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Chapter 1

Strong Langmuir Turbulence

A set of generalized Zakharov equations for nonlinear Langmuir waves is derived which is
valid for both electrostatic and electromagnetic, that is, potential and transverse, pertur-
bations which include corrections due to higher electron nonlinearities and allowing for
a breakdown of slow-time scale quasi-neutrality. Further, we show how these correction
terms may possibly affect the Langmuir collapse in two or three dimensions.

1.1 Introduction

An important question in contemporary plasma physics is the problem of strong Langmuir
turbulence [1, 2, 3, 4, 5, 6]. The simplest case is that of Langmuir turbulence in an
unmagnetized plasma which has been studied extensively, especially the transition from
weak to strong turbulence in which the parametric modulational instability (MI), first
suggested by Vedenov and Rudakov [7] and by Gailitis [8], plays a major role. A set of two
equations for Langmuir wave coupled to ion-sound was formulated and dispersion relation
solved for MI growth rate, predicting spatial localization of long-wavelength unstable
perturbations of initially homogenous weak turbulence state [2, 3]. It is currently well
established both through numerical work [9, 10, 11] and through experiments [11, 12]
that if sufficient energy is put into a plasma, Langmuir solitons will be formed, that is,
localized structures which are both density depressions and electric field maxima [4]. The
numerical work is often concerned with one-dimensional models, although Nicholson and
Goldman [13] deal with a two-dimensional plasma, and it is normally based on the so-
called Zakharov equations which were derived by Zakharov [2] to describe the development
of the modulational instability in an unmagnetized plasma. From these equations it
follows that in two or three dimensions collapse will occur, and much numerical work has
been devoted to a study of the existence and dynamics of the so-called Langmuir collapse
(for a review of this type see, e.g., Rudakov and Tsytovich [14], Thornhill and ter Haar [3,
15], Goldman [11]) it is necessary to use numerical methods as the only known analytical
solution of the two- or three-dimensional Zakharov equations is the planar Langmuir
soliton. Unfortunately, the numerical procedure can only be applied to the early stages
of the collapse, since the Zakharov equations lose their validity when the field intensities
become too large. It is the aim of this section to consider a generalization of the Zakharov
equations which will be valid at higher amplitudes in order to show consistent derivation
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and possibly answer the question of whether the collapse will continue until the size of
the Langmuir cavitons become of the order of the Debye length so that Landau damping
can play a role. In this context it is interesting to note that the experiments by Antipov
and collaborators [12] indicated structures which are smaller than the Langmuir solitons,
but large enough for Landau damping still to be negligible. There has been relatively
little work on the limitation of the Zakharov equations. Khakimov and Tsytovich [16](see
also Tsytovich [17]) used their non-linear dielectric formalism to investigate the limit of
applicability of the Zakharov equations. They claim to have taken all non-linearities up
to the fifth order in the electric field into account and they derived a generalized set of
equations. Using an approach similar to the original approach of Zakharov’s and to the
approach to be used here [18], Kuznetsov [19] examined the effect of higher electrostatic
non-linearities and came to the conclusion that they become important at large field
amplitudes. It is our purpose to clarify the effect of electron nonlinearities upon the
collapse, including both electrostatic and electromagnetic perturbations. It is important
to include both potential and non-potential modes, as the frequently used electrostatic
(potential) approximation is normally violated in the case of developed (strong) Langmuir
turbulence of hot plasmas (see, e.g., Thornhill and ter Haar [3] ; Nicholson and Goldman
[13] ). We shall follow original work of Zakharov [2] by separating ”fast” and ”slow”
time scales and applying a hydrodynamic approach, but in addition we shall include
higher electron nonlinearities describing the scattering by stimulated fluctuations in the
low frequency electron velocity and in the 2ωp-components of the electron density and
velocity (ωp- electron plasma frequency). We thus allow the possibility of the breakdown
of the quasi-neutrality for slow motions (compare also [20]). We also shall apply the
adiabatic scaling approach [18, 21] to examine the collapse and the possibility of the
existence of quasi-stationary structures in two or three dimensions. Although we find
that in the spherically symmetric case the correction terms introduced by us halt the
collapse, that is, prevent the appearance of a mathematical singularity, we have not yet
investigated whether the collapse is halted before Landau damping becomes effective, that
is, before the caviton reaches a size of the order of the Debye length. This means that the
question whether the higher hydrodynamic non-linearities studied by us can fully stabilize
the physical collapse still needs to be answered.

1.2 Derivation of the generalized Zakharov equations

We consider an isotropic, unmagnetized plasma in which the electron temperature Te, is
much higher than the ion temperature Ti and we restrict ourselves to considering long-
wavelength electrostatic and electromagnetic modes so that(

klrDe

)2 � 1
(
ktc/ωp

)2 � 1, (1.1)

where k1 and kt are, respectively, the wavenumber of the electrostatic and electromagnetic
waves, c is the velocity of light, and rDe is the electron Debye radius.

We consider Langmuir turbulence when the dominant plasma mode is that of the
Langmuir waves with frequencies close to the electron plasmas frequency (ωp). We follow
the original idea of well separated ”slow” (ion) and ”fast” electron time scales [2] and
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split the electron density ne, electron velocity ve, electric field strength E, and current
density j in terms corresponding to different time scales [18] :

ne = n0 + ns + n1 + n2 + ......, (1.2)

ve = vs + v1 + v2 + ......, (1.3)

E = Es + E1 + E2 + ......, (1.4)

je = js + j1 + j2 + ...... (1.5)

Here, n0 is the initial uniform electron density corresponding to the situation where there
are no waves present, the quantities with index s vary on the slow time scale, those with
index 1 on the fast, (2π/ωp) time scale, those with index 2 on the fast, 2 (2π/ωp) time
scale (2ndharmonic), and so on. It is convenient to write

nl = ñ1 exp(−iwpt) + ñ∗
1 exp(iwpt), n2 = ñ2 exp(−2iwpt) + c.c., (1.6)

vl = ṽ1 exp(−iwpt) + ṽ∗
1 exp(iwpt),v2 = ṽ2 exp(−2iwpt) + c.c., (1.7)

and so on, where the quantities with tildes are slowly varying and where the asterisk sign
indicates the complex conjugate quantity.

We assume that the density perturbation is not too strong, that is,

n0 � ns, n1, n2, (1.8)

where, however, ns may sometimes be taken to the comparable with, though still well
below, n0, while the basic assumption of the predominance of the Langmuir mode leads
to the inequalities

|v1| � |vs| , |v2| ...., |E1| � |Es| , |E2| ...., (1.9)

Our basic equations are the Maxwell equations

∇ · E =4πρ,∇×E = −1

c

∂H

∂t
,∇×H =

1

c

(
4πj +

∂E

∂t

)
, (1.10)

where ρ is the charge density; the quantities ρ and j satisfy the relations

ρ = −e (ne − ni) , j = −e (neve − nivi) , (1.11)

where ni and vi are the ion density and the ion velocity, and −e is the electron charge.
We shall split the ion density as follows:

ni = n0 + δni, (1.12)

where δni changes on the slow time scale and where δni is not necessarily equal to ns: we
are not, as in Zakharov’s original treatment [2], a priori assuming the quasi-neutrality on
the slow time scale.
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The Maxwell equations (1.10) lead to the wave equation,

∂2E

∂t2
+ c2∇×∇× E = −4π

∂j

∂t
, (1.13)

which is linear in both, E and j and convenient for further calculations. We can readily
split up above equation corresponding to various time scales. The equation corresponding
to the ωp-time scale is

∂2E1

∂t2
+ c2∇×∇×E1= −4π

∂j1
∂t
. (1.14)

We must draw attention to the fact that the representation (1.7), (1.8) in the case of E

differs by a factor 2 from the one normally used. The quantity j1 follows from Eq. (1.11)
and satisfies the relation

j1 = −e (n0ṽ1 + nsṽ1 + ñ1vs + ñ∗
1ṽ2 + ñ1ṽ

∗
2) . (1.15)

Substituting expression (1.15) into Eq. (1.14) and neglecting, as usually (i.e., slowly
varying envelope), ∂2Ẽ1/∂t

2 as compared to ωp∂Ẽ1/∂t we find

−2iωp
∂Ẽ1

∂t
− ω2

pẼ1 + c2∇×∇× Ẽ1 = 4πe [n0ṽ1 + nsṽ1 + ñ1vs + ñ∗
1ṽ2 + ñ1ṽ

∗
2] . (1.16)

To close the equation we need expressions for ns,vs, ñ1, ṽ1, ñ2 and ṽ2.It is obvious that the
dominant term on the right-hand side of eq. (1.16) is the linear one involving n0ṽ1, while
the other four terms are much smaller and may be regarded to be nonlinear corrections.

Our basic assumptions are Eqs. (1.1), (1.8), and (1.9) and they allow us to introduce a
hydrodynamic description for the electron fluid, that is, to use the equation of continuity
and equation of motion,

∂ne

∂t
+ ∇ · (neve) = 0, (1.17)

∂ve

∂t
+ (ve · ∇)ve = − e

m

(
E +

1

c
[ve ×B]

)
− 3v2

Te∇
(
ne

n0

)
. (1.18)

Using inequalities (1.8) and (1.9) to linearize Eq. (1.18) in ñ1 and ṽ1 and assuming that
the plasma is non-relativistic so that we can drop the term in the Lorentz force involving
high-frequency magnetic field B, we get

∂ṽ1

∂t
= − [(ṽ1 · ∇)vs + (ṽ∗

1 · ∇) ṽ2 + (vs · ∇) ṽ1 (1.19)

(ṽ2 · ∇) ṽ∗
1] −

e

m
Ẽ1 − 3v2

Te∇
(
ñ1

n0

)
.

To zeroth order we get from (1.19)

ṽ
(0)
1 = − ie

mωp
Ẽ1, (1.20)

and using the Poisson equation in the form

div Ẽ1= −4πeñ1, (1.21)
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we get to the first order

∂ṽ
(1)
1

∂t
=

ie

mωp

[(
Ẽ1 · ∇

)
vs + (vs · ∇) Ẽ1 −

(
Ẽ∗

1 · ∇
)

ṽ2 (1.22)

− (ṽ2 · ∇) Ẽ∗
1

]
− e

m
Ẽ1 +

3e

m
r2
De∇
(
∇ · Ẽ1

)
.

We can now use (1.20) and (1.22) to obtain from Eq. (1.16) the relation

i
∂Ẽ1

∂t
− c2

2ωp

∇×∇× Ẽ1 +
3

2
ωpr

2
De∇ · ∇ · Ẽ1 − ωp

2n0

nsẼ1 = (1.23)

− 1

2
i
[(

Ẽ1 · ∇
)

vs + (vs · ∇) Ẽ1 + vs∇ · Ẽ1

]
− ωp

2n0

ñ2Ẽ
∗
1

+
1

2
i
[(

Ẽ∗
1 · ∇
)

ṽ2 + (ṽ2 · ∇) Ẽ∗
1 − ṽ2∇ · Ẽ∗

1

]
.

If the right-hand side of Eq. (1.23) were zero, this equation would be one of the
Zakharov equations which describes both electrostatic and electromagnetic perturbations
[3, 18, 19]. The terms on the right-hand side of (1.23) correspond to higher electron nonlin-
earities describing both electrostatic (Langmuir) and electromagnetic perturbations The
equation is a generalization of Kuznetsov’s result [19], in which only potential perturba-
tions were considered. Indeed, one readily recovers his results by putting Ẽ1 = ∇ψ.

To close the set of equations we still need relations for ns,vs, ñ2 and ṽ2. The electron
motions at frequencies close to 2ωp can be described in the hydrodynamic framework as
the phase velocity is much larger than the thermal velocity. Linearizing Eqs. (1.17) and
(1.18) with respect to n2 and v2 we find

∂n2

∂t
+ n0∇ · v2 + ∇ · (n1v1) = 0, (1.24)

∂v2

∂t
+ (v1 · ∇)v1 +

e

mc
[v1 ×B1] = − e

m
E2, (1.25)

where E2 which represents the electric field component due to charge separation at fre-
quencies close to 2ωp satisfies the continuity relation

∇ · E2 = −4πen2. (1.26)

Using (1.20) for v1 and the appropriate Maxwell equation (1.10) for B1 we get from (1.25)
the following equation for v2, where we have retained the terms with the correct frequency
dependence:

m
∂v2

∂t
= −eE2 + F2, (1.27)

where F2 is the potential (ponderomotive or Miller, [22]) force at the second harmonic
frequency 2ωp. If we write

F2 = F̃2 exp (−2iωpt) + F̃∗
2 exp (2iωpt) , (1.28)
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we have

F̃2 = −m
(
(ṽ1 · ∇) ṽ1 +

e

mc

[
ṽ1 × B̃1

])
=

−1

8πn0
∇
(
Ẽ1Ẽ1

)
. (1.29)

We note from (1.27) that at the frequency 2ωp the driving force derives both from charge
separation and from the ponderomotive force. To find n2 we first combine Eqs. (1.24),
(1.26), (1.20), and (1.21) to find ∇ · v2 in the form

∇ · v2 =
i

12πn0ωp
∇ ·
(
Ẽ1∇ · Ẽ1 + ∇

(
Ẽ1Ẽ1

))
, (1.30)

and hence

ñ2 =
1

6πmω2
p

∇ ·
(
Ẽ1∇ · Ẽ1 +

1

4
∇
(
Ẽ1Ẽ1

))
. (1.31)

Eqs. (1.30) and (1.31) are identical with Kuznetsov’s equations [19] which were derived
assuming that there were only electrostatic perturbations.

Next we must derive the ”slow timescale” electron equations. As the slow timescale
phase velocity vs

ph will be of the order of the ion-sound speed which is small compared to
the electron thermal velocity, we may assume that the averaged electron density, defined
by the relation

〈ne〉 = 〈n0 + ns + n1 + n2 + ...〉 = n0 + ns, (1.32)

will be given by a Boltzmann distribution in the field of an effective potential Ueff [2, 3].
This effective potential consists of a slow-time scale charge separation potential −eφs and
a ponderomotive potential Upond obtained, like 〈ne〉, by averaging over the fast-time scale
motion:

Ueff = −eφs + Upond, (1.33)

where

Upond =
e2

mω2
p

(
Ẽ1Ẽ

∗
1

)
. (1.34)

For 〈ne〉 we have thus

〈ne〉 = n0 exp
−eφs + Upond

Te
, (1.35)

whence
ns = n0 [exp {(eφs − Upond) /Te} − 1] . (1.36)

If the electron distribution is stationary, we get by linearizing the equation of continuity
(1.17) with respect to ns and vs and retaining only the slow-time scale terms

∇ · vs = −∇ · (ñ1ṽ
∗
1 + ñ∗

1ṽ1) /n0, (1.37)

and hence, using (1.20) and (1.21)

∇ · vs =
i

4πmn0ωp
∇ ·
[
Ẽ∗

1∇ · Ẽ1 − Ẽ1∇ · Ẽ∗
1

]
. (1.38)

To eliminate eφs we shall need an equation for the ion motions. As the ion temperature
is lower than Te, v

s
ph will be larger than the ion thermal velocity vT i and we can apply a
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hydrodynamic description for the ion motion. (If vs
ph � vT i , one can use the so-called

”static” approximation [2].)
For the moment we shall assume that we may linearize the ion equations (see the

discussion at the end of this section). We then have

∂δni

∂t
+ n0∇ · vi = 0, (1.39)

∂vi

∂t
= − e

M
∇φs, (1.40)

where we have in the equation of motion omitted the pressure term, since Te � Ti

by assumption, and neglecting the direct ion ponderomotive force (as m/M � 1) in
comparison to the ambipolar ”electron” force.

