed. In the analysis the wavenumber k of the electron, which
determines the electron’s energy, is always taken to be 10/d. The wave packet in the
waveguide is assumed to be expressed by

b= =¥ /2% +iky) sin[m(z + d/2)}. (18)

The Fourier transform of (18) gives

P = ifz—ﬂ_- ‘/._(: E_dz(k'_k):/zeik'ydk'sin[fr(ﬂ: +d/2)], (19)

— 176 —



wave packet

Figure 1: A wave packet moving into domain Q

from which we can see that the Fourier spectrum has also the Gaussian form with a peak
at k in wavenumber space. It can be shown that the wavenumber k& must be well larger
than = /d for propagation [1]. Moreover the grid space A is required to be well smaller
than the wavelength 27 /k for numerical analysis. These requirement leads to extremely
dense finite difference grids so that implicit schemes are thought to be ineffective for the

numerical solutions.

3.2 Rectangular domain

The motion of a wave packet which is ejected from a waveguide and moves in the
rectangular domain shown in Fig. 1 is analyzed by FDM and TSM. This model has
been analyzed by the boundary element method [7]. In this analysis, the steady electron
probability density is computed by solving the time-independent Schrédinger equation on
the basis of the wave picture of electrons. According to this result, the electron behaves
like a classical particle moving in magnetic field, that is, its motion resembles the Larmor
gyration.

Figure 2 illustrates the time evolution of the probability density 1* computed by
FDM. It can be seen that the locus of the wave packet, which has the duality of particle
and wave, is strongly bent by the magnetic field to form the semi-circles, which suggest
the Larmor gyration as seen in the steady state computation mentioned above. Moreover,
when the wave packet bounds on the domain wall, there appear interference fringes due to
the wave character of the electron. The further computation of the time evolution of this
wave packet shows that it gradually diffuses in space. The numerical stability of FDM for
this model is shown in Fig. 3. One observes that the increase in either & or 8 makes the

computations instable. Moreover, under this computational condition the marginal value
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Figure 2: Time evolution of probability density computed by FDM, 8 = 2.0,A =1 /19,4 =
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Figure 3: Numerical stability diagram for FDM (A = 1/9)

for 1/4 is evaluated from (17), that is

1/6 = A/8a
= (kdA)*/16x
~ 40.7, (20)

for B = 0, which agrees with the result shown in Fig. 3. On the other hand the uncondi-
tional stability of TSM was confirmed by numerical experiments.
Table I displays convergence of the numerical solutions, measured by the normalized

error defined by
%% — Yo (¥ — %j)‘_

E(":b: 1n[’O) - Ej 711’0_1'"»055
The error ¢ is evaluated for 3 = 2.0, A = 1/19 at t = 29/3. In table I, ¢(FDM — FDM)
means €(v,¥y), where ¢ and ¥y are computed by FDM, and ¥ is computed for the
minimum §, i.e., 1/1200. We use the same rule for ¢(TSM — TSM) and £(TSM — FDM) .

That is, the first two errors measure the convergence of each numerical scheme, and the

(21)

last error measures the distance between the solutions computed by the two methods.
We can see from Table I that the convergence of FDM is significantly better than that

Table I: Convergence for rectangular domain model

1/ ¢(FDM — FDM) ¢(TSM — TSM) ¢(TSM — FDM)

300 6.2 x 10~* 9.1 x 10! 9.7 x 10~}
600 1.2 x 1072 4.3 x 10T 8.1x 1071 .
900 ~ 1.0 x 10°® 9.2 x 1072 6.2 x 1071
1200 - - 4.8 x 1071
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of TSM. Lax’s theorem guarantees that if FDM solution converges then the converged
solution is the exact solution. Thus ¢(TSM — FDM) would be regarded as a measure of
the errors in TSM.

The computing time for FDM was more than two times shorter than that of TSM.
This can be understood by comparing (4) with (6) and (12). That is, the latter requires
four steps of computations at each time step while the former requires just one step.

