§20. Continuous Spin-up and Dynamo in a Precessing Sphere

Koike, Y.¹, Shimizu, M.¹, Kida, S.², Kawahara, G.¹, Goto, S.¹
¹ Osaka Univ., ² Doshisha Univ.

i) Introduction Flows in a precessing cavity such as a sphere, spheroid and cylinder have been studied extensively since the seminal laboratory experiment by Malkus (1968) and the analytical theory by Busse (1968). However, despite of the simple motion of cavity, flows in a precessing cavity are too complex to be fully understood on the basis of analytical theories or experiments. Hence, numerical simulations have been playing an important role to investigate characteristics of flows in a precessing cavity. Recently, the numerical simulation by Kida and Shimizu [1] discovered a turbulent ring in a precessing sphere, along which strong vorticity as well as magnetic flux are generated. Recall that quite a few geophysicists were interested in the dynamo action in the precessing cavity, since the spin axis of the Earth is precessing slowly. In the present study, we investigate flow structures at lower Reynolds numbers and reveal the mechanism to create the ring.

ii) Governing Equations We consider the MHD dynamos driven by incompressive flows in a precessing sphere with the magnitude of the spin and precession angular velocities being constant in time and two axes being orthogonal. The evolution equations in the sphere for the fluid velocity $u(r, t)$ and the magnetic flux density $b(r, t)$ may be written in the precession frame (x, y, z) which is rotating with the precession angular velocity $\Omega_p = \Omega_p \hat{z}$, in non-dimensional form, as

$$\nabla \cdot u = 0, \quad \nabla \cdot b = 0,$$

$$\frac{\partial u}{\partial t} = u \times (\nabla \times u) - 2\Omega \hat{z} \times u - \nabla P - b \times (\nabla \times b) + \frac{1}{Re}\nabla^2 u,$$

$$\frac{\partial b}{\partial t} = \nabla \times (u \times b) + \frac{1}{Re_m}\nabla^2 b,$$

where P is the modified pressure, $\Gamma = \Omega_p/\Omega_s$ the Poincare number, Re the Reynolds number, Re_m the Magnetic Reynolds number, Ω_s the spin angular velocity taken in the z direction. The outside of the sphere is assumed to be vacuum, where the magnetic flux density $b^{(o)}$ obeys $\nabla \cdot b^{(o)} = 0$ and $\nabla \times b^{(o)} = 0$. These equations are supplemented by (on $r = 1$),

$$u = \hat{x} \times r, \quad b = b^{(o)} \quad (on \ r = 1)$$

which are the boundary conditions derived from the assumptions that the flow is non-slip on the boundary and that the magnetic permeability of the fluid is equal to that of vacuum. We also assume that $b^{(o)}$ is zero at infinity.

iii) Continuous Spin-up We fix $\Gamma = 0.1$, since it has been experimentally shown that the flow becomes unsteady at relatively low Re when the Poincare number Γ is around 0.1.[2] It is interesting to observe that in all the cases of these simulation parameters there exists a high speed stream running approximately along the equator, and that the boundary layer near the wall is swelled into the interior along the ring. This high speed ring is shown in figure 1 by plotting high vorticity regions for a laminar case at $Re = 1500$ and a turbulent case at $Re = 10000$. These rings are inclined slightly from the spin axis, and the angle of inclination seems independent of the Reynolds number. The axially averaged velocity, $(u)_r$, is shown in the right panel of figure 2 for $Re = 1500$. Note that this velocity field seems quite similar to that of spin-up. Although it is difficult, due to the nonlinearity, to describe analytically this velocity field, the formation of the ring structure may be understood qualitatively as follows. Because the spin axis rotates about the precessing axis, fluid inside the sphere continuously tries to approach the solid-body rotation which is suitable to the boundary condition at the instance, but which is never established. It takes the duration of the order of $1/\Omega_s$ to form the boundary layer and to start the spin-up. During this period, the ring with high angular velocity inclines at an angle of the order of $\Omega_p/\Omega_s = \Gamma$. It becomes unstable as Re number increases and the turbulent regions with high-activity of vorticity and magnetic flux are created along it.

![figure 1: Ring structure. The regions of large vorticity are plotted. Left: $Re = 1500$. Right: $Re = 10000$.](image1)

![figure 2: Spin-up. Left: Velocity field during spin-up from rest at $Re \sim 5000$. Right: Axial averaged velocity at $Re = 1500$ and $Re_m = 8000$.](image2)