If we restrict ourselves to density perturbations for which ns � n0 - which means that
we can expand and linearize Eq. (1.36) to obtain

nsTe

n0

+ Upond = eφs, (1.41)

while Poisson’s equation becomes

∇2φs = 4πe (ns − δni) . (1.42)

Combining (1.41) and (1.42) to eliminate φs we have

ns = δni + ∇2Upond/4πe
2 + r2

De∇2ns. (1.43)

If we further assume that the spatial variations of ns are on length scales much larger
than the Debye radius, we can drop the last term on the right-hand side of Eq. (1.43) to
get the departure from the quasi-neutrality, by

ns = δni + ∇2Upond/4πe
2. (1.44)

We can now eliminate ns and vi from (1.39), (1.40), and (1.44) and using Eq. (1.34)
we find the familiar, ponderomotivelly driven ion-sound equation

∂2δni

∂t2
− c2s∇2δni =

1

4πM
∇2
(
Ẽ1Ẽ

∗
1

)
. (1.45)

Let us briefly remind ourselves of a fundamental requirement for the validity of our
results [18, 22]. This is the requirement that the distance travelled by an electron during
a time ω−1

p is small compared to the characteristic fast timescale length scale k−1, that is,

vsω
−1
p � k−1 and v1ω

−1
p � k−1, (1.46)

we note that we shall allow for v1 to be more important than vs, however, by using 1.20
and 1.38 this leads to the condition

W

n0Te

� (krDe)
−2 , (1.47)
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where W is the energy density in the Langmuir wave.
The condition (1.47) also ensures that one can neglect the effect of electrons trapped

in the finite-amplitude, fast time scale electric field of the wave [23]. The trapping is
a special case of a strong Landau-like resonant interaction involving strong non-linear
electron-orbit modifications. Trapping in spatially localized wavepackets is also negligible
for sufficiently broad wavepacket spectra when condition (1.47) is satisfied. We must add
that, anyway, trapping is inherently a kinetic effect so that we cannot consider it in the
hydrodynamic description used here.

Under additional simplifications our equations will readily reduce to the celebrated
Zakharov equations. Namely, by restricting ourselves to the potential electric field, i.e.
Ẽ1 = −∇ϕ, dropping higher electron nonlinearities on the right hand side of (1.23) and
assuming the quasi-neutrality by putting ns = δni, we obtain a system of two Zakharov
equations describing the nonlinear Langmuir waves coupled to the ion sound. These
equations have been studied into a great depth, bringing the notion of Langmuir solitons
in strong Langmuir turbulence models into focus in numerous analytical, numerical and
experimental investigations. By introducing dimensionless units

r =
3

2
rDe

√
M/mr′, t =

3

2
(M/m) t′, (1.48)

δn/n0 =
4

3
(m/M)n, ϕ = (Te/e)

√
12ϕ′,

we obtain Zakharov equations in the original form

∇2
(
ϕt + ∇2ϕ

)−∇ · (n∇ϕ) = 0, (1.49)(
∂2/∂t2 −∇2

)
ϕ = ∇2 |ϕ|2 .

In the one-dimensional case above equations admit the four parameter family of soliton
solutions, given by

ϕx =
√

2 (1 − β2)λ sech [λ (x− βt− x0)] exp i
[(
λ2 − β2/4

)
t+ βx/2 + α0

]
. (1.50)

The type of these solutions is strongly influenced by the soliton velocity β which in physical
units is equal to 3vTek0rDe, where k0 is a wavenumber at the maximum in the Langmuir
wavepacket spectrum ( see Kuznetsov et al. [24], ). For a soliton at rest, k0rDe �W/n0Te,
the electric field varies monotonically. However, when (k0rDe)

2 � W/n0Te, this is an
envelope soliton with a quasi-monohromatic carrier frequency. In such a case, one can
make a simplification with the slowly time variation of the envelope to arrive at the above
set of Zakharov equations. In the static limit (W/n0Te � m/M), the Zakharov system
reduce to one equation in a form of the famous nonlinear Schroedinger equation (NLS),
[25],

∇2
(
ϕt + ∇2ϕ

)
+ ∇ · (|∇ϕ|2 ∇ϕ) = 0. (1.51)

1.3 Adiabatic Scaling and Spherical Collapse

In this part we investigate the effect of the nonlinear correction terms on the stability
of spherical or circular configurations in the three- and two-dimensional cases, respec-
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tively. At the end, we shall briefly discuss less symmetrical structures, while more general
discussion on wave collapse will be given in a forthcoming chapter.

The spherical collapse was already discussed in Zakharov’s original paper [2] but the
solutions he considered were criticized by Litvak et al. [26] and by Degtyarev et al. [27].
For the spherically symmetric case Eq. (23) becomes

iEt +
∂

∂r

[
1

rd−1

∂

∂r

(
rd−1E

)]− nE − β |E|2E
r2

= 0, (1.52)

where we have introduced dimensionless variables by the substitutions given in (1.48). The
quantity d is the dimensionality (d = 1, 2 and 3) of the system, and β is the dimensionality
parameter, given by

β (d = 1) = 0, β (d = 2, 3) = (2/3)3 m/M. (1.53)

The term with β comes from higher electron nonlinearities which thus do not contribute
in the one-dimensional case, as was independently confirmed by Kuznetsov [19] and by
Khakimov and Tsytovich [16] and Škorić and ter Haar [18] (see also [28]).

In the derivation of Eq. (1.52) we have eliminated ns,vs, ñ2 and ṽ2 from Eq. (1.23)
by using Eq. (1.30), after integrating over r, Eqs. (1.31), (1.37), and (1.38).

We shall follow the approach used in an earlier paper [21, 18] and for the moment for
stationary states represent the density perturbation n as an as yet unspecified function−Q(|E|2)
of the plasmon density |E|2

n = −Q (|E|2) . (1.54)

Of course, n satisfies the equation

ntt −∇2n = ∇2 |E|2 . (1.55)

In the static case, where the time-derivative can be neglected we have clearly

Q (x) = x. (1.56)

Using (1.54) we get Eq. (1.52) simply rewritten in the form

iEt +
∂

∂r

[
1

rd−1

∂

∂r

(
rd−1E

)]
+Q
(|E|2)E − β

|E|2E
r2

= 0. (1.57)

Eq. (1.57) has the constants of motion

N =

∫
|E|2 ddr, (1.58)

the plasmon number, and

H =

∫ {
|∇E|2 − R

(|E|2)+ β
|E|4
2r2

}
ddr, (1.59)
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the Hamiltonian. In (1.59) we have R
(|E|2) which is defined by the equation

Q (x) =
dR (x)

dx
. (1.60)

We now consider a scaling factor λ(t) such that

r → r/λ, E → λ
d
2E, (1.61)

this scaling leaves the plasmon number-N (action) invariant and may thus be called to
be an adiabatic scaling. The Hamiltonian scales as follows

H → C

∫
rd−1dr

{
λ2

∣∣∣∣ 1

rd−1

∂

∂r

(
rd−1E

)∣∣∣∣2 − λ−dR
(
rd |E|2)+ λd+2β

|E|4
2r2

}
, (1.62)

where C is a numerical factor depending on the value of d

C (d = 1) = 1, C (d = 2) = 2π, C (d = 3) = 4π. (1.63)

If now we assume that
lim

x→∞
Q (x) ∝ xν , (1.64)

stability against collapse, that is, as λ→ ∞, is guaranteed, if

ν < σ +
2

d
= νcrit, (1.65)

where σ is a constant depending on d

σ (d = 1) = 0, σ (d = 2, 3) = 1. (1.66)

Condition (1.65) changes into condition ν < 2
d

for the Zakharov equations (see, e.g. [21]
) when β = 0. We also see that in the case (1.56), when ν = 1, the one-dimensional case
leads to stationary solutions - which are, of course, the Langmuir solitons - even without
the electron nonlinearities. Finally, we note that, if the electron nonlinearities are taken
into account, condition (1.65) is satisfied even for two- and three-dimensional plasmas in
the case of the ponderomotive force nonlinearity (1.56). In the spherical approximation
the corrections due to the higher-order electron nonlinearities thus lead to the possibility
of quasi-stationary solutions also in the two- or three-dimensional case. We still need
to consider, however, whether the absence of a mathematical singularity also implies the
absence of a physical collapse to dimensions of the size of the Debye length, as seems to
be the case judging from the experimental results of e.g. Antipov et al.[12] who formed
apparently stable structures of the size of several Debye lengths.

In order to study this question we shall simply estimate the magnitude of the extra
correction term in Eq. (1.48). As long as W/n0Te � m/M , we can neglect the ntt term in
(1.55) (see [3] ) so that (1.56) holds and the self-focusing term in (1.50) is simply |E|2E.
If we require, say, that the correction term is an order of magnitude smaller than the
self-focusing term, we have

β
|E|2E
r2

∼ 1

10
|E|2E, or r2 ∼ 10β, (1.67)

whence, restoring physical dimensions, we get r ∼ 3rDe.
This means that the stabilizing action of the higher-order electron non-linearities does

not start to be fully effective until the spherical collapse has already proceeded quite far.
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1.4 Qualitative discussion of the collapse

Before discussing the collapse of a caviton structure, that is, a localized Langmuir wave
accompanied by a density depression, centred at the origin, we must draw attention that
the second term in Eq. (1.50) can be written in the form ∂2E/∂r2 + (d− 1) r−1∂E/∂r −
(d− 1)E/r2, so that the origin is a singular point of that equation, already for β = 0. One
should therefore for the spherical case impose the boundary condition E(0, t) = 0. This
may have been the reason why Degtyarev et al. [27] considered the spherical collapse of a
spherical layer of radius R and thickness δ, with δ � R, with a soliton-like field structure
in the r-direction. As δ � rDe, so that afortiori R� rDe, the evolution of that model will
not be affected by our correction term. By the same token, however, it is only possible
in this model to study the very early stages of the collapse, as the condition on δ and R
will soon be violated.

In the more general case (see also [26] and [29]), we could expect that there will be
two regions with different dynamical properties. There will be a ”core” region with a
radius of the order of a few times rDe which is stabilized through the effect of the higher
order electron non-linearities, and there will be a ”shell” region which collapses towards
the center (originally in [18] preceding a notion of ”nucleated” collapse by [30]). As
the collapse proceeds, the field amplitude increases and the condition necessary for the
static approximation to hold will be violated. This means that one should consider the
hydrodynamic approximation [3], but that would mean using the full equation (1.55) when
W/n0Te approaches the value of m/M , but is still below it so that the collapse is subsonic.
The self-focusing term will become increasingly important and it will drive the collapse
towards the sonic, or even supersonic (W/n0Te > m/M) regime. The transition to the
supersonic regime was subject to a certain amount of controversy (see [31]) as Eq.(1.55)
is no longer valid for near-sonic motion. However, numerical experiments [32, 11] seem
to indicate, at least for non-dissipative cases, the existence of a supersonic regime. This
part of the collapse was a subject of further studies, especially the question whether such
a supersonic stage could actually occur in real plasmas.

If (1.50) remains valid during the collapse we may perhaps expect in the later stages
of the collapse a hydrodynamic stabilization so that stable spherical cavitons with spa-
tial dimensions of the order of the ”core” radius may be formed and these may be the
structure seen by Antipov and coworkers. Strictly speaking, as soon as the value of
(W/n0Te)(krDe)

2M/m becomes of the order of unity, corrections to the ion motion will
have to be considered ([33] and vide infra) and linearized Eqs. (1.39) and (1.40) must be
replaced by the proper non-linear equations [20].

Let us finally briefly consider the general, non-spherically-symmetric case. As com-
pared to the original Zakharov equations, we note that in Eq. (1.16) we have three extra
terms. These terms are of the relative order (krDe)

2 in the static regime, but they may
become important when W/n0Te becomes larger. For example, in the simple model of
a self-similar supersonic collapse [34] we have ns/n0 = χ(W/n0Te)

2/3, where χ ∼ 0.1 to
1 and for the relative magnitude of the correction terms we get (W/n0Te)

1/3(krDe)
2χ−1

which shows the possible importance of the correction terms in the hydrodynamic regime.
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Chapter 2

Wave Collapse in Plasmas

2.1 Langmuir Soliton Stability and Collapse

A detailed study of the linear stability and nonlinear wave collapse of Langmuir soli-
tons in a weakly magnetized plasma is performed [2]. An analytical investigation of the
linear soliton instability with respect to long-wavelength transverse perturbation versus
magnetic field effect is presented. For a more complete understanding of the growth-rate
structure, a numerical solution of the eigenvalue problem that corresponds to the model
equations is obtained and compared with analytical predictions. Comparison with other
results is given. Furthermore, numerical results obtained by a direct simulation method
in two dimensions are also presented. In a linear regime, detailed agreement with the
results of the corresponding eigenvalue problem is found. In the nonlinear regime of the
soliton instability all considered cases exhibit a collapse dynamics. Moreover, in the devel-
oped, highly nonlinear stage of the soliton collapse, self-similar behavior consistent with
a ”weak” collapse regime is found [36].

2.1.1 Introduction

One-dimensional stationary localized solitonlike wave structures were expected to be the
basic elements of strong plasma turbulence [1, 11, 15, 34, 35]. In one- dimensional systems
solitons are often stable, evolving rapidly from an arbitrary initial plasma state, and there-
fore determining the basic features of the emerging plasma turbulence. However, in real
plasmas, as a rule, solitons appear to be unstable with respect to transverse perturbations
[6]. In a nonlinear stage of evolution, this instability often leads to a soliton collapse, a
unique nonlinear wave phenomenon of the formation of a singularity in a finite time. Ac-
cordingly, the appearance of the collapsing nonstationary wave structures (cavities) that
exhibit a rapid field growth followed by an intensive spatial localization (self-focusing)
results in a qualitative change of the turbulence character [30]. The dispersion relation
describing linear Langmuir waves in a weak magnetic field has a form

ωk = ωpe

[
1 +

3

2
k2r2

De +
1

2

ω2
ce

ω2
pe

k2
⊥
k2

]
, (2.1)
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where ωce and ωpe (ωce � ωpe ) are the electron cyclotron and the electron plasma fre-
quency, respectively, rDe is the Debye radius, and k⊥ is the wave number component trans-
verse to the magnetic field. It is evident that the transverse perturbation increases the
wave frequency and is therefore energetically unfavorable. Accordingly, unstable modes
should only correspond to long-wavelength transverse perturbations, with a frequency
increase on the order of the instability growth rate. Moreover, a magnetic field increase
results in an increase of the frequency of transverse oscillations and appears as a stabilizing
factor.

Soliton instability in a weak magnetic field was studied in [37]. It was shown that
for moving solitons with a velocity V/vte > ωce/ωpe(vte, is the electron thermal velocity)
the magnetic field produces no changes in the soliton stability apart from increasing the
transverse instability length scales, according to

l⊥ ∼ l0
ω2

ce

ω2
pe

l0
rDe

,

where l0 ∼ (8πnT/E2
0)

1

2 , is the soliton characteristic length.
In the opposite limit, the case of a standing soliton ( V = 0) in the long-wavelength

region for the instability growth rate (γ) the following analytical solution of the corre-
sponding eigenvalue problem [30] was obtained

γ = 2ωpe

[
E2

0

8πnT
[12 − 7ζ (3)] − 21

4
ζ (3)

ω2
ce

ω2
pe

]
k2
⊥r

2
De, (2.2)

where

ζ (x) =
∑

n

n−x,

is Riemann’s zeta function.
At first sight, for sufficiently large values

(
ω2

ce/ω
2
pe > 0.43E2

0/8πnT
)

it seems that
the magnetic field stabilizes the linear instability. However, instability may reappear
if one takes into account the next terms in the expansion in transverse wave number
k⊥. The dispersion relation (2.2) in the limit k⊥ → 0, turns into a marginally stable
mode corresponding to a small variation of the soliton amplitude. On the other hand,
the expression (2.2) by itself does not appear to be sufficiently exact. In the treatment
[6, 37], only the first term in the expansion γ (k) was calculated. Moreover, the existence
and solvability of the perturbation scheme, typically has not been proved, nor was the
convergence of the series expansion.

Numerical results obtained by Rowland [38] indicate that the magnetic field is unable
to stabilize the soliton instability. Yet, these results were based on a few values of the
parameters, so it is unclear if other regions of soliton stability can exist. The influence of
the magnetic field on the growth rate structure and on the transverse instability length
scales remains a very important issue. These characteristics would give us an opportunity
to estimate the parameters of the emerging collapsing Langmuir wave packets. The mag-
netic field effect on the collapse of Langmuir wave packets for different model equations
has been a subject of many studies [39, 40, 41, 42].
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In this section, we present a detailed study of the influence of the magnetic field on
the soliton stability [36]. First, we formulate the basic model equation and discuss the
physical background of the problem. Based on the variational principle, we present an
analytical investigation of the growth rate structure in a linear regime for finite values
of the transverse perturbation wave number. Then, we give results of the numerical
solution of the corresponding eigenvalue problem. We have obtained a complete spectral
structure of the growth rate and corresponding eigenfunctions. Somewhat unexpectedly,
the calculated form of γ (k) does not agree with the analytically obtained equation (1.2).
We discuss the possible reason for this discrepancy, mainly due to the inadequate accuracy
of the perturbation treatment. Finally, the last part is devoted to the nonlinear stage of
the soliton instability which exhibits a soliton collapse. In order to study the magnetic
field effect on the nonlinear stage of the soliton instability we show direct numerical
simulations in two dimensions (2D). In the linear regime we find detailed agreement with
the results of the corresponding eigenvalue problem. In the nonlinear regime all considered
cases exhibit collapse dynamics. Moreover, in the developed, highly nonlinear stage of the
soliton collapse, self-similar behavior consistent with a ”weak” collapse regime is found.
This work [36] differs from most of the previous studies [39, 40, 41, 42] on Langmuir
collapse in terms of the model equation, initial conditions (soliton) level of nonlinearity
and observed phenomena.