3.3 Stadium-shaped domain

The motion of a wave packet in a stadium-shaped domain is analyzed. The time evolution
of the probability density of an electron, computed by FDM, is shown in Fig.4. The
wave packet is éjected from the left hand side of the stadium where no magnetic field
is imposed. We clearly observe the interference fringe patterns due to reflection of the
waves from the wall. The distribution gradually becomes very complicated. The further
computation shows the more complicated patterns which consist of a number of small
islands whose distribution seems to be random. These results are thought to suggest the
quantum chaos. _

Figure 5 shows the time evolution of the probability density in the stadium where
magnetic field is imposed. The locus of the wave packet is bent to collide with the wall.
The complexity of the pattern in Fig. 5 seems to be lower than that in Fig. 4. This suggests
that the magnetic field has a tendency to suppress the appearance of the quantum chaos.

Table II displays the convergence of the numerical methods for the stadium-shaped
domain when 8 = 0.6, ¢ = 50/3. Although FDM solution converges rapidly also in this

case, TSM seems to require more fine time-step size for convergence.

4 Conclusions

In this paper ballistic electron motions under magnetic fields have been analyzed by
numerically solving the time-dependent Schrédinger equation. The two explicit numerical

methods, FDM and TSM, have been chosen for the analysis. Although FDM is shown

Table II: Convergence for stadium-shaped domain model

1/6 e(FDM — FDM) &(TSM — TSM) &(TSM — FDM)

300 1.4 x 1074 9.9 x 107! 9.9 x 10!
600 45 x 107° 7.9 x 107! 9.8 x 10~}
900 9,2 x 10~° - 2.8x107! 9.3 x 10°}
1200 - - 8.5 % 107!
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Figure 4: Time evolution of electron probability density in a stadium without magnetic
field, 8 = 0.0,A =1/19,8 = 1/300
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Figure 5: Time evolution of electron probability density in a stadium with magnetic field,
B8=0.6A=1/19,6 =1/300
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to be conditionally stable by theory and numerical experiment, TSM is confirmed to be
unconditionally stable, as expected from theory. FDM is superior to TSM of the lowest
order used here from view points of convergence and computing efficiency. The accuracy
of TSM could be improved by using a symmetric formula in the approximation (12) {5, 8].
This technique, however, increases computational cost. .

The pattern of the distribution function of an electron in the stadium-shaped domain
suggests the quantum chaos. The magnetic field has a tendency to suppress the chaotic

motion of the electron.
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Multivalent Property of Charged Particle Trajectory Estimation
by Using Lienard-Wiechert Superpotentials
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Abstract

The Lienard-Wiechert potentials can be derived from its superpotentials. Then a special kind of the
superpotentials have a clear physical meaning as the source particle coordinates. It was shown that , to
use the concept of the Lienard-Wiechert superpotentials, the charged particle trajectory can be esti-
mated from the electromagnetic fields produced by the moving particle. In that work, the main inter-
est was to show the possibility of the source particle trajectory estimation, so some ideal situations
were assumed there, for example exact field value measurement, single point source particle, etc. For
these assumptions, this paper discusses influence of measurement error and source particle bunching
in the estimation procedure. The consideration is done by a numerical method because the time
domain measurements of the electromagnetic radiation fields are still very difficult technology. Itis
found that the estimation method is tough for the measurement error but seriously affected from i:ar—
ticle bunching. | : | I

I{eywords : Lienard-Wiechert potentials, superpotentials, trajectory estimation

INTRODUCTION

One of the authors introduced a concept of the Lienard-Wiechert superpotentials which was de-
rived from consideration on the particle retarded time and positions [1]. Then, the superpotentials had
a clear physical meaning as the source particle coordinates. After that it was also shown that, to use
the concept of the Lienard-Wiechert superpotentials, the charged particle trajectory can be estimated
from the electromagnetic fields produced by the moving particle [2][3]. In that work, the main interest
was to show the possibility of the source particle trajectory estimation, so some ideal situations were
assumed there, for example exact field value measurement, single point source particle, etc. To recon-
sider these assumptions, this paper discusses influence of measurement error and source particle bunch-
ing in the estimation procedure. The consideration is done by a numerical method because the time
domain measurements of the electromagnetic radiation fields are still very difficult technology.
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CONCEPT OF LIENARD-WIECHERT SUPERPOTENTIALS AND ELECTRON TRAJEC-
TORY ESTIMATION

Electromagnetic fields produced by moving charged particles are described by the Lienard-Wiechert
potentials.

