§10. Impedance Matching in Wide Range of Resistance in Conjugate Antenna System

Kumazawa, R.

The conjugate antenna system was introduced in the previous annual report of 2007–2008. In this section the characteristics of the conjugate antenna system are further examined. The impedance at the T-junction is expressed in the following equation,

\[Z = Z_0 \frac{R_N^2(1-2R_{NO}) + R_{NO}(2-R_{NO})}{2R_N(1-R_{NO}^2)} = Z_0 E \]

(1)

It is easily found that when \(R_N = R_{NO} \), \(E \) becomes one and therefore the reflected RF power fraction \(R_{ref} \) becomes zero in the above equation. The above equation is a quadratic equation for \(R_N \) for \(E=1 \). Therefore there is another solution and the other solution of \(R_{N1} \) can be derived using \(R_{NO} \) in the following relation,

\[R_{N1} = \frac{2 - R_{NO}}{1 - 2R_{NO}} \]

(2)

For example when \(R_{NO} = 0.26 \), \(R_{N1} = 3.625 \), that is, there are two impedance matching conditions. On the other hand the reflected RF power fraction \(R_{ref} \) is calculated using the following equation,

\[R_{ref} = \left(\frac{E - 1}{E + 1} \right)^2 \]

(3)

It is thought that \(R_{ref} \) is fairly increased between two impedance matching conditions. Here the normalized resistance \(R_{Nm} \), where \(R_{ref} \) becomes the maximum can be found between \(R_{NO} \) and \(R_{N1} \). Using a differential of \(R_{ref} \) by \(R_N \) becomes zero when \(R_{ref} \) becomes the maximum in the following way.

\[\frac{dR_{ref}}{dR_N} = 0 \rightarrow R_{Nm}^2 = R_{NO}R_{N1} \]

(4)

The value of \(R_{Nm} \) is a geometric mean of \(R_{NO} \) and \(R_{N1} \). Then the local maximum \(R_{ref_m} \) is calculated using the equation (3) and derived in the following equation,

\[R_{ref_m} = \left(\frac{R_{Nm} - 1 + R_{NO}^2}{R_{Nm} + 1 - R_{NO}^2} \right)^2 \]

(5)

Dependences of the local maximum reflected RF power fraction \(R_{ref_m} \) on \(R_{NO} \) are plotted in Fig.1. It is found that \(R_{ref_m} \) is decreased with \(R_{NO} \) and becomes the minimum value of 12% at \(R_{NO} = 0.26 \).

The reflected RF power fraction is plotted against \(R_N \) in the case of \(R_{NO} = 0.26 \). When the allowable reflected RF power fraction is employed as \(R_{ref} = 5\% \), the normalized resistance \(R_N \) ranges from 0.18 to 0.45 as also shown in Fig.2. It was reported that the antenna resistance was changed from 2Ω to 8Ω during the H-L mode transition seen in JET [1]. If this conjugate antenna system is applied to the H-L mode transition plasma, the low characteristic impedance of the transmission line such as \(Z_0 = 8\Omega \) should be employed. When it is assumed that the maximum RF stand-off voltage is proportional to the clearance between the inner and the outer transmission line, the maximum RF power to be transmitted for the characteristic impedance \(Z_0 \) is assessed in the following equation:

\[P_{RF} \propto a^2 \ln \left(\frac{b}{a} \right) \]

(6)

Here \(a \) and \(b \) are an inner and an outer radius of the transmission line, respectively. The maximum \(P_{RF} \) is obtained in the case of \(b/a = 2.72 \), i.e., \(Z_0 = 30\Omega \). Then \(P_{RF} \) at \(Z_0 = 8\Omega \) is calculated to be reduced to less than 50% of that at \(Z_0 = 30\Omega \). It is thought that the method of employing the low impedance transmission line is not appropriate for a high power ICRF heating system.

Fig.1 Dependences of reflected RF power fraction, \(R_{N1} \) and \(R_{Nm} \) on \(R_{NO} \).

Fig.2 Dependence of Reflected RF power fraction on \(R_N \) in the case of \(R_{NO} = 0.26 \). The reflected RF power fraction can be suppressed to less than 5% in the range of 0.18 50 0.43 in \(R_N \).