2.1.2 Basic Equations

Nonlinear evolution of Langmuir waves in a weak magnetic field is conveniently described
by a time averaged dynamical equation for the envelope of the high-frequency Langmuir
wave potential ψ, which in dimensionless units [36]

t→ 3

2

M

m
ω−1

pe t, r → 3

2

[
M

m

]1/2

rDer, ψ → T

e
(12)1/2 ψ,

reads
Δ (iψt + Δψ) − σΔ⊥ψ + ∇ (|∇ψ|2 ∇ψ) = 0, (2.3)

where σ = 3
4
ω2

ce/ω
2
pe (M/m), M and m are as usual the ion and the electron mass, re-

spectively. The external magnetic field B (ωce ≡ eB/mc) is in the x− direction while
the dimensionless equation (2.3) is valid for σ � 3

4
M/m,. The linear part of (2.1) cor-

responds to the dispersion relation (1.1) while the nonlinear term is described through a
static plasma response to the ponderomotive force action. We assume that the character-
istic nonlinear time scales are slower than the ion-sound motions. The above is justified
in a small amplitude region E2

0/8πnT < m/M , i.e. in the subsonic regime.
For a more complete insight into the soliton stability problem and corresponding

growth rate structure the inclusion of the ion inertia is essential (see Refs. [39, 40, 41,
42, 43]. As will be seen below, the magnetic field increase results in a growth of trans-
verse perturbation length scales. Under the assumption that the characteristic transverse
length scales are sufficiently larger than longitudinal ones, the equation (2.3) substantially
simplifies to [43]

∂2

∂x2
(iψt + ψxx) − σΔ⊥ψ +

∂

∂x

(|ψx|2 ψx

)
= 0. (2.4)
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As mentioned above, we shall investigate stability of a planar standing soliton, given with
the analytical solution of (2.1) and (2.2)

ψ0 =
√

2 arctan [sinh (λx)] exp
(
iλ2t
)
, (2.5)

where λ is the soliton strength parameter.
We study the stability of (2.3) with respect to small transverse perturbations with a

potential ψp = f + ig, in a form

f, g ∼ exp
(
iλ2t+ γλ2t+ ikλy

)
, k ≡ k⊥/λ.

Linearizing (2.1) on the background of the soliton (2.3) and taking scaling transformation
x→ xλ, and σ → σ/λ2,we obtain

γ

[
d2

dx2
− k2

]
f+[
d4

dx4
− (1 + 2k2

) d2

dx2
+ k2

(
1 + σ + k2

)− 2k2

cosh2 x
+

d

dx

2

cosh2 x

d

dx

]
g = 0,

(2.6)

− γ

[
d2

dx2
− k2

]
g+[

d4

dx4
− (1 + 2k2

) d2

dx2
+ k2

(
1 + σ + k2

)− 2k2

cosh2 x
+

d

dx

6

cosh2 x

d

dx

]
f = 0.

The increment γ(growth rate) of an instability is given by the eigenvalues of the equation
(2.4) corresponding to the spatially localized eigenfunctions.

In the literature there exist some standard methods of solving for γ (k) , in the long-
wavelength limit, based on the local proximity of the eigen- functions (2.4) for neutrally
stable perturbations [6]. It is evident that odd and even (with respect to x) solutions of
(2.4) can be treated independently. Odd modes (antisymmetric) correspond to marginally
stable soliton deformations in the longwavelength region. However, for even (symmetric)
modes in Ref. [37], the following analytical solution was obtained:

γ2 = 2k2 [12 − 7ζ (3) − 7σζ (3)] . (2.7)

Due to instability the soliton is split into a number of wave packets that each exhibit a
local growth of the amplitude. From the expression (2.5) it seems that for sufficiently
large values of σ,

σ >
12 − 7ζ (3)

7σζ (3)
,

the magnetic field can stabilize the instability. However, as already mentioned, in a real
situation this might not occur. Namely, the instability may reappear in the calculations
if one takes into account the next terms in the expansion in k. It seems that standard
analytical methods do not appear to be successful in that case. Therefore, we shall try
to investigate the structure of the growth rate γ(k) for finite values of k by applying an
approximative variational method.
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2.1.3 Variational Treatment of Soliton Stability

A basic idea of an approximative ”brute force” treatment of a soliton instability in its
nonlinear stage (see Trubnikov et al., [44] and references therein) is as follows. Equation
(2.1) can be obtained by the variational principle [36]

ΔS = 0, (2.8)

where S is the action defined by

S =

∫ ∫ [
i

2
(∇ψ∇ψ∗

t −∇ψ∗∇ψt) + |Δψ|2 + σ |∇⊥ψ|2 − 1

2
|∇ψ|4

]
drdt. (2.9)

Let us substitute ψ in (2.9) as a set of trial functions with varying parameters. In our
case we chose ψ in the following form:

ψ0 =
√

2 arctan {sinh [λ (y, t)x]} exp [−iϕ (y, t)] , |λt,y| � |ϕt,y| . (2.10)

Accordingly, Eq. (2.9) reduces to a much simpler system of differential equations for
λ and ϕ, which can be treated by standard analytical methods. However, the success
of the above procedure essentially depends on our choice of trial functions. As already
mentioned, an unstable mode appears as a local modulation of the soliton amplitude and
phase. Our chosen trial function corresponds to such type of perturbation and should in
a long-wavelength limit recover expression (2.7).

We substitute the trial function (2.10) into the action S, where after a straightforward
procedure we obtain

S =

∫ ∫ [
4λϕt − 4

3
λ3 + 24ϕ2

yλ− (λyϕytλ
−2 − ϕyλytλ

−2 (2.11)

− 2ϕ2
yϕtλ

−1 − 2ϕ2
yyλ

−1 − 2σϕ2
yλ

−1 − 2λyyϕ
2
yλ

−2

+4ϕyϕyyλyλ
−2 − 2ϕ4λ−1)I0 + 4λ2

yyλ
−2I2
]
dydt,

where

I0 =

∫ ∞

0

[arctan (sinhx) − π/2]2 dx, I2 =

∫ ∞

0

x2

cosh2 x
dx.

By varying the functional S over σ and λ, it is possible to derive a system of two equations
(if the initial function was appropriately chosen). We limit ourself to check if in a long-
wavelength limit (k → 0) of the linearized version of equations ΔS/Δϕ = 0, and ΔS/Δλ =
0, one can recover the results of [37]. By linearizing the equations ΔS/Δϕ = 0, and
ΔS/Δλ = 0, on the background of the stationary solutions ϕ0 = tλ2, λ0 = const, ϕ =
ϕ0 + Δϕ, λ = λ0 + Δλ, we get

−4Δλt − 48λ0Δϕyy − (2λ−2
0 Δλyyt + 4λ0Δϕyy + 4λ−2

0 Δϕyyyy − 4σλ−1
0 Δϕyy)Io = 0, (2.12)

4Δϕt − 8λ0Δλ + 2λ−2
0 I0Δϕyyt + 8λ−3

0 I2Δλyyyy = 0. (2.13)

For perturbations in a form Δλ, Δϕ = exp (γt+ iky), after simple calculations we obtain
the formula for γ(k) as

γ2(k) = 2
[12λ2

0 − 7 (λ2
0 + σ) ζ (3)] k2 + 7ζ (3) k4[

1 + 7
2
ζ (3) k2λ−2

0

]2 . (2.14)
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It is evident that in a long-wavelength limit our result (2.14) agrees with (2.7). However,
it is also obvious that the instability may reappear if we take into account the higher
order terms in k. The maximum growth rate depends only weakly on σ. Accordingly,
generally taken, in the framework of Eq. (2.3) the magnetic field does not stabilize the
soliton stability. However, based on (2.14) for sufficiently strong magnetic fields, islands
(regions) of stability around

σ =
12 − 7ζ (3)

7ζ (3)
λ2

0,

should exist.
We have already emphasized that the accuracy of the above-noted variational treat-

ment critically depends on our choice of trial functions. This procedure seems convenient
to predict the rough qualitative features of the instability increment, however, hardly
adequate enough to describe the fine structure of the eigenmode corresponding to (2.7).
Therefore, to single out the detailed structure of the instability increment, we shall have
to numerically solve the eigenvalue problem (2.6).

2.1.4 Numerical Treatment

In order to find a detailed structure of the instability increment γ(k) it is necessary to
calculate a set of eigenfunctions which vanish at infinity with the corresponding eigenval-
ues for γ, for different values of the perturbation wave number k and the magnetic field
σ. As mentioned above, unstable modes, at least in the long-wavelength limit, correspond
to a symmetric (even) type of the electric field perturbations. Accordingly, the electric
potential perturbations are antisymmetric. This situation enables us to solve the system
(2.6) in the interval [0,∞) with the boundary conditions [36]

d4Δψ

dx4

∣∣∣∣
x=0

=
d2Δψ

dx2

∣∣∣∣
x=0

= 0, Δψ = f + ig. (2.15)

Further, based on (2.6) the following condition is automatically satisfied:

Δψ|x=0 = 0.

In order to find spatially localized (vanishing at infinity) solutions which satisfy (2.15) we
have adopted the following method. On the right-hand side (r.h.s.) of the interval [0, R],
R � 1, for given k, we assume the following asymptotic solution of (2.6):

Δψ = f + ig = C1 exp (k1x) + C2 exp (k2x) , (2.16)

where C1 and C2 are the arbitrary complex constants. By making use of (2.16) as bound-
ary conditions for (2.6) it is possible to solve the system (2.6) as a Cauchy problem and to
calculate the eigenfunction Δψ and its derivatives at the l.h.s. of the interval (at x = 0).
As a next step, we shall define an auxiliary function F (γ, C1, C2) in the following way:

F (γ, C1, C2) =
[
f 2 (0) + f 2

xx (0) + f 2
xxxx (0) + g2 (0) + g2

xx (0) + g2
xxxx (0)

]1/2
.

If F revolves at a zero point, then the obtained functions f(x) and g(x) appear to be the
eigenfunctions and γ(k) the corresponding eigenvalue of the system (2.6), with boundary
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Figure 2.1: Linear growth rate (p) versus transverse perturbation wavenumber (k) for
different magnetic field strengths (σ): 0, 0.9, 3, 10, and 50, [36].

conditions (2.15) and (2.16). The function F depends on five independent parameters.
Based on a linearity of (2.6) it is possible to fix one of them, e.g., ImC1 = 1. By varying
the remaining parameters we look for a minimum of the function F. The minimization is
performed by the method of steepest descent, starting with arbitrary values of γ0, C

0
1 and

C0
2 . Typical maximum values for f and g were equal or larger then unity. The procedure

was terminated when the value of F became smaller than 10−3. In order to perform
calculations in the small k region, with the slowly decaying asymptotic solutions, we have
chosen a substantially larger interval of calculations R = 8.

It has been proved that for all considered initial states a single minimum of F exists
being independent on the initial conditions. Therefore, in Fig.(2.1, we plot the calculated
spectrum γ(k) for different values of σ. It is evident in (Fig.2.1), that the magnetic field
increase results in a continuous change of γ(k); its maximum shifted to the longwavelength
region while the maximum value weakly increases with σ. Accordingly, the magnetic field
increase leads to a growth of the transverse perturbation scale length. For larger values
of l⊥/l‖, i.e., for larger magnetic fields σ, which corresponds to Eq. (2.4) the spectral
dependence γ(k) on the magnetic field strength appears to be universal:

γ(k, σ) = γ(k
√
σ). (2.17)

Our calculations indicate that the transition to this universal behavior (2.17) already
appears at σ ∼ 10.

It is a very important fact that the numerically calculated spectral dependence differs
qualitatively from the analytical formulas obtained above. Namely, numerical results
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Figure 2.2: Linear growth rate as a function of transverse perturbation wavenumber (k1/3)
for magnetic field strength: 0, 3, and 10, [36].

show that the magnetic field increase does not produce an island of stability near k = 0;
i.e., instability exists in the entire interval between k = 0 and the cutoff (critical) value
k = kc. On the other hand, the spectral structure of the growth rate in the small k region
considerably differs from the analytically predicted dependence γ(k) ∼ k, exhibiting a
nonlinear behavior according to γ(k) ∼ k1/3 (see Fig.2.2).

The above situation convinces us that the formulation of the perturbation theory
for the plasma soliton stability proposed in Refs. [6] and [37] does not appear to be
sufficiently accurate. As an additional check of this problem we have performed further
investigations in the region k → 0. It seems obvious that for k = 0 and γ = 0, neutrally
stable perturbations correspond to infinitely small variations of the soliton parameters.
Accordingly, the eigenfunctions f and g of a symmetric type turn out to be

f = 0, g =
√

2 arctan (sinh x) . (2.18)

Our numerically calculated solutions, as k → 0, continuously assume the form of (2.18).
Furthermore, we study the spectral behavior near the cutoff value kc. Solutions of the

eigenvalue problem (2.6) for k = 0 and γ = 0 were obtained in an independent way. It
appears that two types of solutions exist. The first one, with the critical (cutoff) wave
number kc = 1 − σ, if k = kc, turns into a stable mode ( γ2 < 0). The second type
corresponds to an unstable branch (for (σ = 0 and kc � 0.7 ) with a continuous transition
for k = kc, to a solution of the complete system (2.6).

In order to check the accuracy of our numerical method we have investigated the
soliton instability in the framework of the nonlinear Schrodinger (NLS) equation. The
calculated spectral form of γ(k) coincides with the one found in [45]. In the case of the
NLS equation, the soliton stability problem for a small k is solvable with the perturbation
theory [6] to any order of expansion, therefore γ ∼ k for k → 0, as was confirmed in our
calculations.

Moreover, we have attempted to construct a novel analytical perturbation scheme
which for k → 0 could correctly recover the results of the above numerical calculations.
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We look for a solution of (2.6) in a form of series expansion for a small k values [36],

γ = Ak1/3 + ....., (2.19)

g = g0 + k2/3g2/3 + k4/3g4/3 + .... ≡ g′0 + g′2/3 + ....,

f = k1/3
(
f1/3 + k2/3f3/3 + k4/3f5/3 + .....

) ≡ f ′
1/3 + f ′

3/3 + f ′
5/3 + ....

In the first order of the perturbation theory we get

d

dx
H+

d

dx
f ′

1/3 = γ
d2

dx2
g′0. (2.20)

Further, to successive orders one obtains

d

dx
H−

d

dx
g′2/3 = −γ d

2

dx2
f ′

1/3, (2.21)

d

dx
H+

d

dx
f ′

3/3 = γ
d2

dx2
g′2/3,

d

dx
H−

d

dx
g′4/3 = −γ d

2

dx2
f ′

3/3,

d

dx
H+

d

dx
f ′

5/3 = γ
d2

dx2
g′4/3,

where

H+ =
d2

dx2
− 1 +

6

cosh2 x
,

H− =
d2

dx2
− 1 +

2

cosh2 x

Finally, at the sixth order, we shall come across the terms proportional to k2.

d

dx
H−

d

dx
g′6/3 + k2

[
− d2

dx2
+ σ − 1 +

2

cosh2 x

]
g0 + γ

d2

dx2
f ′

5/3 = 0. (2.22)

In that way, so far as f ′
5/3 ∼ k5, we have constructed the perturbation scheme for which

γ ∼ k1/3. Although operators H+ and H− and their inverse counterparts are well defined,
a fact that, in principle, should allow the derivation of f ′

5/3(x), the proof of the convergence
of the above perturbation scheme is rather complex. A particular point lies in the fact that
the expansion for a small k is justified only in the region |x| � 1/k. This is connected with
a slow decay of the solution of the complete system (2.6) f, g ∼ exp (−kx). Naturally, this
was a reason why we try to check the proposed scheme upon our numerical calculations.
It is evident from Fig.2.2, that the dependence γ ∼ k1/3. is obeyed with a high degree of
accuracy for small k values. The deviation from the above dependence, for large σ, comes
from the fact that in this case, as γ = f (k

√
σ), the expansion is justified for substantially

smaller values of k. In Fig.2.3 we plot the dependence of dg/dx|x=0 and df/dx|x=0 on
k1/3 As expected from the expansion (2.19), gx (0) = const. and fx (0) = Bk1/3. In this
way, our numerical results give strong support for the proposed perturbation scheme.
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Figure 2.3: Spatial derivatives of eigenfunctions (f, g) at x = 0 as a function of transverse
perturbation wavenumber (k1/3), [36].