e |
o (tx) =
4ne R(,) - R(t,)cw(tr) (1)
v(t)
Ax)=—° -
4ne ¢ R(t,) — R(tr):v([r) | (2)

c is the velocity of the light, € | is the dielectric constant, v(t) is the particle velocity and R(t) = x - y(t)
is the displacement vector from a source particle position y(t) to an observation point x . All the value
of the right hand side are evaluated at the retarded time t, which is defined by,

L= x — ¥(t,)| o)
r c
Accordingly, the retarded time t-is a function of the observation coordinates t and x.
t, = t.(t, x) (4)

and the retarded position y(t ) as well (Fig.1). This causality relation contains essential characteristics
of the Lienard-Wiechert potentials, for example, complex spatial and frequency structures of the syn-
chrotron radiation are understood by appearance of the properties of this relation. Concerning on the
causality relation, a concept of the Lienard-Wiechert superpotentials is introduced as follows [1],

SEEO , .

Ot (tx) = ¢ (t,x) (5)
8naoc

Ly, (tx)) = A (t.x) (6)

] denotes the D’ Alembert operator. The retarded time and position are “potentials of the Lienard-
Wiechert potentials”.  Here one find analogy with the inhomogeneous wave equation for the scalar
and vector potentials in Egs.(5) and (6),

X
- O(t,x)
R = x-y@) .-

S(t,yt))

Fig.1 Moving particie and retarded time
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8n£0

Ot (tx) = ¢ (t,x) (N

OA@x) =

eO& ’ ®)
This analogy shows us a possibility of a charged particle trajectory estimation method from electro-
magnetic fields. To solve Eqs.(7) and (8) means to obtain the functions t, and y(t) from ¢ (t) and A(r)
and it is just estimation of the particle trajectory from the electromagnetic fields. This kind of estima-
tion is indeed possible but achieved in a slightly different way [2][3]. Firstly, we shall explicitly
express the function y(t ) by the observation coordinates t and x as follows,

. r2n
_ 1 y1 : o x—y@l
y (t.x) Yo (t,x) + py nz; o sin [n (mt o m—c—- dy (o) 9)
10
On the other hand, the Fourier expans:on of for the electric field corresponding to this motion is
oo 2n
E (tx) = —1—- Z w X sin {n mt—c-m'x—_l(i)l do
41c2£ x| gy | € Ixl ¢
0 { 0
21 . (10)
- sin [n Ot—0—® x =y @I} dy (0) do
c do
0 .
These two functions are also expressed in the following forms,
tX) = tx) + ! ! t
y(x) =y X T - 4 - Bu(tx) an
n=1
[e o]
E (1) =__f.0i_L [ g (tx)e ] g (tx)]
' 4,528'03 x| q=1 [ X x|) “o (12)
where the vector function g (t,x) are defined as follows,
2n
= | k= y@l|dy @
gn (I,X) - s1n [l’l ((I)t g—@® c do do (13)
If we ignore the first term of Eq.(1 1),
4me ~C
0
L o =g Y L 7 Byt a9
n=1 n

where y | is the perpendicular componcnt of y to the normal vector x /1l and E_denote the n-th
harmonic component of the function E ,

E(tx) = Z En(t,x) (15)
n=1

The relation (14) are obtained by comparison of each Fourier component of Egs.(11) and (12) (See
Fig.2). Then, y, is regarded as a projected trajectory of true 3D trajectory to a perpendicular plane to
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x/Ixl. Accordingly, if we observe the electric field on three axes at a distance, the Fourier components
of each observation data give us the Fourier component of projections of the 3D particle trajectory to
each coordinate planes (Fig.3). Therefore, the projected trajectories to the coordinate planes are cal-
culated summarizing up all the Fourier components and 3D true trajectory can be reconstructed from
the projected trajectories. Consequently, we get the particle trajectory estimation method based on the
concept of the Lienard-Wiechert superpotentials. (To do the concrete trajectory estimation, some
more data processing are required, cf. the treatment of the first term of Eq.(11) (see Ref.[2]{3] for the
details).)

