§4. Effect of Constituents on Thermal and Electrical Conductivity of SiC/SiC Composites

Hinoki, T., Jung, H., Park, Y. (Institute of Advanced Energy, Kyoto Univ.), Tanaka, T., Muroga, T.

Silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composites are considered as functional-structural materials for advanced energy systems, because of their excellent thermal, mechanical and chemical stability, and the exceptionally low radioactivity following neutron irradiation. In particular, flow channel inserts (FCI) made of a SiC/SiC was proposed as a means for thermal-electrical insulation between the flowing liquid metal and the load-carrying channel walls to reduce the MHD pressure drop in the dual-coolant lead lithium blanket channels of fusion reactors. Additionally, recent improvement in the crystallinity and purity of SiC fibers and improved composite processing has improved physical and mechanical performance under harsh environments. The novel processing called Nano-powder Infiltration and Transient Eutectic-phase (NITE) Processing has been developed based on the liquid phase sintering process modification. The NITE processing can achieve both the excellent material quality and the low processing cost. Recently, application of SiC/SiC is expanding. Various ranges of properties are required in particular for thermal and electrical conductivity. One of important advantages for SiC/SiC is tailorability. Properties of SiC/SiC can be controlled by constituents and their volume fraction. It is known that electrical conductivity of SiC was affected by fabrication conditions and impurities significantly. The objective of this work is to obtain fundamental knowledge regarding effect of the constituents on the thermal and electrical conductivity of Si/SiC composites and tailorability of the thermal and electrical conductivity.

The material used was high purity single-crystal SiC (Cree Inc., 10 × 10 × 0.39 mm), monolithic SiC (10 × 10 × 1 mm), and sandwich material of monolithic NITE SiC/Hexoloy SA SiC (10 × 10 × 1 mm). Electrical conductivities of these materials were measured in the ^{60}Co γ-ray irradiation facility at the Institute of Scientific and Industrial Research, Osaka University, from room temperature to 450 °C. Dose rate calculated by the Monte Carlo N-Particle Transport Code (MCNP) was 2.3 Gy/s. To evaluate electrical conductivity, a center electrode and a guard electrode were made on the surface by Pt sputtering for current measurement and prevention of the leakage current through the side surface, respectively. On the other surface, an electrode was made for voltage supply. The conductivities were examined by measuring the induced current through the bulk of the specimens. Thermal conductivities of each material were measured by laser flash method at the Institute of Advanced Energy, Kyoto University.

Fig.1 shows the temperature-dependent properties of the electrical conductivity. In the case of high purity single-crystal SiC, conductivity increase by the irradiation

![Image](image_url)

Fig. 1. Temperature dependence of electrical conductivity on SiC ceramics