2.1.5 Nonlinear Stage of Soliton Instability

Further, we discuss a nonlinear stage of the soliton instability. In an isotropic plasma, in
a linear regime, this instability results in a transverse modulation of the Langmuir soliton
amplitude. The nonlinear growth of the perturbation can lead to a soliton breakup into
a number of collapsing wave packets (Langmuir caviton) [46]. Therefore, in our problem,
it is expected that the magnetic field can substantially affect this nonlinear stage of the
soliton instability(see Refs. [39, 40, 41, 42, 43]).

In Fig.2.4 we plot the eigenfunctions of the system (2.4) calculated above that corre-
spond to the maximum linear growth rate for different values of the magnetic field. It
is evident that the increase of σ does not bring a qualitative change in a structure of
the growing perturbations. Therefore, it seems reasonable to expect that the magnetic
field growth just increases the transverse length scales of the wave packet leaving all basic
qualitative features of the collapse process preserved.

In order to investigate the soliton instability, in particular, in its highly nonlinear
stage, we have further performed a direct numerical simulation of Eqs. (2.3) and (2.4) in
two dimensions (2D). We have used the spectral Fourier method with respect to the space
coordinates with an explicit time integration scheme. The instability development was
studied by imposing initial conditions in a form of the standing planar soliton (2.3) period-
ically perturbed in a transverse direction. For sufficiently large values of σ computations
based on (2.1) and (2.2) produce very close results.

Moreover, direct simulations results are checked upon those obtained in the previ-
ous section. In the initial stage, when instability exhibits an exponential growth of the
perturbation, we have chosen sufficiently small initial perturbation levels. We have used
periodic boundary conditions (Lx, Ly), a numerical grid of 64×64 (checked upon 128×128
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Figure 2.4: The eigenfunctions (f, g) for σ = 0 and σ = 3, [36].

Figure 2.5: Linear growth rate (p) versus transverse perturbation wavenumber (k) for
different magnetic field strengths (σ): 0, 0.9, 10, and 50. a) direct 2D simulation, b)
solution of the spectral problem, [36].
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Figure 2.6: Time snapshots of the 2D soliton electric field amplitude (E (x, y)) during
Langmuir collapse. Initial soliton strength is λ = 5 and σ = 10, [36].
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Figure 2.7: Characteristic spatial scales (lx, ly) and the maximum electrostatic energy
density (|E|2) as a function of a time interval to the collapse time (t− t0). Dashed lines
denote σ = 0 and solid line denote σ = 5, [36].

points, a time step of 0.001 and the perturbation level ε = 0.01, with regularly checking
the conserved integrals of (2.3) and (2.4), i.e., the plasmon number (N) and the Hamil-
tonian (H). In contrast to a work of Pereira, Sudan, and Denavit [46], our perturbation
level ε was decreased [36] until the growth rate γ has become independent on ε. We
have performed runs with different values for k and σ. However, in the range of small
perturbation wave numbers ( k < 0.2) a care must be taken, since the grid resolution
can be insufficient for accurate calculations. In Fig.2.5, we compare the direct simulation
results for γ (k) with the results of numerical solutions of the eigenvalue problem (2.6).
As seen on inspection the results of these two essentially independent methods of solution
show satisfactory agreement. In particular, the results coincide for the values near to
the cutoff wave numbers. The direct simulation results have confirmed that all linearly
unstable solitons, independent of the magnetic field strength and the perturbation wave
number, in their nonlinear stage enter a collapse phase. This result is consistent with e.g.
work of Goldman et al. [39, 40] related to the collapse of Langmuir wave packets in a
weak magnetic field with full ion dynamics. In order to illustrate this, we show typical
time snapshots in Fig.2.6, of the early collapse, which exhibits the basic collapse features:
the initial localization, subsequent explosive amplitude growths connected with a rapid
contarction of the spatial dimensions resulting in large wave energy density. The earlier
results on soliton break up and subsequent collapse in an unmagnetized plasma [46, 47]
were readily recovered in our simulations for σ = 0.
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An important characteristic of the collapsing wave packet is its elongation (Fig.2.7) i.e.,
the aspect ratio lx/ly. This quantity defines the energy content trapped inside the cavity,
which is of considerable importance concerning the final collapse stage and the ultimate
energy dissipation. Generally taken, there possibly exist solutions with a various degree
of elongation [48, 36], that are also depending on the way they were initially formed.

2.1.6 Self-similarity and collapse regimes

Let us further discuss a highly nonlinear, developed stage of the collapse. A general
scenario was proposed in the early work of Krasnosel’skikh and Sotnikov [43] which was
based on an analytical study of a version of Eq. (2.4), which takes into account a full ion
inertial response. The above is necessary in the so-called supersonic regime (E2

0/8πnT >
m/M) of the magnetized Langmuir wave collapse.

In the early stage of the soliton collapse, as long as ωce/ωpe � krDe, the transverse
dimensions of the collapsing wave packet are substantially larger than the longitudinal
ones, forming a highly elongated, dipole field structures. During the collapse process the
transverse length scale of the cavity decreases more rapidly than the longitudinal one and
therefore, when krDe ∼ ωce/ωpe, two scales become of the same order. Accordingly, in
the later stage, the magnetic field was not expected to influence the collapse development
[43]. However, it is still believed that in the final collapse stage magnetic field can possibly
make an effect on the cavity structure and its energy content. Indeed, our simulations
seem to point in the same direction (vide infra), i.e., that in the final stage, the cavity
form and the trapped energy depend on the magnetic field strength.

Further, we investigate the possible self-similar time behavior of the wave collapse
process in its developed stage, following Hadžievski et al., [36]. Studies of the wave
collapse have shown that a collapse process, as a unique nonlinear phenomenon of the
formation of a singularity in a finite time, can be developed through two different collapse
regimes: weak and strong. Originally, Zakharov and Kuznetsov [49] for the NLS equation,
followed by Kuznetsov and Škorić [50] for the nonlinear upper-hybrid and lower-hybrid
waves have shown that during the strong collapse regime the trapped wave energy through
the collapse stage remains finite and the wave radiation from the cavity is absent. On
the other hand, in the weak regime, which formally preserves zero energy into the final
collapse stage, wave radiation is present. In the framework of Eq. (2.4) it has been
shown that two regimes, weak and strong, exist. Both regimes near the singularity can
be described by a general self-similar ansatz in the form [36]

ψ (r, t) → 1

(t0 − t)a+ipf

[
z

(t0 − t)b
,

r⊥
(t0 − t)c

]
, (2.23)

where a, b, c, and p are the real parameters. This means that the cavity dimensions scale
as

lz � (t0 − t)b , l⊥ � (t0 − t)c . (2.24)

The number of waves localized in the cavity (N cav) depends on time (in two dimensions)
as

N cav =

∫ ∣∣∣∣∂ψ∂x
∣∣∣∣2 dr ∼ (t0 − t)2a−b+c , 2a− b+ c ≥ 0, (2.25)
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where for a strong collapse N cav should remain constant, while for a weak collapse
N cavgoes to zero as collapse reaches the singularity.

We shall return to the detailed classification of strong and weak collapse regimes in
the next section, while here we just focus on the early collapse stage for ωce/ωpe � krDe.
In this case, a simplified version of the nonlinear equations (2.4) is appropriate which
accepts the following self-similar substitution [43]

ψ (r, t) → 1

(t0 − t)ipf

[
z

(t0 − t)1/2
,

r⊥
(t0 − t)

]
, (2.26)

where the corresponding cavity dimensions scale like

lz � (t0 − t)1/2 , l⊥ � (t0 − t) .

However, the above self-similar ansatz describes the weak collapse process with a cavity
plasmon number (N cav) which decreases in time as

N cav =

∫ ∣∣∣∣∂ψ∂x
∣∣∣∣2 dr ∼ (t0 − t)1/2 ,

in the 2D case.
The numerical simulation of an axially symmetric version of the Krasnosel’skikh equa-

tion presented by Lipatov [48] supported the above general picture. However, conclusions
concerning the late collapse stage, when the disappearing magnetic field effect suppos-
ingly switches the collapse to an isotropic type of evolution, are somewhat of a speculative
nature.

In order to check the self-similar character of the collapse evolution consistent with
(2.23) based on our 2D numerical simulation results, we vary t0 to find the best fit for
the time evolution of the maximum electric field amplitude, for different values of the
magnetic field σ = 0, 5, 10,and 15. ¿From (2.23), the maximum electric field amplitude
squared, scales like

|Emax|2 ∼ 1

(t0 − t)α , α = 2a+ 2b. (2.27)

Our results indicate that the self-similar evolution is exhibited also for smaller values of σ
including σ = 0 , with a slope α = 1.2, which is in agreement with the results of Pereira et
al. [46]. For σ = 15, they come close to the analytical predictions [50] for (α = 2) based
on Eq. (2.4). In Fig. 7, we plot in a double-logarithmic scale, the time variation of the
maximum amplitude (2.27) and characteristic spatial dimensions of the collapsing cavity
for σ = 0 and σ = 5. The self-similar behavior is evident, although with a changing slope:

α0 � 1.20 (σ = 0) , α5 � 1.74 (σ = 5) .

Transverse length scales grow faster than longitudinal ones, resulting in that the initial
dipole field structure tends to symmetrize. The above process gets more pronounced with
the magnetic field increase. By calculating the parameters a, b, and c from Fig.2.7, we
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readily find the time dependence of the plasma number (N cav), which based on (2.25)
turns out to decrease in time, as

N cav
0 ∼ (t0 − t)0.20 , N cav

5 ∼ (t0 − t)0.36 ,

which defines a weak type of collapse.
However, the self-similar features of the described collapse processes, were studied in

a time interval restricted to an increase of the energy density of just up to two orders
of magnitude. Therefore, the later stages of the collapse, closer to the singularity, could
exhibit somewhat altered type of dynamics. As a general picture, our simulations indicate
an early collapse development corresponding to a weak collapse regime. Possibly, this
comes from the fact that in order to approach other, the so-called (ultra) strong collapse
regime, much larger inertial interval seems necessary.

The energy content of the collapsing wave structure is of a considerable physical in-
terest. Namely, the results indicate an altered effective absorption rate, i.e.,

[(k0rDe) / (ωce/ωpe)]
1/2 ∼ (E2

0/8πnT
)1/2

ωpe/ωce,

times the absorption rate for an isotropic plasma, corresponding to the increased level of
the strong Langmuir turbulence. Still, a need for an experimental insight in such physical
situation is of a great importance.

Subsequently, it was understood that the ultimate ”burn out” process of the collapsing
wave packets is expected to dissipate a finite amount of the wave energy. Namely, the
structure of the weak collapse (conserving zero energy) seemed to indicate that the final
stage should allow only an infinitely small value of the dissipated energy. However, in
reality one expects a different situation. Further refinements in the wave-collapse theory
[30], have indicated a possibility of a collapse process formed as a long-living spatially
localized narrow core (hot spot) close to a singularity, which entrains the wave energy
from the surrounding region (”black hole” effect). Such an effect was variably named as a
”funnel effect” [30], ”nucleation ” or ”distributed collapse” [51]. Accordingly, in our case,
the solution (2.23) could supposingly be valid only in a thin region close to the singularity.
At larger distances, different type of a solution could be formed providing a continuous
energy influx into the singularity. More simply, in such a weak collapse dynamics a type
of a ”funnel” is formed entraining the energy from the outer regions.

For the Eq. (2.6) this funnel looks as an anisotropic structure. Anisotropic bi-self-
similar collapse solution [52] describing a finite energy capture into an anisotropic funnel
has been also predicted.

2.2 Virial Theory of Wave Collapse

The virial theorem of collapse of the large amplitude Langmur wavepacket is proved, in a
model of Zakharov equations which in the static limit reduce to the nonlinear Schroedinger
equation ( see, an extensive review, [25]).

The problem of plasma turbulence is of great interest both from a theoretical point
of view, and from an experimental one for laboratory, fusion and astrophysical plasmas
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(see, reviews [11, 34, 35], and references therein). The simplest case is that of Langmuir
turbulence in an unmagnetized plasma which has been studied extensively, especially the
transition from weak to strong turbulence in which the parametric modulational instability
(MI), first suggested by Vedenov and Rudakov [7] and by Gailitis [8] , plays a major role.
In two- or three-dimensional plasmas the MI ultimately leads to Langmuir collapse [2],
that is to the formation of cavitons - localized intense Langmuir wavepackets in regions of
lowered plasma density - which appear unstable and can possibly collapse to the physical
dimensions of a few Debye radii, when Landau damping becomes important. It should
be borne in mind, however, that the Zakharov equations which describe the collapse,
cease to be valid much before this final stage is reached. These equations are usually
derived [2, 3, 18] on a two-fluid and two-timescale basis and they describe the evolution
of nonlinear Langmuir waves coupled to ion sound by the ponderomotive force. It is
the present aim to discuss the collapse dynamics of Langmuir waves and, by means of a
general virial theorem, presented by Goldman and Nicholson [33], prove the condition
for collapse existence. We only give an outline of our reasoning; with full details available
elsewhere [2, 3, 33, 256].

We consider a hot, collisionless, uniform, non-isothermal (Te � Ti) plasma, for non-
linear Langmuir modes with frequencies ∼ ω0 close to ωpe. We follow the procedure by
using the standard time-averaging over the fast Langmuir wave period scale [2, 3, 256]
to derive the following set of Zakharov equations for the Langmuir waves nonlinearly
coupled to ion sound waves, which in the vector form, read [2, 256],

i
∂E

∂t
+

3

2
ω0r

2
De∇ (∇E) −

(
c2

2ω0

)
[∇× [∇×E]] =

1

2
ω0

(
Δn

n0

)
E, (2.28)

∂2Δn

∂t2
− c2s∇2Δn = ∇2 |E|2

16ππM
,

where E is the slowly-varying envelope of the fast-timescale electric field and Δn is the
slow-timescale density variation.

Further, we restric ourselves to a simplified version corresponding to weak amplitude
case, which is valid under assumption of adiabatic ion response (neglecting the term
∂2Δn/∂t2 in the second equation) and potential (electrostatic) field E, i.e. (∇×E = 0) ,
to obtain the following nonlinear Schroedinger type of equation

i
∂E

∂t
+

1

2
∇ (∇ · E) + |E|2 E = 0, (2.29)

where we have introduced, as usual, dimensionless units: t → t/ω0, r → rrDe

√
3,

E → (32πn0Te)
1/2

E.
¿From NLSE we can derive by the standard linear parametric instability analysis the

growth rate for the modulational instability (MI) [2, 256]. To discuss the fully nonlinear
evolution, self-focusing and collapse of a Langmuir wave packet we now follow Goldman
and Nicholson [33] (see also Kono et al. [54] ). We first of all note that Eq. (2.29 )can be
derived from a Langrangian density L, given by the formula (cf. Gibbons et al. [21])

L =
1

2
i

[
E∗∂E

∂t
− E

∂E∗

∂t

]
− 1

2
|(∇ ·E)|2 +

1

2
|E|4 . (2.30)
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¿From the Langrangian density we readily get the energy and momentum conservation
laws, in a form given in [33, 54].

∂ |E|2
∂t

+ (∇ · s) = 0,
∂p

∂t
+
(
∇ ·

↔
T
)

= 0,

where now

p =
1

2
i [(E · ∇)E∗ − (E∗·∇)E] = s

Tij =
1

2

[
(∇ · E)∇iE

∗
j + c.c.

]− 1

2
Δij [∇ · Re {E (∇ · E)}] + |E|4 .

