§6. Controlling the Cross-field-flux of Cold α-Particles with Resonant Magnetic Perturbations in a Helical Fusion Plasma Device

Shishkin, A. (IPP, Kharkov), Sagara, A., Motojima, O., Mitarai, O. (Kyushu Univ.), Morisaki, T., Ohyabu, N.

A new scenario to control transport of “cold” α-particle flux in the Force Free Helical Reactor [1] by changing poloidal field (PF) coil current during plasma discharge is proposed here. A way to enhance the radial transport of the α-particles in the intermediate energy range is considered which relies on specific features of helical magnetic field. These are the β-induced change in the B/B_0 modulation along the particle trajectory to remove helically trapped cold α-particles [2] and the resonant effects to remove passing α-particles [3].

For the helically trapped and passing non-resonant α-particles separated with the velocity phase space parameter $V_{\perp}/(V_{\perp}^c e_{\text{off}}^{1/2})$ confinement time ratio τ_α/τ_E connected with the transport coefficients $D_{1/v}$ and D_{plateau} is the following

configuration R and minor radius of the magnetic surface r_0 as follows

$$\omega_i + m_i \left(\frac{V_{\perp}}{R} (r_e^{c}) - \frac{V_{\perp}}{r_0} \right) = 0$$

This resonance condition shows that the perturbations with the nearest to 10/10 numbers, namely 11/10 and 12/10, also can make their contribution to the drift resonances (Fig.2)

Fig.2. Resonance condition for the passing cold α-particles

The perturbations mentioned above can be caused with the “correcting coils” which complement the main vertical field coils (Fig.3).

Fig.3. Layout of coils. Fig.4. Fluxes of cold α-particles

Perturbations by correcting coils makes possible to control the cold α-particle fluxes Γ_{plateau} and $\Gamma_{\text{perturbation}}$ (Fig.4), i.e. either to enlarge or to decrease the loading on the divertor plates.