§1. Turbulence-driven Zonal Flows in Helical Systems with Radial Electric Fields

Sugama, H., Watanabe, T.-H.

Collisionless long-time responses of the zonal-flow potential to the initial condition and turbulence source in helical systems having radial electric fields are derived theoretically [1-2]. All classes of particles in passing, toroidally-trapped, and helical-ripple-trapped states are considered. The transitions between the toroidally-trapped and helical-ripple-trapped states are taken into account while solving the gyrokinetic equation analytically by taking its average along the particle orbits. When the radial displacements of helical-ripple-trapped particles are reduced either by neoclassical optimization of the helical geometry lowering the radial drift or by strengthening the radial electric field E_r to boost the poloidal rotation, enhanced zonal-flow responses are obtained. Under the identical conditions on the magnitude of E_r and the magnetic geometry, using ions with a heavier mass gives rise to a higher zonal-flow response, and therefore the turbulent transport is expected to show a more favorable ion-mass dependence than the conventional gyro-Bohm scaling.

The collisionless long-time behavior of the zonal-flow potential is described by

$$\frac{e\phi_{\mathbf{k}_{\perp}}(t)}{T_i} = \frac{\langle I(t)\rangle}{\mathcal{D}},\tag{1}$$

 $\langle \cdots \rangle$ denotes the flux-surface average. For the wavenumber region relevant to the ITG turbulence, where $k_{\perp}\rho_i < 1$, the shielding term \mathcal{D} on the right-hand side of Eq.(1) is written as

$$\mathcal{D} = n_0 \left\langle k_{\perp}^2 \rho_{ti}^2 \right\rangle$$

$$+ \sum_{a=i,e} \frac{T_i}{T_a} \left\langle \int d^3 v \, F_{a0} k_r^2 \left\{ \langle \Delta_{ar}^2 \rangle_{po} - \langle \Delta_{ar} \rangle_{po}^2 \right\} \right\rangle$$

$$= n_0 \left\langle k_{\perp}^2 \rho_{ti}^2 \right\rangle \left[1 + G_p + G_t + M_p^{-2} (G_{ht} + G_h) (1 + T_e/T_i) \right], \qquad (2)$$

and $\langle I(t) \rangle$ is given by

$$\langle I(t) \rangle = \left\langle \int d^3 v \left[1 + i k_r \left\{ \Delta_{ir} - \langle \Delta_{ir} \rangle_{po} \right\} \right] \times \overline{\left[\delta f_{i\mathbf{k}_{\perp}}^{(g)}(0) + F_{i0} R_{i\mathbf{k}_{\perp}}(t) \right]} \right\rangle,$$
(3)

which includes the initial conditions and nonlinear sources. If we assume that the initial perturbed ion gyrocenter distribution function takes the Maxwellian form, the relation of the residual zonal-flow potential at time t to its initial value is derived from Eqs.(1)–(3)

as

$$\phi(t) = \frac{\phi(0)}{1 + G_p + G_t + M_p^{-2}(G_{ht} + G_h)(1 + T_e/T_i)},$$
(4)

where the contributions of the nonlinear source are dropped. Details of the notations used here are found in Ref.2. The dimensionless geometrical factors G_p and G_t are related to passing and toroidally-trapped particle orbits, respectively, while the other geometrical factors G_h and G_{ht} originate from the poloidally-closed and unclosed orbits of helical-ripple-trapped particles, respectively. The probability of the transition from the toroidally-trapped to helical-ripple-trapped is taken into account for evaluating G_{ht} . Figure 1 shows toroidally-trapped and helically-trapped orbits, between which transitions can occur.

The radial displacements Δ_r of helical-rippletrapped particles giving the main contributions to the shield of the zonal-flow potential are proportional to the radial drift velocities \overline{v}_{dr} of those particles, and are inversely proportional to the equilibrium radial electric field E_r . In helical configurations optimized for reducing neoclassical transport, helical-ripple-trapped particles have small v_{dr} ; therefore, G_{ht} and G_h have small values, and the zonal-flow potential exhibits a good response to the turbulence source. The effects of E_r on the zonal-flow response appear in Eqs.(2) and (4) through the poloidal Mach number $M_p \equiv$ $|(cE_r/B_0r_0)(R_0q/v_{ti})|$. The shield of the zonal-flow potential is weakened by strengthening the radial electric field E_r , and increasing M_p . For the same value of E_r , M_p can be also increased also by using ions with a heavier mass, which is expected to produce zonal flows more efficiently and establish a more favorable ion-mass dependence of the ITG turbulent transport than the conventional gyro-Bohm scaling.

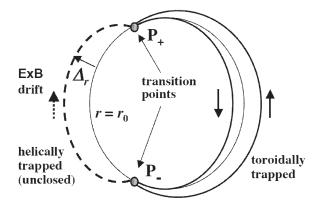


Fig.1. Poloidal cross sections of toroidally-trapped and helically-trapped orbits, between which transitions can occur at P_+ and P_- . A dashed curve represents a bounce-center $\mathbf{E} \times \mathbf{B}$ -drift motion of a helically-trapped particle.

- 1) H. Sugama, Bull. Am. Phys. Soc. 53, 322 (2008).
- 2) H. Sugama and T.-H. Watanabe, Phys. Plasmas 16, 056101 (2009).