§10. Impedance Matching in Wide Range of Resistance in Conjugate Antenna System

Kumazawa, R.

The conjugate antenna system was introduced in the previous annual report of 2007~2008. In this section the characteristics of the conjugate antenna system are further examined. The impedance at the T-junction is expressed in the following equation,

$$Z = Z_0 \frac{R_N^2 (1 - 2R_{N0}) + R_{N0} (2 - R_{N0})}{2R_N (1 - R_{N0}^2)} = Z_0 E$$
 (1)

It is easily found that when $R_N=R_{N0}$, E becomes one and therefore the reflected RF power fraction R_{ref} becomes zero in above equation. The above equation is a quadratic equation for R_N for E=1. Therefore there is another solution and the other solution of R_{N1} can be derived using R_{N0} in the following relation,

$$R_{N1} = \frac{2 - R_{N0}}{1 - 2R_{N0}} \tag{2}$$

For example when R_{N0} =0.26, R_{N1} =3.625, that is, there are two impedance matching conditions. On the other hand the reflected RF power fraction R_{ref} is calculated using the following equation,

$$R_{ref} = \left(\frac{E-1}{E+1}\right)^2 \tag{3}$$

It is thought that $R_{\rm ref}$ is fairly increased between two impedance matching conditions. Here the normalized resistance $R_{\rm Nm}$ where $R_{\rm ref}$ becomes the maximum can be found between $R_{\rm N0}$ and $R_{\rm N1}.$ Using a differential of $R_{\rm ref}$ by $R_{\rm N}$ becomes zero when $R_{\rm ref}$ becomes the maximum in the following way.

$$\frac{\partial R_{ref}}{\partial R_N} = 0 \to R_{Nm}^2 = R_{N0} R_{N1} \tag{4}$$

The value of R_{Nm} is a geometric mean of R_{N0} and R_{N1} . Then the local maximum R_{refm} is calculated using the equation (3) and derived in the following equation:

$$R_{refm} = \left(\frac{R_{Nm} - 1 + R_{N0}^2}{R_{Nm} + 1 - R_{N0}^2}\right)^2 \tag{5}$$

Dependences of the local maximum reflected RF power fraction R_{refm} , R_{N1} and R_{Nm} on R_{N0} are plotted in Fig.1. It is found that R_{refm} is decreased with R_{N0} and becomes the minimum value of 12% at R_{N0} =0.26.

The reflected RF power fraction is plotted against RN in the case of R_{N0} =0.26 in Fig.2. When the allowable reflected RF power fraction is employed as R_{ref} =5%, the normalized resistance R_N ranges from 0.18 to 0.45 as also shown in Fig.2. It was reported that the antenna resistance was changed from 2Ω to 8Ω during the H-L mode transition seen in JET [1]. If this conjugate antenna system is applied to the H-L mode transition plasma, the low characteristic impedance of the transmission line such as Z_0 =8 Ω should be employed. When it is assumed that the maximum RF stand-off voltage is proportional to the clearance between the inner and the outer transmission line, the maximum RF power to

be transmitted for the characteristic impedance Z_0 is assessed in the following equation:

$$P_{RF} \propto a^2 \ln(\frac{b}{a}) \tag{6}$$

Here a and b are an inner and an outer radius of the transmission line, respectively. The maximum P_{RF} is obtained in the case of b/a=2.72, i.e., Z_0 =30 Ω . Then P_{RF} at Z_0 =8 Ω is calculated to be reduced to less than 50% of that at Z_0 =30 Ω . It is thought that the method of employing the low impedance transmission line is not appropriate for a high power ICRF heating system.

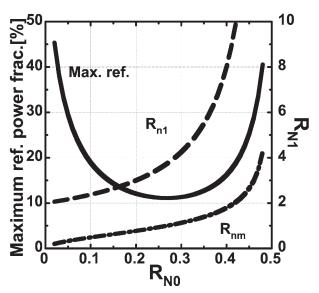


Fig.1 Dependences of reflected RF power fraction, $R_{\rm N1}$ and $R_{\rm Nm}$ on $R_{\rm N0}$.

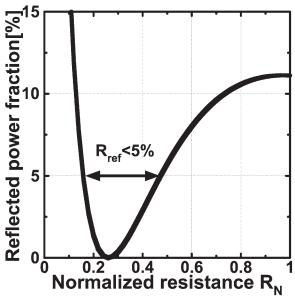


Fig.2 Dependence of Reflected RF power fraction on RN in the case of $R_{\rm N0}$ =0.26. The reflected RF power fraction can be suppressed to less than 5% in the range of 0.18 50 0.43 in $R_{\rm N}$.

[1] I. Monakhov et al., 15th Topical Conf. of RF power in Plasmas 2003, AIP Conf. Proc.694, 148