Proceeding as in [33, 54], we define the root mean square spatially avaraged width 〈Δr2〉1/2(
Δr2 ≡ |r−〈r〉|2) of a localized wavepacket (i.e., Langmuir caviton) (using as a proba-

bility weighting function |E|2 /N , where N is the plasmon number) to get the Ehrenfest
theorem,

∂

∂t
〈Δr〉 ≡

∫ (|E|2 /N ) rd3r =
P

N = const. (2.31)

Accordingly, it is straightforward to prove the general virial theorem

∂2

∂t2
〈
Δr2
〉

=

[
2H
N − P2

N 2

]
−
∫

|E|4 d3r. (2.32)

By integrating twice the above equation, we find

〈
Δr2
〉

= At2 +Bt+ C − (2 −D)

t∫
0

dt1

t1∫
0

I (t2) dt2, (2.33)

where, D is the number of spatial dimensions, A is a constant of motion and B and C
are integration constants,

I(t) =

∫
|E|4 d3r, A = 2H/N − P2/N 2, (2.34)

H =
1

2

∫ [|(∇ ·E)|2 − |E|4] d3r, P =

∫
pd3r, N =

∫
|E|2 d3r.

We note that, if initially A < 0, for the dimensionality D ≥ 2, then 〈Δr2〉 will collapse
to zero in a finite time, or physical collapse will be stopped at few rDe, due to Landau
damping. Of course, even before such a value is reached, above model equations cease to
be valid [18].

2.3 Hierarchy of Collapse Regimes in a Magnetized

Plasma

A collapse classification for upper-hybrid and lower-hybrid waves in a weakly magnetized
plasma is presented [50, 57, 58]. It is proved that in these nonlinear systems, three-
dimensional soliton solutions do not exist. Further, it is demonstrated that the basic
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criterion for the existence of the wave collapse is the unboundness of the Hamiltonian
from below due to nonlinear terms. Finally, we show that there exists a hierarchy of wave
collapse regimes, starting from a weak -collapse case which formally preserves zero wave
energy into the collapse stage, and concluding with the strong- collapse, when the trapped
wave energy remains finite [50].

2.3.1 Introduction

Studies of a theory of wave collapse show that the collapse [2, 11, 49], as a known phe-
nomenon of the formation of a singularity in a finite time, often appears in a multi-
dimensional system, although a soliton solution is usually found in an one-dimensional
case. Such behaviour is found to be due the growing influence of nonlinear effects with
an increase of spatial dimensionality.

A similar situation takes place in the theory of phase transitions, where the phase tran-
sition is forbidden in a low-dimensional system although it is allowed for higher dimen-
sional cases. In a seminal paper by Zakharov and Kuznetsov [49], followed by Kuznetsov
and Škorić [50], it was shown that for the nonlinear Schroedinger equation (NLSE) [25]
in three dimensions (3D) there exist a hierarchy of wave-collapse regimes, starting from
”weak” collapse, i.e. the most rapid regime described by the self-similar solution of the
NLSE, which formally conserves zero energy into the final stage, and concluding with
”strong” wave collapse in which the wave energy remains finite. Corresponding results
were obtained in a work [50], which studied a different type of wave collapse in a weak
dispersive medium, i.e. magnetosonic wave collapse. This situation differs from the Lang-
muir collapse because of a different nonlinearity of a hydrodynamic type.

In this section, we present the collapse classification for upper-hybrid (UH) and lower-
hybrid (LH) waves in a weakly magnetized plasmas [50], i.e. when the electron plasma
frequency ωpe, is larger than the electron cyclotron frequency ωce, namely, ωpe � ωce.
First, for upper-hybrid waves, we take into account only the influence of the magnetic
field on the dispersion law and use the model equation of Ref. [43]. As the lower-hybrid
collapse is concerned, we describe it with a help of the self-consistent system of equations,
originally derived in Ref. [55]. Further, we shall show that in these nonlinear systems,
three-dimensional soliton solutions do not exist. The reason, as will appear, is connected
with a type of nonlinearity which is stronger than, for instance, that in the NLSE or in
the Zakharov system [2], which describes the collapse of the nonlinear Langmuir waves in
an unmagnetized plasma.

2.3.2 Model Equation

First, let us consider upper-hybrid waves in a weak magnetic field (ωpe � ωce) . The
dispersion law is given in the form

ω(k) = ωpe

[
1 +

3

2
k2r2

De +
1

2

ω2
ce

ω2
pe

k2
⊥
k2

]
,

where, rDe is the Debye radius, k⊥ is the wavenumber component transverse to the mag-
netic field direction and B0 is directed along the z−axis. In the dispersion relation [43],
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the first term describes the longitudinal electron plasma wave oscillations. Other terms
are due to slower dispersive processes.

The nonlinear effect, in a weak amplitude region
(
E2/8πnTe ≡W � 1

)
, appears to

be slow with respect to fast oscillations at the plasma frequency. Therefore, we can obtain
the envelope equation for the amplitude of h.f. oscillations, which in the dimensionless
units has the form [43]

Δ (iψt + Δψ) − σΔ⊥ψ + ∇ · (|∇ψ|2 ∇ψ) = 0, (2.35)

where ψ is the slowly varying envelope of h.f. waves and σ ≡ 1
2

ω2
ce

ω2
pe
. Here, we assume that

W � m/M , which means that the low-frequency density variations follow adiabatically
the ponderomotive pressure induced by high-frequency waves,

n = − |∇ψ|2 . (2.36)

Equation (2.35) can be further reduced under additional assumptions. Namely, it is known
that due to weakly turbulent processes, such as induced scattering on ions or four-wave
interaction, the energy transfers by cascades and condenses in the region ωk → ωpe. In
more details, it appears that these nonlinear interactions lead, in the first place, for waves
with k2r2

De � σ, to a rapid decrease in k⊥, and only subsequently, to a reduction of
kz down to a zero value. It means that the wave condensate must have characteristic
longitudinal scales much smaller than the transverse ones, i.e., k⊥ � kz. Under this
assumption, equation (2.35) reduces to the following form (compare with [43])

∂2

∂z2

[
iψ +

∂2

∂z2
ψ

]
− Δ⊥ψ +

∂

∂z

[∣∣∣∣∂ψ∂z
∣∣∣∣2 ∂ψ∂z

]
= 0, (2.37)

where without restriction we can put σ = 1 (related to a simple scaling transformation).
Analogous equations arise for LH waves near the LH frequency ωLH . The dispersion

relation for LH waves can be found, as

ω (k) = ωLH

[
1 + k2

⊥R
2 +

1

2

m

M

k2
z

k2
⊥

]
,

where R2 ≡ [3
4

+ 3Ti/Te

]
rce, for ωce � ωpe, while m and M are the electron and ion mass,

respectively.
For weak intensity, as for the UH waves, the low-frequency density variation is related

to the h.f. ponderomotive pressure [55, 56], through

n = i |∇⊥ψ ×∇⊥ψ∗|z . (2.38)

Here, as in the UH case, we write (2.38) in dimensionless units; ψ stands for the slowly
varying envelope of the h.f.electric potential, and ×, denotes the vector product. The
evolution equation for the envelope ψ can be found with the help of standard time-
averaging over the high-frequency ωLH , [2, 55] .

Δ⊥ (iψt + Δ⊥ψ) −∇⊥ · (|∇⊥ψ ×∇⊥ψ∗|z |n̂×∇⊥ψ|) − φψzz = 0, (2.39)

where the unit vector n̂ ≡ Bo/Bo, and φ is a constant.
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2.3.3 Nonexistence of Three-Dimensional Solitons

Now, let us study properties of Eqs. (2.37) and (2.39) in more detail [50]. As it is known,
both equations are of the Hamiltonian type [24]. Accordingly, (2.37) can be represented
in the form

i
∂2

∂z2
ψt = −ΔH

Δψ∗ , (2.40)

H1 =

∫ (
|ψzz|2 + |∇⊥ψ|2 − 1

2
|ψz|4
)
dr,

while Eq. 2.39 is given by

iΔ⊥ψt = −ΔH

Δψ∗ , (2.41)

H2 =

∫ (
|Δ⊥ψ|2 + |ψz|2 +

1

2
|∇⊥ψ ×∇⊥ψ∗|2

)
dr.

Besides H, the above nonlinear systems also conserve the plasmon number N : where for
(2.40), N1 =

∫ |∇zψ|2 dr, and for (2.41), N2 =
∫ |∇⊥ψ|2 dr. In both cases, N coincides up

to a constant, with the wave energy. Equations (2.40) and (2.41) also possess conservation
laws for the linear momentum and the longitudinal component of the angular momentum.

The possible stationary solutions of these equations should correspond to a soliton-like
solution,

ψ = ψ0 (r) exp
(
iλ2t
)
,

spatially localized, vanishing at infinity, with ψ0 (r) being defined in the stationary limit
of Eqs. (2.40) and (2.41), as follows

∂2

∂z2

[
−λ2ψ0 +

∂2

∂z2
ψ0

]
− Δ⊥ψ0 +

∂

∂z

(|ψ0z|2 ψ0z

)
= 0, (2.42)

and

Δ⊥
(−λ2ψt + Δ⊥ψ

)−∇⊥ · (|∇⊥ψ ×∇⊥ψ∗|z |n̂×∇⊥ψ|) − φψzz = 0, (2.43)

where, for convenience the subscript ”0” has been dropped. On the other hand, it is easy
to verify that the above equations can be represented in the following variational form
[24]:

Δ
(
H + λ2N

)
= 0, (2.44)

that can be readily checked on inspection. Such a representation means that the soliton
should be defined as the stationary point of H for fixed N , where λ2 plays the role of the
Lagrange multiplier.

For Eqs. (2.42) and (2.43) and their variational representations, it is easy, for the
soliton solution, to obtain relations between integrals Ii1, Ii2 and Ii3, which are constituent
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parts of the Hamiltonian Hi. For this purpose, we introduce the following notation: i = 1,
stands for UH , while i = 2, corresponds for LH . Therefore, for the UH system

I11 =

∫
|ψ0zz|2 dr,

I12 =

∫
|∇⊥ψ0|2 dr,

I13 =

∫
|ψ0z|2 dr,

while for the second, LH system

I21 =

∫
|Δ⊥ψ0|2 dr,

I22 =

∫
|ψ0z|2 dr,

I23 = −
∫

|∇⊥ψ0 ×∇⊥ψ∗
0|2 dr.

By definition, all these integrals are positive. In order to check the existence of soliton
solutions, we multiply Eq. (2.42) by ψ∗

0 and integrate over the hole space. One gets

λ2N1 + I11 + I12 − I13 = 0. (2.45)

Equation (2.45) gives the first relation between I11, I12 and I13.The others relations can be
found with the help of (2.44). Let us assume the trail function of a type ψ = ψ0 (αz, βr⊥) .
It is evident that

∂

∂α

(
H + λ2N

) |α=β=1 =
∂

∂β

(
H + λ2N

) |α=β=1 = 0.

Indeed, e.g. for UH waves, we can readily prove the above formula, by

∂

∂α

(
H + λ2N

)
=∫ {(

∂ψ∗

∂α
ψzz +

∂∇⊥ψ∗

∂α
∇⊥ψ − ∂ψ∗

z

∂α
ψ2

zψ
∗
z + λ2∂ψ

∗
z

∂α
ψz + c.c.

)}
dr =∫ {

∂ψ∗

∂α

(
ψzzzz −∇2

⊥ψ +
∂

∂z

(|ψz|2 ψz

))
+ c.c.

}
dr=0,

for α = 1.
Applying the above procedure for Eq. (2.42), we get

3I11 − I12 − 3

2
I13 + λ2N1 = 0, (2.46)

−2I11 + I13 − 2λ2N1 = 0.

After some simple algebra, based on (2.45) and (2.46), we can show that

I12 = −2λ2N1 < 0, (2.47)
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which contradicts the sign of I12, which is positive definite. This contradiction basically
implies that for the equation (2.42), stationary soliton solutions do not exist. By the
same procedure, applied to (2.43), one can get corresponding relations between integrals
I21, I22 and I23 for LH case. They are

I21 + I22 − I23 + λ2N2 = 0 (2.48)

−I21 + I22 +
1

2
I23 − λ2N2 = 0, (2.49)

2I21 − 2I22 − I23 = 0. (2.50)

It is easy to check again that relations (2.48)-(2.50) appear to be contradictory.

2.3.4 Necessary Condition for Wave Collapse

What is the reason for the nonexistence of 3D solitons in our models? As will be shown
below, this fact is basically connected with more pronounced nonlinear effects, as com-
pared to the type of NLSE, i.e. Zakharov equations (static limit) which follows from
(2.35), after relaxing the external magnetic field effect (σ = 0) . In order to illustrate, let
us consider the Hamiltonian under a scaling transformation, which conserves the number
of waves N . For the system (2.40), they are

ψ (z, r⊥) → a1/2

b
ψ
[z
a
,
r⊥
b

]
, (2.51)

while for Eq. (2.41)

ψ (z, r⊥) → 1

a1/2
ψ
[z
a
,
r⊥
b

]
. (2.52)

Under such a transformation the corresponding Hamiltonian becomes the function of
parameters a and b.

H1(a, b) =
I11
a2

+
I12
b2
a2 − 1

2

I13
ab2

, (2.53)

and

H2(a, b) =
I21
b2

+
I22
a2
b2 − 1

2

I23
ab2

. (2.54)

Further, it is easy to check that the function H1(a, b) is unbounded from below. For this
purpose let us consider the parabolic family b = γ2, where γ is a constant. For this kind
of dependence, the first two terms in H1(a, b) have the same (self-similar) dependence,

I11
a2

+
I12
b2
a2 =

1

a2

[
I11 +

I12
γ2

]
. (2.55)

As for the third nonlinear term, we get

1

2
I13

1

ab2
=

1

a5

[
I13
2γ2

]
. (2.56)

Under inspection, the above two terms, i.e. the dispersion and nonlinear term, show
that H1(a, b) is unbounded from below. It should be stressed that the unboundedness of
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Hamiltonian H1(a, b) from below is due to the nonlinear term which grows with a scale
decrease, more rapidly than, for instance, in the NLSE case. This is the main reason
for the nonexistence of 3D solitons. Generally taken, it is the unboundedness of the
Hamiltonian that is the main signature of collapse in the known collapsing systems (see
[24]). The collapse, from this point of view, corresponds to a falling down of a particle in a
self-consistent potential well, when the falling time to the center of well is finite (compare
with the 3D NLSE, Ref. [24]).

Similarly, it is clear that for Eq. (2.41), H2(a, b) is also unbounded from below. Here
one needs to consider the curve b = γa2. It is evident that for this case, dispersive terms
have the same self-similar behaviour, and that unboundedness is due to the nonlinear
term,

1

2
I23

1

ab2
=

1

a5

[
I23
2γ2

]
. (2.57)

Clearly, the nonlinearity is the main cause of the collapse. Moreover, it has been shown
[24].that the role of nonlinear effects tend to grow with an increase of spatial dimension-
ality.

2.3.5 Classification of Wave Collapse Regimes

While the unboundedness of the Hamiltonian is the necessary condition for the existence
of wave collapse; however, it is not the sufficient one. On the other hand, the analogy with
the free falling particle dynamics while useful and illustrative is somewhat oversimplified.
Firstly, during a wave collapse, it is possible that e.g., the leaked radiation of the low-
amplitude waves plays a role of effective dissipation for the cavity; i.e., spatially localized
compressed density region with an intense growing wave structure. At the first sight,
the radiation process seems to slow down the collapse. However, in reality we have an
opposite situation. Instead of halting the collapse, the wave radiation, from the cavity
with negative H , actually supports the collapse process.

Let us consider an isolated cavity with characteristic scales lz(t) and l⊥(t) with
H < 0,emitting small amplitude waves. It is easy to verify that, for example, for system
(2.40), the follwing estimates take place [50]:

max
r

∣∣∣∣∂ψ∂z
∣∣∣∣2 ≥ 1

2

|H|
N
, (2.58)

which is a consequence of the mean-value theorem applied to I13,

I13 =

∫
|ψz|4 dr ≤ max

r
|ψz|2

∫
|ψz|2 dr,

which is valid for an arbitary region. Here, we may recall that for (2.40), |ψz|2 represents
the wave energy density. What happens with a cavity when we take into account the
effect of wave radiation? Due to conservation of H, inside the cavity, Hcav evidently has
to decrease; this means that, due to radiation, Hcav → −∞. Similarly, N as a positive
definite, will decrease until it vanishes. Thus, the ratio H/N becomes infinite and so does
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the maximum of the wave amplitude, according to (2.58), goes to infinity. The similar
estimate takes place for the lower-hybrid waves with

max
r
|∇⊥ψ|2 ≥ 1

2

|H|
N
. (2.59)

From (2.59), it also follows that the small amplitude wave radiation (leakage) promotes
the collapse, and that the collapse becomes more rapid.

