§14. Influence of the Superheating in He II on the Heat Transfer in Narrow Channels

Kobayashi, H. (Inst. of Quantum Sci. Nihon Univ.)

The study on heat transfer characteristics in a two-dimensional channel with the gap distance of a sub-millimeter is important to compact He IIcooled apparatuses. It is estimated from studies on the heat transfer from a good conductor to He II $^{1)}$ that He II below the λ -point pressure P_{λ} (He II_s) is better than that in He II above P_{λ} (He II_P) in such narrow 2D-channel. Depending on the bath pressure $P_{\rm b}$, either the subcooled He I (sub-He I) or the superheated He I (^SHe I)²⁾ nucleates at the hottest spot on the heated surface at the critical heat flux Q_{λ} . The partial insulation with ^SHe I brings about an intermediate state above Q_{λ} as well as in He II_P.¹⁾ Although the large viscosity and the small heat conduction are common both in ^SHe I and sub-He I, the former does not impede so the cooling the heated conductor, since ^SHe I disrupts easily because of its metastability.

To confirm the expected characteristics in He II_s, the experiment was carried out by the use of disk shaped conductors. Figure 1 shows the two-dimensional channel with gap distance g of 0.15 mm. The channel is made between Cu disk and an insulator disk. The Cu disk of 10 mm in radius r_0 and 13 mm in thickness and the insulator disk of 11 mm in radius make the radial 2D-channel. In this configuration, the phase transitions occur always at the center of the heated surface. The temperatures of He in the channel $T(T_{1-6})$, were measured with chip-resistors. The temperature of Cu disk (T_{C1-3}) was measured with Ge thermometers. In-situ pressure gauges indicate pressures in the channel P_c and in the bath P_b .

Figure 2 shows T and $\Delta P_{\rm c} (=P_{\rm c} - P_{\rm b})$ as a function of heat Q with parameter of $P_{\rm b}$. At $Q_{\rm N}$, $\Delta P_{\rm c}$ suddenly increases due to the onset of boiling. In the intermediate state between Q_{λ} and Q_{N} , the maximum of T_1 reaches ~ 2.45 K beyond the lambda temperature (= 2.18 K). The results on $\Delta P_{\rm c}$ and T vs. Q prove that the intermediate state in He IIs is composed of ^SHe I and He II_s. This means also that the good conductor stabilizes not only ^SHe II but also ^SHe I. Sharp transition at Q_{λ} is avoidable due to the appearance of the intermediate state as expected. At the other critical heat $Q_{\rm N}$, the boiling triggers the transition from the intermediate state to the mixed state in which T is much lower than in He II_P. Both the intermediate state and the mixed state stand against mechanical disturbances.

The appearance of the reversible intermediate state allows He II-cool apparatuses to make the fullest use of Q_{λ} without unnecessary margin. In general, the heat transfer rate in He II_S is higher than in He II_P, especially in the mixed state.

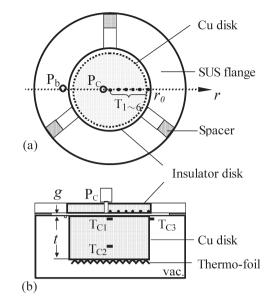


Fig. 1 Schematics of the two-dimensional channel.
(a)The top view, (b) the view cut along the diameter. Solid marks indicate thermometers. P_C and P_b are in-situ pressure gauges.

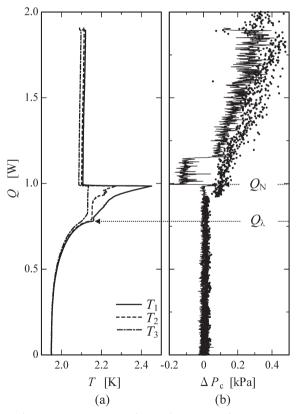


Fig. 2 Temperature rise and pressure rise as a function of Q(a) T vs. Q, (b) ΔP_c vs. Q The intermediate state appears between Q_{λ} and Q_N . Broken lines: $P_b = 102.4$ kPa, solid: $P_b = 3.5$ kPa. $T_b = 2.0$ K.

References

- 1) Kobayashi, H. et al. Cryogenics 37 (1997) 851
- 2) Nishigaki, K. et al. Phys. Rev. B 33 (1986) 1657
- 3) Danilchenko BA. et al. Cryogenics 29 (1989) 444