DISCUSSION ON PRACTICAL SITUATION AND NUMERICAL SIMULATION

In the above trajectory estimation procedure, some ideal situations are assumed, especially

- exact electric far field measurement

- single charged particle motion
To make the estimation scheme approach to practical one, the following modifications are required for
the measurement data :

E(tx) — E((tx)+ e (tx) (16)
E(tx) — Z El (tx) ' | a7
i

where e(t,x) is random measurement error which is much smaller than E(t,x) and Ei(t,x) is the electric
field produced by i-th particle. For the modification (16), Eq.(15) becomes

E(tx) = Z En(t,x) + Zen(t,x) (18)
n=1 n=1

Then it can be predicted that most of components of e (t,x) are concentrated to comparably higher n
because of the random function. Accordingly, we can expect that the measurement error will not
seriously affect to the estimated trajectory. On the other hand, if the charged particles have the Gaussian
bunch distribution, the superposed electric field (17) loses the higher harmonics components compar-
ing with the wave length equal to the bunch length.

n
C

E@o = LEwx = LE (t0) (19)

i=1 n=1

X X
@ 7 T

(g X ) X
g, - &, le) Ix!}

Fig.2 Vector function g (t,x) and projection
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where n_is roughly defined asn @ =1/0¢ ( w is fundamental frequency of the particle motion, 0
is bunch length ). This means that a large amount of information may be lost from the superposed
field. The above considerations are also confirmed by numerical simulations. The figures 4(a) and (b)
are estimated and original trajectory for circular motion with the ideal situation and Figs.5(a) and (b)
are for helically circulating motion. The velocity of the particle for all the cases is taken to be 95% of
the light velocity. On the other hand, Figs.6(a) and (b) are for circular motion with 3% and 1%
Gaussian random measurement error respectively and Figs.7(a) and (b} are for the helically circulat-
ing motion. And for the case of Gaussian bunch particles, the estimation is was impossible even for
the bunch length = 0.1% of the total trajectory path. The projected trajectories are in Figs.8.- One find
inconsistency between the projected trajectories.

SUMMARY

This paper has discussed influence of measurement error and source particle bunching in an particle
trajectory estimation procedure based on the Lienard-Wiechert superpotentials. It is found that the
estimation method is tough for the measurement error but seriously affected from particle bunching.
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Fig.4(a) Estimated trajectory for circular motion with ideal situation

Fig.4(b) Original trajectory for circular motion with ideal situation
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Fig.5(a) Estimated trajectory for helically circulating motion with ideal situation

Fig.5(b) Original trajectory for helically circulating motion with ideal situation
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Original trajectory

Fig.6(a) Estimated trajectory for circular motion with 3% Gaussian random measurement error

Original trajectory

Fig.6(b) Estimated trajectory for circular motion with 1% Gaussian random measurement error
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Original trajectory

Fig.7(a) Estimated trajectory for helically circulating motion with 3% Gaussian random measurement error

Original trajectory

Fig.7(b) Estimated trajectory for helically circulating motion with 1% Gaussian random measurement error
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X

Fig.8 Projected trajectory for the case of Gaussian bunch particles
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On the Treatment of Boundary in Incompressible Flow Simulation
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Abstract

In the present study, we analyze the nonlinear qualitative structure of asymptotic nu-
merical solutions calculated by solving the Navier-Stokes equations directly. Some kinds
of finite difference schemes are applied to the incompressible Navier-Stokes equations. Ex-
plicit method and the well-known marker-and-cell(MAC) method are used. The model
adopted in the present study is the flow around two-dimensional circular cylinder. The
dependence of the temporal discretization parameter, A¢, and the dependence of 4th order
artificial viscosity terms on structure of asymptotic numerical solutions are discussed. Non-
linear dynamics approaches are utilized in order to analyze the structure in detail. For the
nonlinear dynamics approaches, time series of the drag coefficients are used. The attrac-
tors are reconstructed and classified into several types and the stability of each attractors

are compared on the basis of several computational conditions.
Key Words: Numerical simulation, Unsteady incompressible flow, Nonlinear dynamics
1 Introduction

