§4. Behaviors of He II in Two-dimensional Channels Filled with He II

Kobayashi, H. (Inst. of Quantum Science, Nihon Univ.)

Two-dimensional channels composed of the good conductor are common in a He II cooled apparatus. In the 2D-channels, the heat transfer from to He II below the λ -point pressure P_{λ} is largely influenced by the superheating in He II (^SHe II). So far, we have reported that the heated surface of a heated conductor is partially insulated with the superheated He I (^SHe I) in He II below the λ -point pressure P_{λ} [1]. That is, ^SHe I appears forming an intermediate state in heat transfer characteristics such that the transition at Q_{λ} is gradual like in the pressurized He II. In the present paper, we confirm that the intermediate state consists of the superheated phases. The appearance of the intermediate state gives a considerable margin for the stabilization of the He II cooled apparatus.

The experiment was performed by the use of a copper disk with the radius of 10 mm with the thickness of 5 mm. An insulator disk was placed in parallel to a plane surface of the copper disk as shown in Fig. 1. The heat flux Q was applied from a thermo-foil in a vacuum can. To measure the temperature of helium in the channel, chipresistors T_{1-6} were arrayed on the insulator disk at intervals of 2 mm. The temperature of the copper disk T_C was measured with thermometer T_C . Pressures in the channel P_c and in the bath P_b were measured with in-situ pressure gauges. To measure the stability of superheated states, a pendulum with a metal ball was prepared to disturb the cryostat mechanically. The threshold potential energy E_M of the pendulum to break the metastability phases was taken as an index of the stability.

It is estimated from Fig. 2 that not the bubble but ^SHe I nucleates in the hottest area on the heated surface covered with ^SHe II, when T_1 crosses the λ -line extended below P_{λ} . The small heat conduction of ^SHe I drives a part of Q downstream through the conductor without the sharp transition at Q_{λ} . T_1 increases over T_{λ} on an isobar without boiling until Q_n reaches as shown in Fig. 2b, that is, $\Delta P = 0$, where $\Delta P = P_c - P_b$. When Q is decreased from above Q_n , T_1 jumps beyond T_{λ} at a critical heat flux of recovery Q_r . Both the isobaric behaviors up to Q_n and the sudden changes in ΔP at Q_n and at Q_r suggest that the boiling does not occur in the intermediate state. This also means that ^SHe II layer surrounds coaxially the ^SHe I layer in the intermediate state.

The disturbance with $E_{\rm M}$ breaks momentarily superheated states. $E_{\rm M}$ can be an indirect index of the metastability. However, the metastable phases, ^SHe II and ^SHe I reappear in a second after the transient collapse (the inset of Fig. 3). That is, ^SHe I and ^SHe II are apparently stabilized such that they return immediately after a mechanical shock disrupts them. The stability decreases with increasing *Q*.

The intermediate state where ^SHe I coexists with ^SHe II is succeeded by the mixed state where the alternation of superheating and boiling is sustained. Above P_{λ} , by contrast, the temperature of the conductor in 2D-channel rises steadily due to the stable and viscous subcooled He I.

1). Kobayashi H. et al. Proc ICEC21 2006:389-392

Fig. 1. Schematics of tested 2D-channel The 2D-channel is formed between the insulator disk and the copper disk. T_{1-6} , T_C : the thermometer, T'_C : the spare. P_c , P_b : In-situ pressure gauges. The thermo-foil is fastened to the wall of the copper disk with the silver wire.

Fig. 2. Heat transfer characteristics and the pressure change

(a) $T_C - Q$, (b) $\Delta P - Q$, $\Delta P = P_c - P_b$ $T_b = 1.95$ K, $P_b = 4.50$ kPa, gap distance: 0.15 mm

Fig. 3. The threshold energy vs. heat flux $E_{\rm M}$: the threshold potential energy to breaks the superheated states. The heat flux is normalized with $Q_{\rm r}$. The arrow mark in the inset: the moment of hitting, the bars: standard errors, $T_{\rm b} = 1.95$ K, $P_{\rm b} = 4.25$ kPa, $Q_{\lambda} = 0.68$ W, the gap distance: 0.15 mm