§4. Behaviors of He II in Two-dimensional Channels Filled with He II

Kobayashi, H. (Inst. of Quantum Science, Nihon Univ.)

Two-dimensional channels composed of the good conductor are common in a He II cooled apparatus. In the 2D-channels, the heat transfer from to He II below the λ-point pressure \(P_\lambda \) is largely influenced by the superheating in He II \(^3\text{He} \). So far, we have reported that the heated surface of a heated conductor is partially insulated with the superheated He I \(^3\text{He} \) in He II below the λ-point pressure \(P_\lambda \). That is, \(^3\text{He} \) appears forming an intermediate state in heat transfer characteristics such that the transition at \(Q \) is gradual like in the pressurized He II. In the present paper, we confirm that the intermediate state consists of the superheated phases. The appearance of the intermediate state gives a considerable margin for the stabilization of the He II cooled apparatus.

The experiment was performed by the use of a copper disk with the radius of 10 mm with the thickness of 5 mm. An insulator disk was placed in parallel to a plane surface of the copper disk as shown in Fig. 1. The heat flux \(Q \) was applied from a thermo-foil in a vacuum can. To measure the temperature of helium in the channel, chip-resistors \(T_{1-6} \) were arrayed on the insulator disk at intervals of 2 mm. The temperature of the copper disk \(T_C \) was measured with thermometer \(T_C \). Pressures in the channel \(P_C \) and in the bath \(P_B \) were measured with in-situ pressure gauges. To measure the stability of superheated states, a pendulum with a metal ball was prepared to disturb the cryostat mechanically. The threshold potential energy \(E_M \) of the pendulum to break the metastable phases was taken as an index of the stability.

It is estimated from Fig. 2 that not the bubble but \(^3\text{He} \) nucleates in the hottest area on the heated surface covered with \(^3\text{He} \), when \(T_C \) crosses the \(\lambda \)-line extended below \(P_C \). The small heat conduction of \(^3\text{He} \) drives a part of \(Q \) downstream through the conductor without the sharp transition at \(Q \). \(T \) increases over \(T_C \) on an isobar without boiling until \(Q \) reaches as shown in Fig. 2, that is, \(\Delta P = 0 \), where \(\Delta P = P_C - P_B \). When \(Q \) is decreased from above \(Q \), \(T \) jumps beyond \(T_C \) at a critical heat flux of recovery \(Q \). Both the isobaric behaviors up to \(Q \) and the sudden changes in \(\Delta P \) at \(Q \) suggest that the boiling does not occur in the intermediate state. This also means that \(^3\text{He} \) layer surrounds coaxially the \(^3\text{He} \) layer in the intermediate state.

The disturbance with \(E_M \) breaks momentarily superheated states. \(E_M \) can be an indirect index of the metastable states. However, the metastable phases, \(^3\text{He} \) and \(^3\text{He} \) reappear in a second after the transient collapse (the inset of Fig. 3). That is, \(^3\text{He} \) and \(^3\text{He} \) are apparently stabilized such that they return immediately after a mechanical shock disrupts them. The stability decreases with increasing \(Q \).

The intermediate state where \(^3\text{He} \) coexists with \(^3\text{He} \) is succeeded by the mixed state where the alternation of superheating and boiling is sustained. Above \(P_c \), by contrast, the temperature of the conductor in 2D-channel rises steadily due to the stable and viscous subcooled He I.