Now we come to another interesting question about the classification of the wave
collapse regimes. As was shown in Clearly, the nonlinearity is the main cause of the
collapse. Moreover, it has been shown [24, 50] that basically exist two main types of wave
collapse. The first one, the so-called strong collapse, is the case when the captured wave
energy through the collapse stage remains finite and the wave radiation is absent. The
other regime, weak collapse, is the one when the wave radiation is present.

Let us now assume that for UH waves near the singularity ψ (r, t) exhibits a more
general self-similar behaviour,

ψ (r, t) → 1

(t0 − t)a+ipf

[
z

(t0 − t)b
,

r⊥
(t0 − t)c

]
,

where a, b, c and p are real constants. This means that the cavity size scales are

lz � (t0 − t)b , l⊥ � (t0 − t)c .

Moreover, one should note that based on the above, corresponding electric field compo-
nents scale like

Ez ≡ ∇zψ � 1

(t0 − t)b
ψ, while E⊥ ≡ ∇⊥ψ � 1

(t0 − t)cψ. (2.60)

Substituting (2.60) in N1 shows that the number of waves in a cavity depends on time.
For Eq. (2.40) we have

N cav
1 ∼ (t0 − t)−2σ+b+2c , σ = a + b.

In an isolated cavity, the plasmon number can only decrease in time, so

−2σ + b+ 2c ≥ 0. (2.61)

The equality sign in this expression corresponds to a strong collapse, and inequality to a
weak one. Then, we substitute (2.60) into Hamiltonian H1.This gives

I11 ∼ (t0 − t)−2bN cav
1 ,

I12 ∼ (t0 − t)−2c+2bN cav
1 ,

I13 ∼ (t0 − t)−2σ N cav
1 .

The collapse condition (2.58) leads to a second restriction on indices a, b, c,

2σ ≥ max (2b, 2c− 2b) . (2.62)
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Therefore, with condition (2.61) for σ, we have

b+ 2c ≥ 2σ ≥ max (2b, 2c− 2b) . (2.63)

Here the first equality, 2σ = b+ 2c, corresponds to the strong collapse. For this regime it
is easy to see that for a fixed value of index b we get maxσ = 5

2
b and c = 2b. It means

that ψ obeys, in this case, the following asymptotics:

ψ ∼ 1

(t0 − t)3/2b+ip
f

[
z

(t0 − t)b
,

r⊥
(t0 − t)1b

]
. (2.64)

All other type of collapse belong to the weak one. The most rapid case is realized when
radiation of small amplitude waves is at maximum. Such a regime corresponds to the
case, for fixed index b, of the minimum of index a. Simple calculation gives min a = 0
and c = 2b, or

ψ ∼ 1

(t0 − t)0+ipf

[
z

(t0 − t)b
,

r⊥
(t0 − t)2b

]
, (2.65)

It is important to note that the asymptotics (2.65) represents the self-similar solution
of Eq. (2.40), with b = 1

2
, given in [43]. For lower-hybrid wave collapse we have the

following restriction on the indices:

b/2 ≥ a ≥ b− 2c. (2.66)

¿From these inequalities we can similarly obtain the relations between indices a, band c
for the strong collapse and the most rapid weak collapse. For the strong LH collapse
simple calculations give

ψ ∼ 1

(t0 − t)b/2+ip
f

[
z

(t0 − t)b
,

r⊥
(t0 − t)c

]
, (2.67)

where fpr fixed b, b/4 ≤ c ≤ b/2, and max c = b/2. As for the most rapid weak collapse,
we have

ψ ∼ 1

(t0 − t)0+ipf

[
z

(t0 − t)b
,

r⊥
(t0 − t)b/2

]
, (2.68)

which appears to be a self-similar substitution in Eq. (2.41) for b = 1, (see Refs. [56, 24]).
In conclusion, we have to underline that analytical determination of the concrete value

of parameter b for the strong collapse case, for both considered models, remains open. It
is possible that the value for b can be possibly found in the semiclassical limit [24].

2.4 Weak and Strong Langmuir Collapse

The self-similar evolution of weak and strong Langmuir collapse is studied by two-dimensional
simulation of a soliton instability. The simulation is based on Zakharov’s model of mag-
netized strong turbulence (UH waves) including ion dynamics. For the parameters con-
sidered, consistency with self-similar weak collapse regimes is found with no evidence of
a strong Langmuir collapse [59, 60].
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Preliminaries

Both for laboratory and space plasmas with a large energy content, it is typical that a
state is reached where nonlinear wave effects compete with the dispersion [61, 62]. In
such a physical environment spatially localized, soliton like waveforms can be formed.
These structures evolve rapidly from an arbitrary initial plasma state to determine the
basic features of an emerging strong plasma turbulence [17]. In one dimensional systems
solitons are mostly stable, but in real plasmas, as a rule, solitary structures often appear
to be unstable with respect to perturbations in a transverse direction [24, 36]. In its
nonlinear stage, this instability often leads to a soliton collapse, a unique nonlinear wave
phenomenon of the formation of a singularity in a finite time. In the physical sense, wave
collapse corresponds to wave breaking and particle acceleration, thus playing the role of
an effective heating process in a strongly turbulent plasma. Above analytical analyses of
the wave collapse, based on a self-similar analysis, have revealed the hierarchy of collapse
regimes. The basic distinction is between the weak collapse which formally brings the zero
wave energy to the final collapse stage, and strong collapse where the initially trapped
energy remains finite during the collapse [50] . In the rest, we present a numerical study
in two spatial dimensions in order to check the existence of weak and strong Langmuir
wave collapse and validity of self-similar solutions [50]. Our simulations are based on the
above Zakharov model of strong Langmuir (UH wave) turbulence for a plasma in a weak
magnetic field with the full ion dynamics .

Nonlinear Model Equations

The simplest example of strong plasma turbulence, thoroughly studied by theory, simu-
lation and experiments, is the phenomenon of strong Langmuir turbulence (SLT), where
the interacting modes are of the high-frequency Langmuir (UH) and low-frequency ion
sound wave. Zakharov’s model of SLT in a weakly magnetized plasma is given by two
time-averaged dynamical equations [vide supra], which describe a nonlinear coupling be-
tween the Langmuir wave potential amplitude (ψ) and the ion density variation (n) . In
convenient dimensionless units,

t→ 3

2
μω−1

pe t, r → μ1/2rDer, ψ → T

e
μ
√

12ψ, (2.69)

n→ 4

3
μn0n, σ → 3

4
μ

(
ωce

ωpe

)2

,

the system reads [60]

∇2
(
i ψt + ∇2ψ

)− σ∇2
⊥ψ −∇ (n∇ψ) = 0, (2.70)

ntt −∇2n = ∇2 |∇ψ|2

where ωce and ωpe are the electron cyclotron and the electron plasma frequency, respec-
tively; μ is the ion to electron mass ratio, rDe is the Debye radius and T is the electron
temperature in energetic units. The system (2.70) is derived under an assumption that
σ � μ, corresponding to the physical condition of a weak magnetic field (in x-direction)
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ωpe � ωce. We note that for σ = 0, the system reduces to the original set of the curl-free
Zakharov equations [24] The vectorial form of (2.70) readily simplifies to a scalar model
by replacing (− gradψ) by a scalar electric field E(r) . In the small amplitude (static
ions) limit, the set further reduces to a single equation of the nonlinear Schroedinger
(NLSE) type (see above, 2.36) . However, for large Langmuir fields the inclusion of the
full ion inertia is essential. A stationary, spatially localized solution of the system (2.70)
in the form of a “standing” planar (1D) soliton, for the external magnetic field in the
x−direction, is given by

ψs =
√

2 arctan [sinh (λx)] exp
(
iλ2t
)
, (2.71)

ne = − |ψsx|2 .
The problem of the stability, nonlinear dynamics and collapse of Langmuir solitons was
presented earlier in detail [24, 36]. In a linear regime, agreement between direct simulation
and eigenvalue problem results has been obtained [36]. In the nonlinear regime, linearly
unstable solitons exhibit the wave collapse. In its developed stage, Langmuir collapse
is expected to follow the self-similar evolution [24]. We note that much works on the
Langmuir collapse scaling were restricted to a simpler, static limit of (2.70). In distinction,
we treat the full set of (2.70) accounting for the ion dynamics, that is important for large
amplitude Langmuir solitons. General self-similar solution for the Langmuir potential was
proposed in a form [24]

ψ (r, t) → 1

(t0 − t)a+ipf

(
x

(t0 − t)b
,

r⊥
(t0 − t)c

)
, (2.72)

where t0 is the collapse time and a, b, c and p are real constants. Starting from (2.72), we
find that the electric field components and maximum field energy density scale according
to

Ex = ∇xψ → 1

(t0 − t)b
ψ, (2.73)

E⊥ = ∇⊥ψ → 1

(t0 − t)cψ,

|Emax|2 � const.× 1

(t0 − t)2a+2b
,

The characteristic dimensions of the collapsing soliton (caviton) contract like

lx → (t0 − t)b , l⊥ → (t0 − t)c ,

while the caviton plasmon number (vide infra) scales as

N cav (t) =

∫
|∇ψ|2 dr �

∫
E2

xdr → (t0 − t)−2a−b+2c . (2.74)

In an isolated cavity, the plasmon number is conserved or decreases in time, so the fol-
lowing inequality must hold,

−2a− b+ 2c > 0,
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which in the two-dimensional case becomes

−2a− b+ c = p > 0.

Generally taken, the equality sign corresponds to a strong, while inequality stands for a
weak collapse regime. For more details on the collapse hierarchy and the scaling analysis,
we refer to earlier papers [24].

Simulation Results and Discussions

We have performed direct numerical simulations of nonlinear equations (2.70) based on
the spectral Fourier method with respect to two spatial dimensions with an explicit time
integration. The initial condition is chosen in a form of a standing planar soliton (2.71),
perturbed in a transverse, y-direction [60], as given by

ψx (t = 0) = ψsx (t = 0) (1 + 2ε cos ky) ,

where the initial ion density is taken to satisfy the adiabatic matching, in order to shorten
plasma transients. We have used periodic boundary conditions (Lx, LY ), a numerical grid
64× 64 points (checked upon 128× 128) and the perturbation level ε = 0.01, performing
a regular numerical check of conserved integrals of motion in (2.70; the plasmon number
(N)

N =

∫
|∇ψ|2 dr, (2.75)

and the Hamiltonian (H)

H =

∫ (∣∣∇2ψ
∣∣2 + σ |∇⊥ψ|2 + n |∇ψ|2 +

1

2
|∇φ|2 +

1

2
n2

)
dr, nt = ∇2φ. (2.76)

To study the space-time dynamics of the soliton instability we have performed runs
with different values of k, λ and σ. The simulations have confirmed that all linearly un-
stable solitons [36, 59] in the nonlinear stage enter the collapse phase. Typical space-time
evolution of the soliton collapse was illustrated in Fig.2.6. Further, we show temporal
evolution of the soliton amplitude in Fig.2.8. The initial, linearly unstable phase is fol-
lowed by an explosive growth; entering a self-similar stage of a Langmuir collapse. The
case, k = 0.15, corresponds to the most linearly unstable perturbation. Further, in order
to check if the self-similar character of the collapse is consistent with (2.72) we vary t0 to
find the best fit with simulation data for the maximum electric field and corresponding
soliton dimensions lx and ly (Fig.2.9). We measure the values of the scaling parameters
α (α = 2a+ 2b), b and c to find β. In all considered cases we have found good agreement
with the self-similar solution (2.72), as indicated by the power law dependence in Fig.2.9.
In our simulations of the inertial phase of the Langmuir collapse, for various values of
k, λ and σ, weak collapse (β > 0) is regularly observed, with no evidence of the strong
Langmuir collapse. Increase of the magnetic field speeds up the amplitude growth and
the transverse contraction rate; however, these effects are suppressed for a larger soliton
strength.
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Figure 2.8: Maximum soliton amplitude in time for different transverse perturbation
wavenumbers. The soliton strength is λ = 5 and σ = 3, [60].

Figure 2.9: Characteristic spatial scales (lx, ly) and the maximum soliton energy as a
function of time interval (t− t0). Numerical fits (lines) of 2D simulation data (points),
[60].
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Apart from contributing to a general theory of Langmuir turbulence, the above results
can be readily applied to studies of SLT in ionospheric, aurora1 and solar plasmas [61, 62].
In these applications varying signatures of anisotropic wave power spectra, heated particle
tail, etc., are obtained by space observations and computer simulations [63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 74, 75]. In order to make estimates and certain predictions and
to justify proposed application models, one can readily turn to the above results on self-
similar properties of the magnetized SLT.
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Chapter 3

Spatiotemporal Complexity in

Plasmas

Nonlinear systems with an infinite number degrees of freedom are readily described by
partial differential equations. Behaviour of such systems exhibits a rich variety of dy-
namical structures in space and time with coherent, as well as, chaotic features [76].
Nearly conservative systems and dissipative systems represent two distinctive highly im-
portant categories. In dissipation dominated systems often a limited number of equlibrium
states is available resulting in formation of patterns due to rapid system relaxation un-
der strong dissipative processes. However, both, for nearly conservative and dissipative
systems, evolution in an infinitely dimensional phase space can approach attractors that
are low-dimensional [77, 78]. An important family of partial differential equations in-
cludes nonlinear evolution equations, such as: KdV equation, NLS equation, Zakharov’s
equation, Ginzburg-Landau, Sine-Gordon, Kuramoto-Shivashinsky, as well as the three-
wave interaction (3WI), which possess a remarkable nonlinear class of soliton solutions.
These equations including a lowest order of nonlinearity describe some of basic generic
interactions in physics, and nature, in general [79, 80, 81].

3.1 Spatiotemporal Effects in Three-Wave

Interaction

A nonlinear resonant interaction of three waves in space and time is readily represented
by a system of coupled equations

∂a0

∂t
+ V0

∂a0

∂x
= −a1a2 + iδ0a0,

∂a1

∂t
+ V1

∂a1

∂x
= a0a

∗
2 + iδ1a1, (3.1)

∂a2

∂t
+ V2

∂a2

∂x
= a0a

∗
1 − Γa2 + iδ2a2 − iσ |a2|2 a2.

where Vi and δi, (i = 0, 1, 2) is group velocity and linear phase shift, respectively; while Γ
and σ corresponds to linear damping and nonlinear phase shift (detuning) of a2 complex
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amplitude, respectively. It is a simplified version of the more general system, assuming
linear damping and nonlinear shift put to zero for first two waves, i.e., Γ1 = Γ2 = 0 and
σ1 = σ2 = 0. A basic mathematical formulation and physical background of resonant wave
interactions in plasmas have been explored before. For example, for infinitely thin layer,
analytical solutions can be found [82]. Moreover, a general tendency of 3WI to transit
to deterministic chaos has been already early recognized [83, 84, 85]. Further, we shall
concentrate on full space-time aspects of nonlinear three-wave interactions and route to
dynamical complexity and saturation in a finite plasma system [81, 85, 86].

3.1.1 Time-Only Problem in Three Wave Interaction

In a time-only dependent case in three-wave interaction (3WI) (∂/∂x = 0) the system of
equations (3.1) reduces to:

da0

dt
= −a1a2 + iδ0a0,

da1

dt
= a0a

∗
2 + iδ1a1, (3.2)

da2

dt
= a0a

∗
1 + iδ2a2 − iσ |a2|2 a2 − Γa2.

In order to solve the above system it is convenient to represent the complex amplitudes
in terms of two real variables, for the amplitude and phase of the interacting waves [86],
respectively, i.e.

ai(t) = Ai(t)e
iφi(t), i = 0, 1, 2

where Ai(t) =
√

|ai|2 is the amplitude and φi(t) is the phase of the wave.