In this paper we want to analyze the characteristic behavior of quasi-steady state
numerical solutions of the Navier-Stokes equations by utilizing the nonlinear dynamics.
approaches such as bifurcation diagram and so on. In the recent physical literature, there
are numerous references about the computed chaotic behavior. However, chaotic solutions,
even when true solutions of the original differential equation approach limit cycles or fixed
points, are often obtained as a consequence of the omission of the local discretization errors
in the transfer from the continuous differential equations to their discretized counterparts.
They are often called spurious solutions or ghost solutions.~% We investigated typical
features of stable and unstable spurious asymptotes (periodic points, limit cycles, tori and
chaotic motions) which are given by the discretizing some type of fundamental nonlin-
ear differential equations, one- and two-dimensional Burgers’ equations and the Lorenz

equations.8~?) In those reports, we studied the characteristic behavior of the asymptotic
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numerical solutions of those nonlinear differential equations. In particular, we discussed the
dependence of initial data and boundary conditions on the nonlinear instability. Though
the structure of solutions becomes simple as the dimension of discrete dynamical system
which corresponds to the number of spatial grid points increases, the spurious solutions
appear in all of those cases. Even if we adopt the more accurate scheme, e.g. high-order
Runge-Kutta scheme, the appearance of ghost solutions may be inevitable. As described
above, the structure of the numerical solution is often complicated in the cases of scalar
equations by the nonlinear instabilities even below the linear stability limit. By the way,
how about the structure of the asymptotic numerical solution in the case of the system
of fluid equations? Recent development of supercomputer has made it possible to cal-
culate the complicated unsteady flow fields. Though direct numerical simulation results
concerning the complicated unsteady flow structure, " numerical turbulence”, are reported
in many references, it has not been left unknown whethere this ”numerical turbulence”
corresponds to the true solutions of the original fluid equations or not. The correctness of
the computed results are evaluated from the view point of comparison with experimental
studies or physical intuition of researchers. In many cases, computed results are discussed
by using the flow visualization technique, comparing the averaged C,(Cy(drag coefficient),
Cy(lift coefficient)) values with experimental data, calculating some statistical quantities
and so on. Though these methods are usuful to discuss the simultaneous and global struc-
ture of the computed flow fields, most of those methods are not so effective that we can
not elucidate their clear unsteady characteristics in detail. It is no doubt that most of
the fruitful results by large computations are left untouched without adequate analyses
in many cases. In this paper, we apply the nonlinear dynamics approaches which were
used in the case of simple cases to analyses of the unsteady structure of numerical results
of direct simulations of the practical fluid motions. Generally speaking, these analyses of
the nonlinear structure are equivalent to studies of instability of dynamical system. In
the present study, we adopted the flow around the circular cylinder as the simple model
and discussed the difference of the structure in some cases of the low and high 4th order
artificial viscosity terms. Furthermore, we try to analyze the dependence of the grid points
on the calculation results of practical systems.

On the other hand, researchers in the field of computational fluid dynamics select
the suitable scheme in order to get the physically reasonable results from many kinds of
numerical schemes, e.g. incompressible and compressible ones, explicit and implicit ones
and so on. The most popular schemes are some kinds of upwind schemes which stabilize the
system. In our previous reports, we also discuss the dependence of some upwind schemes on

the nonlinear structure of the asymptotic numerical solutions.?) In the case of the upwind
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spatial discretization, no spurious numerical solution appeared in some cases. However,
we got many types of complicated spurious solutions in some other cases even when we
used the high-order accurate upwind schemes. As for the practical computation of fluid
motion, high order accurate upwind schemes usually applied and the reasonable solutions
have been given. In some studies, the bifurcation scenario and the chaotic behaviour have
been reported. In particular, Pullium et al. studied the nonlinear dynamical structure of
the physical variable such as the velocity component in the subsonic flow around the airfoil
by using the compressible scheme.!®) In that paper, they not only showed the bifurcation
sequence but also evaluated the effect of the grid refinement and some numerical schemes.
The main purposes of our paper are the comparison of influences of the schemes on the
qualitative structure and to clarify dependence of the amplitude of 4th order artificial
viscosity term on the asymptotic numerical solutions in the practical computation of fluid
motion. ‘

The numerical schemes used in the present paper, the incompressible one, are ex-
pressed briefly in Section 2. Other conditions of computations such as the grid systems,
boundary conditions and so on are also discribed. In Section 3, the depéndence of the am-
plitude of 4th order artificial viscosity term and grid points on the asymptotic numerical
solutions are discussed. Furthermore, we evaluated the dimension of the attractors which
are reconstructed from the time series of the Cy data and make the quatitative differences
of the attractors clear.

