
i) Introduction In fusion plasmas, there are a lot
of physical phenomena should be described by the ki-
netic theory, such as the effect of fast particles gener-
ated by fusion reactions or RF waves and the turbulence
phenomena driven by the drift wave. This is because
that the conventional fluid simulation, which requires
less computational resources than the kinetic simula-
tion, can not describe the physics accurately. Because of
this reason, a number of kinetic simulation codes, which
require huge computational resources, have been devel-
oped. Moreover, since there are a lot of phenomena that
have various time and spatial scale in fusion plasmas, the
analysis of the fusion plasma requires several simulation
codes and the analysis should be done self-consistently.
This process also requires extremely huge computational
resources. Therefore massively parallel and massively
large-scale simulation codes are required for the fusion
simulation. The aim of our project is the development
and enhancement of the fusion simulation code to be
suitable for the coming exa-scale generation.

ii) Porting As the first step of this project, we tried
to port the conservative global gyro-kinetic toroidal full-
f 5D Vlasov code, GT5D1), which is already performed
on JAEA Altix3700Bx2 system, into NIFS SR16000 sys-
tem and Univ. of Tsukuba HA-PACS system.

iii) Diagnostic At the next step, we analyzed the
computation performance of GT5D, which is parallelized
by MPI and OpenMP. Table: I denotes the part of the
flat profile of GT5D with operation check parameters.
It is found that only two function, MAIN and l4dx s,
cost large portion of calculation time, around 90% of the
whole calculation time. In the case of MAIN, since the
MAIN function of GT5D includes much of processing
(it includes about 2000 lines.), it should be divided into
some functions in order to ease to tune and accelerate
the code. Therefore the function which is a largest con-
sumer of computational resources is l4dx s, and it should
be tuned at first.

% cumulative self self total
time seconds seconds calls Ks/call Ks/call name

47.73 6416.68 6416.68 793804 0.00 0.00 l4dx s
40.87 11910.81 5494.14 4 1.37 3.36 MAIN
10.05 13261.84 1351.03 794604 0.00 0.00 bcdf

Table I: The part of the flat profile of GT5D is shown.
This test calculation is executed with 4 MPI processes
and single thread.

msec/call
CPU 1 Thr. CPU 8 Thr. 1 GPU

l4dx r 134.3 23.4 16.6
l4dx s 163.7 28.4 33.2
l4dx l 306.0 39.7 102.7
l4dx nl 517.2 67.9 120.7

Table II: The comparison of calculation time among sin-
gle CPU, multi-thread CPU, and single GPU on HA-
PACS. HA-PACS includes 8 CPUs in one node.

msec/call
CPU 8 Thr. 1 GPU

timedev 1 18.0 5.5
timedev 2 17.5 8.7
timedev 3 21.1 9.8
timedev 4 21.3 11.2
timedev 5 21.5 11.3
timedev 6 22.7 7.2
timedev 7 17.9 5.5
timedev 8 27.5 8.9
timedev 9 20.2 10.6

Table III: The comparison of calculation time between
8-thread CPU, and single GPU.

iv) Acceleration Here we implement the GPU accel-
eration for l4dx s and related functions by using PGI For-
tran compiler. At this step, we did no tuning for speed
up, but we only confirm the GPU calculation is executed
precisely. Table II shows the comparison of calculation
time among three cases, using single CPU, 8 thread CPU,
and 1 GPU on HA-PACS, Univ. of Tsukuba, for each
function. It is found that GPU execution is about 3 ∼ 8
times faster than 1 CPU execution. On the other hand, it
is slower than 8 threads CPU execution. This is because
we still do not tune the code for GPU calculation and it
is expected that the code can get the higher performance
due to appropriate tuning for GPU.

Next, we divided MAIN function into one MAIN
function and 9 sub functions, which are named as
timedev 1 ∼ timedev 9 and we implemented GPU accel-
eration on each sub functions. Table III shows the speed
up of each sub functions by introducing GPU accelera-
tion. Nevertheless the sub functions are not tuned ap-
propriately, GPU calculation performance become higher
than that of 8 threads CPU.

v) Future work In order to achieve further acceler-
ation and obtain good scalability, we proceed to imple-
ment GPU accelerator, to search the possibility of hiding
communication and etc.

1) Y. Idomura, M. Ida, N. Aiba, S. Tokuda, Computer
Physics Communications, 179 (2008)

407

§36.	 Nuclear Fusion Simulation at Exascale

Boku, T. (Univ. Tsukuba), Idomura, Y. (JAEA),
Yagi, M. (JAEA), Naitou, H. (JAEA), Nakajima, N.,
Todo, Y., Watanabe, T., Sakagami, H., Nuga, H.
(Univ. Tsukuba), Fujita, N. (Univ. Tsukuba)