Accordingly, the system of equations (3.2) becomes

dA0

dx
= −A1A2 cosφ,

dA1

dx
= A0A2 cosφ, (3.3)

dA2

dx
= A0A1 cosφ− ΓA2,

dφ

dt
=

(
A1A2

A0

− A0A2

A1

− A0A1

A2

)
sin φ+ δ + σA2

2,

where φ(t) = φ0 − φ1 − φ2 is the total phase, while δ = δ0 − δ1 − δ2 is the total linear
phase shift. The above system of four ordinary differential equations in dissipation free
case (for Γ = 0), satisfies the following conservation relations :

m0 = n0(t) + n1(t) = const.

m1 = n0(t) + n2(t) = const. (3.4)

A0A1A2 sin φ− σ

4
A4

2 −
δ

2
A2

2 = C = const.
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where ni(t) = (Ai(t))
2 .The first two equations are of the well-known Manley−Rowe type,

while the third one is derived from the phase dependence equation in (3.3). Therefore, the
system of four equations can reduce to a single differential equation for an independent
variable n0(t)

dn0 (t)

dt
= −2

[
(m1 −m2)

(
σ2

16
(m1 − n0)

3 − σδ

4
(m1 − n0)

2 (3.5)

−δ
2

4
(m1 − n0) + n0(m0 − n0)

)] 1

2

,

where m0, m1 and C are determined by the initial conditions for the wave amplitudes and
phase, at t = 0. For Γ = 0, we get two independent variables and the system becomes
nonintegrable. In the case Γ = 0, there are two independent variables represented by the
first and the third equation in (3.5), which now reads

d

dt

(
A0A1A2 sinφ− σ

4
A4

2 −
δ

2
A2

2

)
+ Γ
(
A0A1A2 sin φ− σA4

2 − δA2
2

)
= const..

In a simplified, dissipation free case (σ = δ = Γ = 0) , the solution of (3.5) after inte-
gration is found in a form of the Jacobian elliptic functions [87, 88],

n0(t) = sn2

(
−√

1 + ε(t− t0),
1√

1 + ε

)
,

n1(t) = (1 + ε)dn2

(
−√

1 + ε(t− t0),
1√

1 + ε

)
, (3.6)

n2(t) = cn2

(
−√

1 + ε(t− t0),
1√

1 + ε

)
,

with a period:

T =
2K
(

1√
1+ε

)
1 + ε

→
ε→0

ln 16
ε√

1 + ε
, (3.7)

for the initial conditions

n0(0) = 1 ≥ n1(0) = ε ≥ n2(0) = 0. (3.8)

The period T is taking values between 2.09 and +∞ (for ε = 1 and ε = 0, respectively),
where K (γ) ∈[π

2
,∞) (complete elliptic integral of the first kind) for γ ∈ (0, 1) , with the

relation for γ given as

γ =
1√

1 + ε
.

The aperiodic solution (T → ∞) reads

n0(t) = tanh2(−(t− t0)), (3.9)

n1(t) = n2(t) = sec h2(−(t− t0)),
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The type of solution (3.9) is analogous to the localized soliton solution with a ”pump”
amplitude A0, which satisfies the following boundary conditions [89]

A0(∞) = 1, A1(∞) = 0, A2(∞) = 0,

The soliton like solution exists also in the case σ, δ = 0. with the complete analysis found
elsewhere, which predicts a possible complete wave action transfer from the pump to two
”daughter” waves for a particular choice of parameters.

Introducing the phase shifts brings new terms in just the last equation of the system
(3.3). As a consequence the phase is no longer statitonary, instead it is given by the
equation

sinφ(t) =
σ
4
A3

2 + δ
2
A2

A0A1
, with C = 0,

In the limit σ → 0, δ = 0, the solution is

n0 =
α− β

2
+

2 − α + β

2
sn2
(
−
√
β(t− t0), γ

)
,

n1 = 1 + ε− n0,

n2 = 1 − n0,

where

α = 1 + ε+ δ2/4,

β =
√
α2 − δ2,

γ =

√
2 − α + β

2β
,

with a period

T = 2
K(γ)√
β
,

which in the case σ → 0, reduces to (3.7).
Periodic solution is found both, for zero and nonzero phase shifts, however, in the

limiting case δ = 0, σ → 0, period becomes

T ≈ Tσ=0 − σ2

8
,

where Tσ=0 is the period found for σ = 0.
Assuming σ = δ = 0, with Γ > 0, no analytical solutions is found. However, necessary

condition for the existence of oscillatory type of solutions in the asymptotic case of weak
and strong damping can be found. In the weakly damped case (Γ � 2) solutions are given
[87] by the Jacobian elliptic functions with damped modulus

n0 = m cd(t,m), n1 =
mc

dn(t,m)
, n2 = m mcsd(t,m),

m = u10e
−Γt

2 , mc = (1 −m2)
1

2 ,
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while in a strong damping case (Γ � 2) , type of degenerated solutions is found.

n0 =
f

(1 + f 2)
1

2

, n0 =
1

(1 + f 2)
1

2

, n2 =
[
1 − e−Γt

] f

Γ(1 + f 2)
,

where f = u00/u10e
−t/Γ.

In the case Γ = 0, σ = δ = 0, above system (3.2) is written, as

da0

dt
= −a1a2,

da1

dt
= a0a

∗
2, (3.10)

da2

dt
= a0a

∗
1 − Γa2.

By multiplying (3.10) with corresponding complex conjugate variables after a straghtfor-
ward procedure and by introducing ni(t) = |ai (t)|2, we get

n0(t) + n1(t) = const.

With inital conditions (3.8) and anzatz

a0(t) = α0 cosφ(t),

where α0 =
√

1 + ε, expression for wave amplitude a1(t) is found

a1(t) = α0 sin φ(t).

After substitution into the system of equations (3.10), it results in

a2(t) = φ(t)′

and further substituting into the third equation in (3.10) gives the ordinary differential
equation of the second order for ζ (t) = 2φ (t)

ζ
′′

+ Γζ
′ − α2

0 sin ζ = 0,

that can be further reduced to a system of two first order differential equations for un-
khown variables ζ (t) , y (t)

ζ
′

= y, (3.11)

y′ = −Γy + α2
0 sin ζ, α0 =

√
1 + ε.

The fixed points of the above system (3.11) are

(ζ, y) = (kπ, 0), k = 0,±1,±2, ....

The characteristics of the fixed points can be determined by solving the eigen-value prob-
lem

53

53



λ2 + Γλ− α2
0 cos ζ = 0,

where λ is the corresponding eigen-value.
For the fixed points

(ζ, y) = ((2n+ 1)π, 0), n = 0,±1,±2, ....

eigen-values are found, as

λ1,2 =
−Γ ±

√
Γ2 − 4α2

0

2
.

For Γ2 ≥ 4α2
0, λ takes negative values and fixed points are stable nodes; for Γ2 ≤ 4α2

0

eigen-values are calculated as

λ1,2 =
−Γ ± i

√
4α2

0 − Γ2

2

and fixed points are stable focii, which in a limiting case Γ → 0 give oscillatory solutions
with a period 2π/

√
1 + ε.

For the fixed points

(ζ, y) = (2nπ, 0), n = 0, 1, 2, ...

corresponding eigen-values are

λ1,2 =
−Γ ± i

√
4α2

0 + Γ2

2

that gives λ1 < 0 and λ2 > 0, actually the fixed point of a saddle-node type
By introducing nonzero phase shift δ, in the equation (3.3) analogous search for os-

cillatory solutions can be performed, based on the pseudo-potential method [86]. For
example, in the limit of vanishing δ → 0, oscillatory solution with frequency Ω is found

Ω =
√
V1V2

(
1 + ε2

V0

V1

+ ε4
V 2

0

V 2
1

) 1

4

.

3.1.2 Space-Only Problem in Three Wave Interaction

In a stationary (steady state, ∂
∂t

= 0) case, three-wave interaction system of equations
(3.11) , becomes

V0
da0

dx
= −a1a2 + iδ0a0,

V1
da1

dx
= a0a

∗
2 + iδ1a1, (3.12)

V2
da2

dx
= a0a

∗
1 + iδ2a2 − Γa2 − iσ |a2|2 a2.
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This system of equations for space-only case (3.12) for Vi > 0, is analogous to the above
time-only case (3.3). However, the change of sign in V1, will transform the initial value
problem to a more demanding boundary value problem in a finite media. Introducing
boundary conditions at two different boundaries results in a qualitative change in the
eigen-value spectrum. More precisely, equations for amplitudes and phase become

du0

dx
= −u1u2 cosφ,

du1

dx
= u0u2 cosφ, (3.13)

du2

dx
= u0u1 cosφ−Gu2,

dφ

dx
=

(
u1u2

u0
− u0u2

u1
− u0u1

u2

)
sin φ+ δ + Δu2

2,

with the following anzats being introduced

ui(x) =
1√
VjVk

ai(x) ≡ ui(x)e
iφi(x), i, j, k = 0, 1, 2,

φ(t) = φ0(x) − φ1(x) − φ2(x), (3.14)

δ = − δ0
V0

− δ1
V1

+
δ2
V2
,Δ =

σV0V1

V2
and G =

Γ

V2
.

Solution of the system for Γ = δ = Δ = 0, is given in terms of Jacobian elliptic
functions

n0(x) = dn2(x,
√
r),

n1(x) = r cn2(x,
√
r), (3.15)

n2(x) = r sn2(x,
√
r),

with a parameter r which corresponds to a reflectivity. Solutions appear to be oscillatory,
with a period

T = 2K(
√
r), (3.16)

while in a case r → 1, T → ∞, which is the spatially aperiodic solutions, given by

n0(x) = sec h2(x),

n1(x) = r sec h2(x) (3.17)

n2(x) = r th2(x).

If Γ = Δ = 0, but δ = 0, solutions are found as
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n0(x) = 1 − n2(x),

n1(x) = r − n2(x), (3.18)

n2(x) =
α− η

2
sn2

(√
α+ η

2
x,

√
α− η

α+ η

)

where α = 1 + r + δ2/4 and η =
√
α2 − 4r, with a period

T =
2K
(√

α−η
α+η

)
√

α+η
2

, (3.19)

which in the limit δ → 0, reduces to (3.16).
In the finite system, solutions have to satisfy the nonzero boundary conditions, given

as
n1(L) = ε, (3.20)

where L is the length of a system. In a general case, the spectrum of eigen-values is
countably finite. However, depending on whether ε = 0 or ε = 0, different implications
follow.

In the case ε = 0, it was shown that for Γ = δ = Δ = 0, of all possible solutions, only,
the so-called fundamental mode exists and is asymptotically stable [90, 91] (it corresponds
to 1/4 period of the Jacobian elliptic solution)

L = K
(√

r
)
. (3.21)

Based on L values, the reflectivity of the fundamental mode is calculated as

r = 4
L− L0

L0
, L ≥ L0 =

π

2

√
V1V2

γ0
,

r = 1 − 16e−2L, L ≥ 2L0,

where L ≥ L0, is the condition for neglecting the convective amplification of the noise (ε),
found in the linear parametric analysis [92, 93]. Moreover, for δ and/or Δ values different
from zero, it was found that solutions exist only for nonzero ε values. The system (3.13)
with nonzero damping ( δ = Δ = 0, G = 0) has stationary solution related to a aperiodic
fundamental mode [94]. Condition for existence of nontrivial stationary state, which is
a saturated decay instability, corresponds to instability threshold found from a linear
parametric theory (constant pump). Marginal stability condition [88] is found as

L =

[
π
2

+ sin−1(β
2
)
](

1 − β2

4

) 1

2

,

with β = L0/La, where La is the longitudinal absorption rate. Instability is of the absolute
or convective type, respectively, depending on whether β < 2 or β > 2.
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3.1.3 Spatiotemporal Evolution in Three-Wave Interaction

The three-wave interaction in space and time is written in a known form (3.1)

∂a0

∂t
+ V0

∂a0

∂x
= −a1a2 + iδ0a0,

∂a1

∂t
+ V1

∂a1

∂x
= a0a

∗
2 + iδ1a1, (3.22)

∂a2

∂t
+ V2

∂a2

∂x
= a0a

∗
1 − Γa2 + iδ2a2 − iσ |a2|2 a2.

Assuming that V0, V1, V2 > 0, the system (3.22) describes 3WI as an initial value problem
at one point in space-time. However, the case of e.g., V0, V2 > 0 and V1 < 0, moves
one condition to other boundary (finite or infinite), which leads to a two-point boundary
problem. Qualitative difference in these two cases, was discussed above, for time-only
versus space-only 3WI model.

In seminal papers, Fuchs [87, 88] has investigated stationary solution for (3.22) system
(∂/∂t = 0) for a zero phase shift and zero damping. The solutions found are of the
Jacobian elliptic function type, with the existence of particular solution defined by the
condition (3.20) To exclude the convective noise growth (ε), i.e. to concentrate on the
absolute instability regime, noise level is taken to zero, so that condition (3.20) taken with
(3.8) becomes

cn
(
L,

√
r
)

= 0,

where L is the system length and r is the reflectivity.
From the characteristics of the Jacobian elliptic cosine function [95], it follows

L = (2n+ 1)K
(√

r
)
, (3.23)

with n = 0, 1, 2, ... and K (
√
r) one quarter of the Jacobian cosine. Since K (γ) , γ =

√
r,

is growing monotonically from π/2 to ∞, for γ between 0 and 1, it is evident that if
L < π/2 then r = 0. On the other hand, for L > π/2 unique solutions are found (3.22),
such that

1 > r0 > r1 > r2 > .... > rN−1 > 0, (3.24)

where 2N − 1 is largest odd integer part of 2L/π.
Fundamental solution is the only eigen-function which is definite continuous for all

L ∈ (0,∞) .For L ∈ (0, π/2) one gets trivial solution (r = 0) . For L > π/2, ifK (
√
r) → ∞

and r → ∞ , the fundamental mode continually evolves into

u0,1 −→ sinh x, u2 −→ tanhx,

that is a unique solution for the semi-infinite system case (L → ∞). Quantities ui(i =
0, 1, 2) are introduced through (3.24).

Stability analysis of the system (3.22) was given in [90] by using the perturbation
treatment, for δ0,1,2 = σ = Γ = 0. Transformation to a system of equations for amplitudes
and phases of three waves is performed, which are real quantities, by substituting
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ai (x, t) = Ai (x, t) e
iφi(x,t)

where Ai and φi, is the amplitude and phase of the wave (i = 0, 1, 2), respectively.
Amplitude-phase equations are represented by

∂A0

∂t
+ V0

∂A0

∂x
= −A1A2 cosφ,

∂A1

∂t
+ V1

∂A1

∂x
= A0A2 cosφ,

∂A2

∂t
+ V2

∂A2

∂x
= A0A1 cosφ, (3.25)

A0

(
∂φ0

∂t
+ V0

∂φ0

∂x

)
= A1A2 sinφ,

A1

(
∂φ1

∂t
+ V1

∂φ1

∂x

)
= A0A2 sinφ,

A2

(
∂φ2

∂t
+ V2

∂φ2

∂x

)
= A0A1 sinφ,

where the total phase shift is φ = φ0 − φ1 − φ2.
The stability of (3.25) was analyzed by the Lyapunov stability theory. Linearized

equations around the equilibrium (steady state), i.e.
·
Ai = 0,

·
φi = 0 are analyzed. Sta-

tionary solutions are written as Y
(n)
m , m = 1, ...6 (indices denote, wave amplitude (1, 2, 3)

and phase (4, 5, 6) , respectively, while n = 0, 1, ....N − 1, for N given by (3.24). Actually,
stationary solution (3.25) is defined as a vector

Y (n)
m =

(
S(n)

α , 0
)
, α = 0, 1, 2,

where S
(n)
α are stationary amplitudes with the corresponding zero phase (vide supra).

Then, a general solution appears as

Ym = (Aα, φα) , where α = 0, 1, 2, m = 1, 2........6.

Departure from an equilibrium is given by

ym = Ym − Y (n)
m , m = 1, 2........6.

where after substituting in (3.25) gives a set of equations for small perturbations of the
wave amplitude and phase ym, as

∂ym

∂t
+ Vm

∂ym

∂x
= fm (Y1, .....Y6) , (3.26)

In [90], decoupling of amplitude and phase perturbations from equilibrium was revealed.
Therefore, asymptotic stability of the fundamental mode is studied, by independently
analyzing the stability of amplitude and phase to small perturbations in (3.26). Analysis
of phase perturbations has shown that in a vicinity of the fundamental mode, perturbation
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phases couple resulting in a stability, contrary to a case of unstable phase perturbations of
the non-fundamental mode. Furthermore, stability of the fundamental mode to amplitude
perturbations was performed by WKB (Wentzel-Krammers-Brillouin) procedure. Still,
above perturbation analysis is not adequate for a system evolving far from the equilibrium
state. Stability of the fundamental mode was confirmed in a classical paper by Harvey and
Schmidt [91]. Time evolution is numerically calculated by perturbing the fundamental as
well as non-fundamental mode solutions that satisfy the condition (3.20). In all considered
cases the system, in the time of γ−1

0 saturates to the fundamental mode.
Introducing the linear and nonlinear phase shift terms in the system of equations

(3.25), in the steady state (∂/∂t → 0) , conserved quantities (invariants) are calculated as

m0 = V0n0 (x) − V1n1 (x) = const., (3.27)

m1 = V0n0 (x) + V2n2 (x) = const.,

K(x) = A0A1A2 sinφ− σ

4
A4

2 −
δ

2
A2

2 = const.

with ni(x) = Ai(x)
2, i = 0, 1, 2. For boundary conditions

n0 (0) = 1, n1 (L) = 0, n2 (0) = 0 (3.28)

the third invariant becomesK(0) = 0. However, at the other boundary x = L, from (3.20),
one calculates K(L) = 0; which breaks the invariance condition,i.e., K(x) = const., hence,
contradicts our basic assumption of the steady state. This simple argument, due to Škorić
[96], based on a nonlinear phase mismatch, explains a generic cause of nonstationarity
in 3WI processes, such as, e.g. nonlinear stimulated Raman (also Brilloiun) instability
saturation in laser plasma interactions [97, 98].