2 Basic Equation and Numerical Algorithm

2.1 The incompressible Navier-Stokes equation
The non-dimensional governing the incompressible Navier-Stokes equations and the

continuity equation are given as follows:

divV =0 (1)

ov 1
—_ . V=- —_—
5 + (V- grad) gradp + RBAV , (2)

where V = (u,v), p and Re denote velocity vector, pressure and the Reynolds number,
respectively.

2.2 Numerical algorithm

The Poisson equation for pressure can be derived on the basis of marker-and-cell( MAC)
method.1t) -

Ap = —div(V- grad)V+R (3)
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where
R=——+ —AD , D=divV .

In the present study, we employed the generalized transformation of coordinates, (z,y) —
(€,7m), then we get the transformed Poisson equation as follows:

Ap=-— (Yntig = Yetn)® + 2(@etun — Tyue) (Ve — Yevy) + (Tgvn — Ty )
= 2

_ Ynlg — Yey + TgUy — Ty 4
JAL ’ ...{4)

where J is the Jacobian of transformation. The Poisson equation is solved using SOR
scheme. For the time marching of the Navier-Stokes equations, simple Euler forward
scheme and second order improved Euler scheme are considered. All spatial derivatives
except for those of the nonlinear convection terms are discretized by using the central
finite difference. For those of the convection terms, we considered parameter ¢ in order to

discuss the effects of 4th-order artificial viscosity term,

Ou  fi(=uigo + 8uimy — Buipy + uia)

o 12A¢

te | il (wigg — du;—y + 6u; — 441 + ui2)
4A¢!

..(5)

Eq. (5) is based on the third-order upwind schemes'?. In the present paper in which the
two-dimensional generalized coordinates are used, €¢ shows the parameter for £-direction

and e, for n-direction, respectively.

2.3 Grid systems

The O-type grid systems are used in all cases. The body surface corresponds to K = 1,
the circle of which radius is equal to 1. Outer flow region corrsponds to K = KMAX, the
circle of which radius is set to from 30 to 35. The mesh points are strongly concentrated
in the boundary-layer and the minimum spacing normal to the surface of the body is set

to be less than \(/)?Le or J(fine grid case).

2.4 Boundary conditions
The boundary conditions on the body, surface are as follows: The no-slip condition
is used for the velocity components. At the far boundaries, the free-stream values are

specified.
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3 Results and Discussion

The sampling period of the time series of Cy4 is from T'(non-dimensional time)=400
to 500. In this period, we can regard the flow fields as the quasi-steady state. As it is
well-known from a lot of historical studies, the larger the Reynolds number becomes, the
more complicated the flow field becomes. At Re=2000, the flow field is still periodic.
We compared several characteristics of structure of quasi-steady flow field on the basis of
nonliniear dynamics approaches such as the three-dimensional profiles of attractor which
are reconstructed from the time series of Cy data. We got some asymptotic solutions such
as limit cycles and so on for different parameter £. Figure 1 is the comparison of the
typical characteristics of structure of attractors given from the time series of Cy. We can
classify these asymptotic solutions on the casis of the qualitative features of reconstructed
attractors by using the nonlinear dynamics approaches. Figure 2 is the dynamic regimes
which shows the basin of asymptotic numerical solutions. In the cases of quite low ¢ value,

-the profile of time series of Cy becomes non-periodic and the structure of solutions looks
like the one which is often given in the calculations for the higher Reynolds number case.
Therefore, if we used the upwind scheme, there is possibility that we may get the ghost
solutions. From this figure, the region of each attractor looks to be separated. However,
it is shown these solutions depends on the initial condition sensitively. Figure 3 shows
the dynamic regimes of attractors which are given from the calculations from the different
initial data which have been given in other calculations. In this figure, attractors from
the different initial data are shown by different symbols. It can be seen that the types of
attractors sensitively change by using the different initial data. This result shows that the
stability of these numerical solutions are almost same and they coexist even in the same &
value case. When we performed the calculation under the hard condition of convergency for
the Poisson equation for pressure, we got other different types of attractors, Therefore, we
suppose that this fact of coexistence of the asymptotic solutions sensitively depends on the
degree of convergency of the Poisson equation for pressure. On the other hand, we studied
the influences of grid points. In the fine grid cases shown in figure 4, it becomes a little
hard to see these ghost structure. This shows that these characteristics sensitively depend
on the treatment of the bounday conditions. Characteristics of the flow fields can be easily
given by the contour plots of physical variables such as the pressure, velocity components,
vorticity and so on. However, clear differences between the some periodic motions can not
be found from these approaches. What we want to emphasize is that we can not realize
the unsteady spurious structure only from the instantaneous global structure of the flow

