§21. Localness of Mode Interactions in Fully Developed, Freely Decaying, Isotropic, Homegeneous MHD and Hall-MHD Turbulences

Araki, K. (Okayama Univ. Sci.)

In this study we solved the incompressible Hall-MHD equations given by

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla P + \boldsymbol{j} \times \boldsymbol{b} + \nu \nabla^2 \boldsymbol{u}, \quad (1)$$

$$\frac{\partial \boldsymbol{b}}{\partial t} = \nabla \times \left((\boldsymbol{u} - \epsilon \boldsymbol{j}) \times \boldsymbol{b} \right) + \eta \nabla^2 \boldsymbol{b}, \tag{2}$$

where \boldsymbol{u} is the bulk velocity field and satisfies $\nabla \cdot \boldsymbol{u} = 0$, \boldsymbol{b} is the magnetic field, $\boldsymbol{j} := \nabla \times \boldsymbol{b}$ is the current density field, P is the total pressure, ν is the kinematic viscosity, η is the resistivity, and ϵ is the parameter for relative strength of the Hall term. The parameters are set to $\nu = \eta = 2 \times 10^{-3}$ and $\epsilon = 0.05$. The case of $\epsilon = 0$ is studied for comparison.

The velocity and magnetic fields are expanded in the wavelet modes as

$$\boldsymbol{f}(\vec{x},t) = \sum f_{j\epsilon \vec{l}\sigma}(t) \ \boldsymbol{\psi}_{j\epsilon \vec{l}\sigma}(\vec{x}), \tag{3}$$

where \boldsymbol{f} stands for \boldsymbol{u} or \boldsymbol{b} , $\boldsymbol{\psi}$'s are the wavelet basis functions, and the expansion coefficients are given by $f_{j\epsilon l\sigma}(t) := \int \boldsymbol{f}(\vec{x},t) \cdot \boldsymbol{\psi}_{j\epsilon l\sigma}(\vec{x}) \mathrm{d}^3 \vec{x}$. The physical implications of the wavelet indices j, ϵ, \vec{l} , and σ are summarized in Ref.¹). In the present study we only use the information on the spatial scale of the wavelets. So the fields are decomposed into wavelet scale spectrum which is given by

$$\boldsymbol{f} = \sum_{j} \boldsymbol{f}_{j} \quad \text{where} \quad \boldsymbol{f}_{j}(\vec{x}, t) = \sum_{\epsilon, \vec{l}, \sigma} f_{j\epsilon \vec{l}\sigma}(t) \, \boldsymbol{\psi}_{j\epsilon \vec{l}\sigma}(\vec{x}). \tag{4}$$

It should be noted that as the scale index j increases the corresponding spatial scale become small by the factor 1/2.

In Fig.1, the spectra of the magnetic induction energy transfer which is given by

$$\langle \boldsymbol{b}_k | \boldsymbol{b} | \boldsymbol{u}_j \rangle_{Ind} := \int \boldsymbol{b}_k \cdot \nabla \times (\boldsymbol{u}_j \times \boldsymbol{b}) \, \mathrm{d}^3 \vec{x}$$

are shown. Although their average modulii is different, it is very remarkable that the following features are found in common for the MHD and HMHD cases:

- 1. As a whole, the energy is transferred from larger scale components to smaller ones due to the magnetic induction (or the Lorentz force) irrespective of the kind of field.
- 2. Intense transfer is localized around $j \sim k$. This implies that energy transfer is *local*, i.e., the transfer brackets that dominantly contribute to the energy budget is constituted by such modes that have very close spatial scales with each other.

Fig. 1: Wavelet scale-to-scale energy transfer spectrum for the magnetic induction: $\langle \boldsymbol{b}_k | \boldsymbol{b} | \boldsymbol{u}_j \rangle_{ind}$. Top: MHD case, bottom: Hall MHD case. Solid circles: $\langle \boldsymbol{b}_k | \boldsymbol{b} | \boldsymbol{u}_j \rangle_{ind} > 0$, i.e., the transfer enhances the magnetic energy $E_k^{(B)}$, open ones: $\langle \boldsymbol{b}_k | \boldsymbol{b} | \boldsymbol{u}_j \rangle_{ind} < 0$, i.e., the transfer enhances the kinetic energy $E_j^{(u)}$. Contours are added to grasp the transfer amplitudes visually. Levels of contours are given by $(0.1n + 0.05) \times \max\{\langle \boldsymbol{b}_k | \boldsymbol{b} | \boldsymbol{u}_j \rangle_{ind}\}$ where *n* is an integer.

Dominance of local transfer makes sharp contrast to the results of Alexakis et al.²⁾, Mininni et al.³⁾, and our previous result⁴⁾, all of which report the importance of the nonlocal energy transfer.

These results are discussed in $\operatorname{Ref.}^{5)}$.

- K. Araki and H. Miura, "Orthonormal Divergencefree Wavelet Analysis of Nonlinear Energy Transfer in Rolling-Up Vortices", Y. Kaneda (ed.), IUTAM symposium on Computational Physics and New Perspectives in Turbulence, 149 (2008).
- A. Alexakis, P. D. Mininni, and A. Pouquet, Phys. Rev. E, 72, 046301 (2005).
- P. D. Mininni, A. Alexakis, and A. Pouquet, J. Plasma Phys., 73, 377 (2007).
- 4) K. Araki and H. Miura, JPFR Ser. 8, 96 (2009).
- 5) K. Araki and H. Miura, JPFR Ser., to appear.