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Linearized model collision operators for multiple
ion species plasmas are derived, which conserve par-
ticles, momentum, and energy, and satisfy adjoint-
ness relations and Boltzmann’s H-theorem even for
collisions between different particle species with un-
equal temperatures [1]. The linearized collision
operator for collisions between species a and b is
written as the sum of the test-particle and field-
particle parts, CL

ab(δfa, δfb) = CT
ab(δfa) + CF

ab(δfb). De-
tailed expressions of CT

ab(δfa) and CF
ab(δfb) in our

model are written in [1]. The model collision oper-
ators are also given in the gyrophase-averaged form
C

(GK)
ab ≡ (2π)−1

�
dϕ eik⊥·ρaCL

ab(δfak⊥ , δfbk⊥) that can be
applied to the gyrokinetic equation for the perturbed
distribution function δfak⊥ with the perpendicular
wave number vector k⊥.

Balance equations for zonal-mode and nonzonal-
mode parts of the turbulent entropy density, the
energy of electromagnetic fluctuations, the turbu-
lent transport fluxes of particle and heat, and the
collisional dissipation are derived from the gyroki-
netic equation including the collision term and the
Maxwell equations. Figure 1 shows the entropy bal-
ance schematically. Zonal modes are defined as fluc-
tuations which have the wave number vectors in the
direction perpendicular to flux surfaces, k⊥ = ks∇s.
The summation over wave number vectors are divided
into regions of zonal and nonzonal modes, �

k⊥
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, where (Z) and (NZ) represent zonal
and nonzonal modes, respectively. The entropy bal-
ance equations for nonzonal and zonal turbulent fluc-
tuations of distribution functions and electromagnetic
fields are written as
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Fig.1. The schematic diagram representing the entropy
balance equations. The entropy and electromagnetic en-
ergy quantities are represented by bounded regions while
the transfer terms in the entropy balance equations are de-
lineated by arrows. See Table I which shows in detail what
quantities the bounded regions and the arrows represent.

Table 1: Quantities represented by bounded regions and
arrows in Fig. 1.
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respectively. It is important to note that the zonal
modes never contribute to the turbulent (or anoma-
lous) particle and heat fluxes (JA

a1 and JA
a2) driven by

pressure and temperature gradient forces (XA
a1 and

XA
a2). The source terms given by the product of the
fluxes JA

aj and XA
aj (j = 1, 2) appear in Eq. (1) while

they don’t in Eq. (2). Here, T (NZ → Z) represents the
nonlinear entropy transfer from the nonzonal modes
to the zonal modes, the detailed expression of which
is given in [1]. In the steady turbulence, we find from
Eq. (2) that T (NZ → Z) > 0 because of the H-theorem.
Thus, we see from Eqs. (1) and (2) that the nonlinear
entropy transfer from nonzonal to zonal modes occurs
and contributes to reduction of the amplitudes of the
nonzonal modes and the turbulent transport.
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