field. Therefore, in addition to the conventional approaches, we must use the nonlinear
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Fig.3 Sensitive dependence of initial data on the types of attractor.
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dynamics approaches in order to discuss the unsteady structure of asymptotic numerical

solutions.
4 Conclusions

The supercomputer and the development of visualization technique have made it pos-
sible to simulate the complicated phenomenon such as flow motions as if they were open
before our eyes actually. However, on the other hand, the strong nonlinearlity of the com-
putational discrete dynamical system still makes it difficult to make the computed results
reliable as shown in the appearance of the spurious numerical solutions. In the present
study, we showed the spurious numerical solutions appear not only in the cases of low-
dimensional simple nonlinear differential equations such as the Burgers’ equation and so
on, but also appear in the multi-dimensional and system equations such as the flow equa-
tions. In order to discuss the reliability of their numerical solutions, since only the usual
methods used in the common analyses in the field of computational fluid dynamics is not
adequate, we need more effective methods to analyze the complicated unsteady structure
of the numerical solutions in detail. We proposed some nonlinear dynamics approaches
which are used in the fields of mathematics, theoretical and experimental physics and so
on. To study the characteristics of attractors which were constructed by the computed
time series of Cy at the quasi-steady state can not only make the differences of the un-
steady structure clear but also give us the important information about the convergence
speed to the steady state. We discussed the dependence of the 4th order artificial viscos-
ity terms on the structure of the numerical asymptotic solution. It is shown that some
strange phenomenon occur when we use the small £ values. If the adequate convergence
condition of the Poisson equation of the pressure was not attained in each time step, we
may get the non-diverging numerical solutions which never appear actually. As described
above, we must pay much attention to the selection of suitable schemes and the descretized

parameters in order to the physically reasonable results.
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FEM-CSM Combined Method
for 2D Exterior Laplace Problem

USHIJIMA, Teruo
Department of Computer Science
and Infoermation Mathematics
Faculty of Electro-Communications
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ABSTRACT

Consider the Poisson equation —Au = f in a planar exterior domain of a bounded domain ©@. Assume that
f = 0 in the outside of a disk with sufficiently large diameter. The solution u is assumed to be bounded at
infinity. Discretizing the problem, we employ the finite element method (FEM, in short) inside the disc, and the
charge simulation method (CSM, in short) outside the disc. Results of mathematical analysis for this FEM-CSM
combined method are reported in this paper. The combined method is applicable to planar exterior reduced
wave equations. Our discretization procedure for the reduced wave equation is also described

Keywords: two dimensional exteior Laplace problem, finite element method, charge simulation method, FEM-
CSM combined method, reduced wave equation, Helmholtz equation, fundamental solution method, FEM-FSM
combined method.
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ST CIR (M) DR u & NIEFLLEL,

4. ZRABGEEDEEICE T oBERE

IIETHEBLTEE, TKRTARZ 77 ABEO
FEM-CSM #-&MEDOFIEL. BRICZRIESN R~V
Lok AV RERE, b BIRE R B (reduced wave
problem) A CEX 5, AHfilcHB T, ZOBE
DFEREEELOL,
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—Au—-ku = 0 inf,,
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lim {3—“ - 'r.ku} = 0

o0

IITfHRERT, LOEREEERBEETH S,
RiRE (Ef) O uw = ulr) i,

o~ ¢ HD k)
u = Z f H(l) ) i

n=—oo

ERED, TIT, ful f(a(f)) 07—V o {FE
— 1 " —inf
f=5= [ statoneeas,

ThHh. H,(,l}( z} ik, n ROFE-FE A FABEC
Ho5,

IR (Eq) WHIGT 5 RAF VD 7HRAR—KHK
blu,v} L

o]
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n=—oo

LLTERABND, TIT. n=01,2 kLT
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=k k) gy o 4 o,
HEY (ka) dz
THY. n=0,+1,+2,-- ZHLT
einﬂ
Cn — =
Vvara

