§14. Conceptual Design of a Dispersion Interferometer with a Ratio of Modulation Amplitudes

Akiyama, T., Kawahata, K., Okajima, S., Nakayama, K. (Chubu Univ.)

A conventional heterodyne interferometer is widely used and has a high density resolution. It, however, suffers from fringe jump errors, which degrade reliability of the interferometer, in a high density range. The mechanical vibrations also cause measurement errors. One of candidates of the solution is a dispersion interferometer. The dispersion interferometer uses both fundamental and second harmonics, which is generated with a nonlinear crystal, as a probe beam. After passing through a plasma, the probe beam is injected into another nonlinear crystal, to generate the second harmonic from the fundamental again. The remained fundamental is cut by a filter. The phase of interference signal between two second harmonics includes only the phase due to the dispersion of a plasma not due to mechanical vibrations. Hence, the dispersion interferometer does not need a vibration isolator and the two-color interferometry system even if a short-wavelength laser (a CO₂ laser or a Nd:YAG laser), which can reduce fringe jump error, is used.

Since the detected interference signal of a usual dispersion interferometer is similar to that of a homodyne interferometer, the dispersion interferometer has the same problem as the homodyne one; changes in the detected intensity lead to phase errors. In order to be insensitive to intensity variations, a photoelastic modulator (PEM) is placed between the nonlinear crystal and the plasma as shown in Fig. 1 [1]. In this optical configuration, the detected interference signal is given by as follows.

\[I(t) = A + B \cos \left(2 \rho_0 \sin \omega_0 t + \frac{3 c_e \overline{n}_0 L}{\omega} + \phi \right) \]

where \(A \) and \(B \) are constant, which are determined by the detected intensity of the probe beam, \(\rho_0 \) is the maximum retardation of the PEM, \(\omega_0 \) is the modulation frequency of the PEM, \(c_e \) is the line averaged electron density, \(L \) is the optical path length in the plasma and \(\phi \) is an initial phase. The amplitudes of fundamental and the second harmonics \(I_{\omega_0} \) and \(I_{2\omega_0} \) of the modulation frequency \(\omega_0 \) of Eq. (1) can be measured with lock-in amplifiers and are described with the Bessel function of the first and second order \(J_1 \) and \(J_2 \).

\[I_{\omega_0} = 2 BJ_1(2\rho_0) \sin \left(\frac{3 c_e \overline{n}_0 L}{2 \omega} + \phi \right) \]

\[I_{2\omega_0} = 2 BJ_2(2\rho_0) \cos \left(\frac{3 c_e \overline{n}_0 L}{2 \omega} + \phi \right) \]

From the ratio of these amplitudes, \(\overline{n}_0 \) can be obtained.

\[\overline{n}_0 = \frac{2}{3} \frac{\omega}{c_e L} \tan^{-1} \left(\frac{I_{\omega_0}}{I_{2\omega_0}} \right) \]

Here, \(\rho_0 \) is set at 1.3 radian by adjusting the voltage to the photoelastic material for \(J_1(2\rho_0) = J_2(2\rho_0) \). This new method of the phase extraction from the dispersion interferometer is completely free from variations of detected intensities \(A \) and \(B \). In addition, the processing way is simple and suits to real time measurements.

An important component for a good SNR is a nonlinear crystal for second-harmonic generation (SHG), because the power of the second harmonics is generally small in the case of a continuous wave laser (i.e. small power density) and depends strongly on the specifications of the nonlinear crystal. Silver gallium selenide (AgGaSe₂) has the relatively high conversion efficiency and the small absorb coefficient. Figure 2 shows the generated power of the second harmonics. In the case of the crystal with a length of 15 mm-long, about 100 µW is generated when the beam waist at the crystal is 0.69 mm. This power corresponds to several-volts-interference signal, which is enough to be detected.

[1] T. Akiyama et. al., to be published to Plasma and Fusion Research.