
Geometric conditions for quasisymmetric toroidal
plasmas with large mean flows on the order of the
ion thermal speed are investigated [1,2]. Equilibrium
momentum balance equations including the inertia
term due to the large flow velocity are used to show
that, for rotating quasisymmetric plasmas with no
local currents crossing flux surfaces, all components
gαβ of the metric tensor should be independent of the
toroidal angle in the Boozer coordinates, and conse-
quently these systems need to be rigorously axisym-
metric. Unless the local radial currents vanish, the
Boozer coordinates do not exist and the toroidal flow
velocity cannot take any value other than a very lim-
ited class of eigenvalues corresponding to very rapid
rotation especially for low beta plasmas.

We consider toroidal plasmas, in which the mag-
netic field B is written in terms of the flux coordi-
nates (s, θ, ζ) as B = ψ′∇s × ∇θ + χ′∇ζ × ∇s =
Bs∇s+Bθ∇θ+Bζ∇ζ. Hereafter, we investigate qua-
sisymmetric toroidal systems with large mean flows
on the order of the ion thermal velocity vT . The
O(vT ) equilibrium flow should be tangential to the di-
rection of quasisymmetry, in which the field strength
B is uniform. Here, for simplicity, we restrict our con-
sideration to the quasi-axisymmetric case, in which
the magnetic field strength B is independent of the
toroidal angle ζ,

∂B/∂ζ = 0, B = B(s, θ), (1)

although we can treat general quasisymmetric
cases such as quasi-poloidally-symmetric and quasi-
helically-symmetric ones in the same way as shown
below. When using the perturbative expansion in
terms of the drift ordering parameter δ defined by
the ratio of the ion thermal gyroradius ρT to the equi-
librium gradient scale length L, the lowest-order mo-
mentum balance equation reduces to E0+V0×B/c =
0. Here, the lowest-order electric field is given by
E0 = −∇Φ0(s) = −Φ′

0(s)∇s and the lowest-order
electrostatic potential Φ0(s) is a flux-surface function
satisfying eaΦ0/Ta = O(δ−1), where ea is regarded
as a quantity of O(δ−1). It is found from the lowest-
order kinetic equation that the equilibrium flow veloc-
ity V0 of O(vT ), which consists of the E×B drift and
the parallel flow components, should be represented

by

V0 = V ζ ∂x
∂ζ

, V ζ = −c
Φ′

0(s)
χ′(s)

, (2)

and that the following incompressibility condition and
other constraints hold: ∇ · V0 = b · ∇V0 · b = 0,
∇·∂x/∂ζ = 0, ∂

√
g/∂ζ = 0, V0 ·∇na = V0 ·∇Ta = 0,

B · ∇Ta = 0, na = na(s, θ), and Ta = Ta(s), where na

and Ta are the lowest-order density and temperature
of the particle species a, respectively. We see that the
density na and the Jacobian

√
g ≡ [∇s · (∇θ×∇ζ)]−1

are independent of ζ like the field strength B.
The species summation of the equilibrium force bal-

ance is written to the lowest order as
(∑

a

nama

)
V0 · ∇V0 =

1
c
J × B −∇p. (3)

Then, taking the inner product between Eq. (3) and
∂x/∂ζ, we obtain

1
2

(∑
a

nama

)
(V ζ)2

∂gζζ

∂ζ
=

χ′

c
Js =

Bθ

4π

(
∂Bζ

∂θ
− ∂Bθ

∂ζ

)
,

(4)
In the rigorous axisymmetric case, ∂gζζ/∂ζ = 0 holds
although this condition is not trivially satisfied for
the quasi-axisymmetric case. If ∂gζζ/∂ζ �= 0, then
Eq. (4) leads to nonzero local radial current Js �=
0. This gives rise to a serious problem because the
quasisymmetric system is considered usually by using
the Boozer coordinates while the Boozer coordinates
cannot be constructed for the case of Js �= 0. It is
shown in [1] that, for general profiles of the toroidal
flow velocity V ζ(s), we obtain

∂gζζ/∂ζ = 0. (5)

Then, we find from Eq. (4) that the radial current
vanishes, Js = 0, and there exist the Boozer coor-
dinates in which the covariant poloidal and toroidal
components, Bθ(s) and Bζ(s), of the magnetic field
are flux-surface functions. Here, without loss of gen-
erality, we can regard the flux surface (s, θ, ζ) as the
Boozer coordinates. In [1], we find from using ge-
ometric conditions for toroidal flux surfaces that all
metric tensor components gαβ (α, β = s, θ, ζ) should
be independent of ζ, and that these conditions are
satisfied only if the considered system is rigorously
axisymmetric.
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