Thd,

4. 2. BEMERSRERBRIED FSM B LS
BRzPLsd ¥R e OMHKR D, $BET 5,
D, DMA%# T, TRT, EHp %

O0<p<a

DEFICEE LRSEPLETILEpOMT, %
Z 5,
EEEN+BETS, QL 2icRB LB
HA-PRAPALSMBEEREN B NS, &
T, g RERA, a; FRRALE D, SR~
FREAMRADEEZ., REA—HRAARLSHRE
RHERE L s LT3,
HRA-HEAAA L SHEREREDBE OMNE
(Er) DEARE (FSM) &Iz & 5iE 098 (EN) £ %

DEHCEDHD ;

M) = TN eGir),
(EM)

uM(a;) = f(a;), 0<j<N-L

ZORREIZ BT, EEBEG;(r) 3. AmEkak
B2 BT~ NV AR Y FERROBELBEOERETH
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LRENDILOERHNWS,
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il sy Al
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FEBE . IcZIizLT
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EEAY Mibge RY i3,
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BRI TS, (/IR ERREET
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FRE (EN) i1,
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ERFREND, TIT. qLTH2HLEFRIZED S
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56 DEFELZ. M\, 0<j<N-1,&F3L,
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N-—

=
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AOMG0<jSN-1, i CVoEREXE
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GHRERTHDZ LRAMETHD, LEd-T, B#
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A #0, 0<j<N-1

T B,
T r DI G(r) DELAICED 5 £EH 1 F 5
$x H, L45, Thbb,

d .
Hy®) = - 2G,x), 0<j<N -1
Thd, FTITC, le ZiTxLT
hit = Hol(ay)
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B2 L he RN i, ‘

h = (h)octen—

Zd-TED S, HBRSTH H i,
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L X o TEDD, 75 H it N KOERERHEET
FITHB,

rigE (B ofig u™Hr) O T, LIt 3 Q, 225
BN E E R RED r = a; KB HEIE.
2 NV HqOE RS THD, bbb, Ko (E)
iZBitsqicdkoT

dutN) )
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( an. @ 0<FEN~1 4
LEENS,
EBH 1. (FSM Bt BRRTV—REA DTS

&R) BEALO) ZROEIIZEDHD.
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Yoy 1 (klae™ — )

h(8) = — k

£CTC¢ji=01,--,N-1ITHLT
_ vy _ L
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MEITTHLODELT,
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N-1 1
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I1=0 1
CCTHBOBMISHL (1) XOBAT; OEERE
HLT ‘

2
(2) bix = —;\T';Ck-j, 0<j,k<N-1

ERBT B, by BRD& S 2REN BT LICEET 5.

(3)
_ 2ma L (V) (k=i .
bjk—TZ;\_lht w! '7), 0<jk<N-1

=0

BRW— KW b(u,v) O FSM ELE 5 (u,0)
%,

E(N)(u,v) = (Bu, v), B = (bjk)
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0<s k< N1

I, DR v(a(d)) OEPHEEMEREEL .,

N-]
©I®) = > v(ay)w;)(8)
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(1/2)8;,8; + (1/2)8,)) CERBEKTH 2, 1171 B D
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™) 1 N-1 N-—1 Uij N-1
. il —ni
-y S5 (E)
j=0 m=0 n=0
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méﬂ
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ue W

Bxid, FELX(E) LHEE ) oREHZEHT,
StiE. () &7 OREMES B85,

Ep%s O<p<a®ABr T IH50BATEEYT
5, EEBHENIHLT, XEHE 2/ EHTEDEL D
KERA-MEAARALEMBERB\REL 25 L 51
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ZE W OFRK TS LMK
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BROEE 2R =T LD LTS,
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WhDFEv i3 T, b T, A S a; 2882 L,
MEICEH L TES—REGEETH S,

FITV OIFEIZER Vy %
Vv =WanV
EBE, u,ve H (D) NCEL) iIcet LT,
()

£ (4, v) = afu, v) — K2m(u,v) + 5 (u,v)

LEDE, AMERC LOBAIZBWTg b—&KT3

7 Wy OxE—2BELT gy T 5,

ko @) saeis,
=N}
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R tEREIC BT, WBERC L LME
CHAMEBLERE Cy LBEHRbD T LRSI LA
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