3.1.4 Convective and Absolute Instability

Investigation of a system stability against perturbations in a finite region of space requires
a solution of a boundary value problem [81, 86, 99].

u(x, t) =
1

2π

∑
s=1

∞∫
−∞

us(k, 0)e[iωs(k)t−ikx]dk, (3.29)

where us(k, 0) is the wave number spectrum of an initial perturbation, with a summation
done over all eigenmode wave numbers.

Exponential growth in time of the particular k -components still do not guarante that
the perturbation grows in a specific point in space. Namely, perturbations can while
growing propagate out of the unstable region. This is a convective instability. However,
if among exponentially growing perturbations there are those that do not leave the finite
region, i.e. which continuously grow in each point in space; this is a condition of an
absolute instability. More formally, if

lim u (x, t) −→ ∞, x ∈ (x1, x2) ,
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where u (x, t) is a perturbation (x1and x2 are boundaries of the unstable region), instability
is absolute. However, if

lim u (x, t) −→ 0, x ∈ (x1, x2) ,

this instability is convective.
Obviously, the feature of an instability will depend on our choice of the frame of ref-

erence. If the observer travels together with a perturbation, in a new moving frame such
instability will appear as absolute. On the contrary, in a system with an absolute insta-
bility, with a change to new variables, tn = t, xn = x − v0t, instability transits into a
convective one. To determine the instability character by analyzing the dispersion rela-
tion is not an easy task. However, for a large class of systems described by the hyperbolic
partial differential equations (PDE), it will be sufficient to find in the (x, t) plane, the
boundaries of the perturbation propagation which correspond to the characteristics of
the PDE with a maximum and minimum slope. This is a basic of the method of char-
acteristics [99]. The essence of the method of characteristics is that characteristics are
determined by the asymptotes of dispersion curves in a linear problem. Characteristics
and asymptotes have the same slope in the phase space (x, t) and (ω, k), respectively.
Moreover, for hyperbolic systems, where the number of asymptotes with a finite slope is
equal to the number of normal modes (eigen-modes), it is possible, based on the form of
dispersion curves to determine the character of the instability. If the asymptotes point
out in opposite directions, the instability is absolute and vice versa. For the basic system
of equations, one gets

∂ui

∂t
+

n∑
k=1

aik (u)
∂uk

∂x
+ bi (u) = 0, i = 1, 2, ...n, (3.30)

where ui are system variables, aik (u) , bi (u) are nonlinear functions of ui, equation of
characteristics is therefore

Det (aik − V δik) = 0, (3.31)

with V−tangens of the inclination angle on the t− axis.
Linearized system of equations (3.30) is described by the dispersion relation

Det

(
aik − ω

k
δik − 1

k
δik

)
= 0, bik =

∂bi
∂uk

|uk=u0
, (3.32)

which coincides with (3.31) for k → ∞, where the slope of the dispersion curves is identical
to a slope of the characteristics.

For the parametric instability in a plasma, important effect comes from the spatial
localization of the pump in the unstable region controlled by the finite pump extent or
phase mismatch due to a spatial non-uniformity. If of the convective type, locally growing
instability can propagate out of the unstable region before the substantial amplitude
growth is achieved. For the absolute instability, amplitude will grow exponentially until
other nonlinear effects start to play their role.

Discussion on absolute versus convective instability for the decay instability in a uni-
form medium can be found in [100]. To determine the character of the instability it is
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sufficient to observe the long-time behavior of the a1−scattered amplitude at x = 0, the
point at which the instability was initiated. Furthermore, if a1(t→ ∞, 0) → 0, instability
is convective; otherwise, for a1(t→ ∞, 0) → ∞, the instability is absolute. Long-time evo-
lution is determined by the character of the poles in the dispersion relation D (p, k) = 0.
Analysis has shown that V1V2 > 0, gives the convective instability, while for V1V2 < 0,
absolute instability appears, if the additional condition is satisfied, namely

γ2
0 l

2

|V1V2| >
π2

4
. (3.33)

where γ0 is the uniform linear parametric instability growth rate and l is the length of
the system.

3.2 Complexity in Laser Plasma Instabilities

The spatiotemporal evolution of stimulated Raman backscattering in a bounded, uniform,
weakly dissipative plasma is analyzed [98, 101, 102, 103]. The nonlinear model of a three-
wave interaction involves a quadratic coupling of slowly varying complex amplitudes of
the laser pump, the backscattered and the electron plasma wave. The corresponding set of
coupled partial differential equations with nonlinear phase detuning that is taken into ac-
count is solved numerically in space time with fixed nonzero source boundary conditions.
The study of this open, convective, weakly confined system reveals a distinctive quasiperi-
odic transition to spatiotemporal chaos via spatiotemporal intermittency. In the analysis
of transitions a dual scheme borrowed from fields of nonlinear dynamics and statistical
physics is applied. An introduction of a nonlinear three-wave interaction to a growing
family of paradigmatic equations which exhibit a route to turbulence via spatiotemporal
intermittency is outlined [104].

3.2.1 Introduction

The nonlinear three-wave interaction (3WI) as a physical concept, in its variety of appear-
ances, has found its application in hydrodynamics, nonlinear optics, and plasma physics
[81]. It occurs whenever waves encounter a resonance in a physical space, i.e., fulfill
frequency and wave vector matching conditions. Stimulated Raman scattering (SRS)
in plasma is a paradigm of a three-wave interaction related to a nonlinear coupling of
intense laser light (pump) to the electron plasma wave (EPW) and the scattered light,
shifted in wave number and frequency [81]. It has been studied to a great extent both
experimentally and theoretically, largely because of its practical application in a search
for a future energy source based on inertial confinement thermonuclear fusion induced by
intense laser beams. That is, SRS belongs to a family of underdense plasma instabilities,
which can have a detrimental effect on the efficiency of laser energy deposition into a
fusion target. The well-developed parametric theory [97, 105] gives basic values of SRS
instability threshold, growth rates in its initial stage, and some insight into long time
spatiotemporal evolution in saturated regimes [98, 105, 106, 107, 108, 109]. However, in
contemporary high-intensity laser plasma experiments, SRS has often displayed rich and
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exciting physics, not predicted by the parametric theory, such as a spiky-burstlike signal,
anomalously low reflectivity, and spectral gaps and broadenings, as well as incoherent
(irreproducible) dynamics [109]. With increasing evidence that SRS often transits from
convective to absolute instability in typical laser fusion target-plasma experiments, the
problem of nonlinear saturation has become a focus of many SRS studies. Various mod-
els, based on different physical mechanisms, have been recently attempted, pointing to a
strongly nonlinear dynamics of the EPW as a key factor that determines the nature of
saturated SRS states [110, 111, 112, 113]. In particular, an inherent feature of strongly
nonlinear SRS to transit from a coherent (regular) to chaotic (turbulent) dynamics has
been anticipated recently [85, 98, 109]. In this Chapter, transition from a coherent to a
strongly nonlinear incoherent regime, or spatiotemporal chaos (STC) [114], is explored
for saturated SRS in typical laser fusion conditions. This study follows the work by these
authors [94, 98, 102, 103] on nonlinear saturation of SRS in a plasma layer as a paradigm
of a ubiquitous 3WI in a dissipative, weakly confined spatially extended system, which
can exhibit extensive chaos [85, 114]. The corresponding set of coupled partial differential
equations (PDEs), with nonlinear phase detuning of the EPW taken into account, is solved
numerically in space time with rigid nonzero source boundary conditions [115] . Through
the variation of physical (laser and plasma) parameters, in particular by increasing the
pump strength, this open, convective system is driven toward a spatiotemporal chaos. A
route via steady state and periodic regime with quasiperiodic transition to spatiotemporal
intermittency is observed, for review see also, [116, 117].

The spatiotemporal intermittency (STI) in which periodic or quasiperiodic, coherent
(laminar) oscillations are interrupted by chaotic (turbulent) bursts is a widely observed
phenomenon in spatially extended systems [114, 118, 119] with effectively many degrees
of freedom, for example, in hydrodynamic systems (Rayleigh-Benard convection, surface
waves, and open pipe flows [120]. This state should be contrasted with the weak or phase
turbulence, where there is a competition between localized coherent structures in the
sense that one mode dominates energetically, then another takes over, and so on. These
localized structures occur at random within the physical domain, which retains a rather
homogeneous structure as, for example, in Rayleigh-Benard convection, and such dynam-
ics is usually low dimensional. As such, weak turbulence is closest to the so-called low
dimensional chaos in which the system displays incoherence only in time while the spatial
structure remains quasi frozen by the confined boundaries [121]. The spatiotemporal in-
termittency, on the other hand, is further characterized by dominant macroscopic scales in
space-time, which can, generally taken, be identified as the coherent (length, time) scales
in distinction to fully developed turbulence, where there are no predominant macroscopic
scales. In addition to experiments in hydrodynamics, the spatiotemporal intermittency is
frequently encountered in PDE simulations of routes to chaos generic to nonlinear dissi-
pative extended systems [114, 118], modeled by, for example, the Kuramoto- Shivashinsky
equation, the Swift- Hohenberg equation, and coupled map lattices [122], to name a few.
The STI state displays the coexistence of patches of turbulence immersed in the rest of
the structure still in the laminar state; the continuous transition amounts to a progressive
increase of the turbulent fraction through the variation of control parameters [118]. In
this case turbulence is strong locally and affects only a part of a physical space, which
can be very small, e.g., at the ST1 threshold [118]. For completeness, we are reminded
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that in nonlinear plasma physics an extensively developed theory of weak turbulence is
available, starting from the early 1960s. This theory is built on a quasilinear concept
of weakly interacting, weakly nonlinear plasma modes of random phases [123]. The rest
of this Chapter is organized as follows. Firstly, the one-dimensional model of the non-
linear SRS is presented. Next, classical diagnostics from dynamical systems theory to
analyze the time-only aspect of the backscattered wave evolution is introduced. Further,
the spatiotemporal aspect of the system and analysis of the corresponding patterns and
the correlation functions is performed. Moreover, dimension and entropy that quantify
the spatiotemporal behavior and identify the route to spatiotemporal intermittency and
chaos is introduced. Finally, coarse graining the degrees of freedom into binary variables
such that the local space-time regions are labelled as either chaotic or laminar, and the
techniques from the theory of phase transitions and critical phenomena is used to identify
the transition from spatiotemporal intermittency to spatiotemporal chaos [102].

3.2.2 Nonlinear 3WI Paradigm for SRS

Laser plasma interactions are a useful test bed for exploring rich variety of strongly
nonlinear plasma phenomena. As a rule, they include a number of important three-
wave resonant instability models, involving the strong laser pump parametric coupling
to plasma eigen-modes. These instabilities are mostly of a decay type, where the energy
transfer from the laser pump to lower frequency daughter waves typically involves the
electrostatic plasma modes (i.e., electron plasma wave and ion sound wave). In laser
fusion, great concern is related to stimulated Raman and Brillouin scattering on electron
plasma waves and ion sound waves, respectively, which can result in undesirable loss of
laser energy at the target and production of energetic particles [97, 100, 124].

In propagation of an incident electromagnetic wave (laser) through an under-dense
plasma (n ≤ ncr, i.e., ω0 ≥ ωpe), the pump can easily excite plasma eigen-modes which
exist at the noise level. In an isotropic, unmagnetized warm plasma (vide infra, Section
4), three basic linear eigen-modes are available:

- electromagnetic (transverse) wave

ω2 = ω2
pe + k2c2,

- electron plasma (longitudinal) wave, with

ω2 = ω2
pe + 3k2v2

te,

- ion-acoustic (sound) wave

ω2 = csk,

where, ω2
pe = e2n0/ε0me,the electron plasma frequency, v2

te = kTe/me,electron thermal
velocity, and c2s = zTe/mi, ion sound velocity.

Stimulated Raman backscattering is a 3WI resonant instability of the laser pump
against excitation of an electron plasma wave and another electromagnetic (laser) wave
which propagates in the backward direction. Therefore, being possible for laser frequency
ω0 ≥ 2ωpe, or in other words, at plasma density below the quarter critical, n ≤ ncr/4.
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Stimulated Raman scattering (SRS) is of great relevance in contemporary laser plasma
research and will be next studied in more detail.

The one-dimensional model of SRS, assumes a uniform plasma layer of thickness L,
irradiated by a laser beam from x < 0, which enters the plasma at x ≥ 0, boundary..
The EPW and the scattered light are allowed to grow from their thermal noise levels
(ε1 and ε2, respectively ). Moreover, the EPW is subjected to a weak dissipation char-
acterized by the linear damping rate ve. The nonlinear 3WI model derived here for the
case of SRS describes the spatiotemporal evolution of complex amplitudes of the pump
(a0), scattered (a1) and EPW (a2) in a weakly coupling approximation. These equa-
tions are obtained from Maxwell’s and fluid vlasma eauations in WKB approximation,
assuming the resonant matching between frequencies and wave numbers of three waves
(ω0 = ω1+ω2,k0 = k1+k2) closely satisfying the corresponding linear dispersion relations

ω2
0,1 = ω2

pe + k2
0,1c

2, ω2
2 = ω2

pe + 3k2
2v

2
te, (3.34)

where indices 0, 1, and 2 stand for the pump, scattered, and EPW, respectively; ωpe for
electron plasma frequency; and vte for electron thermal velocity. For the case of backscat-

tering, which is of most practical importance, the corresponding set of 3WI equations
reads [102]

∂a0

∂τ
+ V0

∂a0

∂ξ
= −a1a2, (3.35)

∂a1

∂τ
− V1

∂a1

∂ξ
= a0a

∗
2,

∂a2

∂τ
+ V2

∂a2

∂ξ
= β2

0a0a
∗
1 − Γa2 + iδ |a2|2 a2.,

with time and space variables τ = ω0t, ξ = x/L, where the dimensionless amplitudes of
the coupled waves are related to the physical quantities, electric fields E0 and E1of the
two electromagnetic waves, and EPW-driven electron density fluctuation δne,

a0 (ξ, τ) =
ck2

4ω0

[
ωpe

ω1

] 1

2 E0(x, t)

E0
, (3.36)

a1 (ξ, τ) =
ck2

4ω1

[
ωpe

ω0

] 1

2 E1(x, t)

E0

,

a2 (ξ, τ) =
ω2

pe

4ω0
√
ω0ω1

δne(x, t)

n0
,

E0 denotes the vacuum pump electric field amplitude, and n0 the equilibrium plasma
density. Normalized group velocities and the damping rate Γ are expressed by

V0 =
c2k0

ω2
0L
, V1 =

c2k1

ω0ω1L
, V2 =

3k2v
2
te

ω0ωpeL
, Γ =

νe

2ω0
. (3.37)

and the laser pump strength is given by the ratio of the electron quiver velocity in a laser
pump field to the speed of light

β0 ≡ vosc

c
=

eE0

meω0c
. (3.38)
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We note an additional self-modal nonlinearity in the equation for EPW, given in the
form of a nonlinear phase detuning (shift) ∼ δ |a2|2, which is due to large amplitude
nonlinear EPWs excited through the SRS process [97, 110, 111, 112, 113]. In present-
day laser-plasma interaction experiments, high intensity lasers induce large amplitude
EPWs. For short pulse, ultra high intensities, relativistic correction to the electron mass
makes it necessary to include a nonlinear detuning term in (3.35) [89, 126, 127]. On the
other hand, an analogous nonlinear term could be due to nonlinear density modulation
involving pondermotive coupling of EPWs to ion sound in the saturation of long-pulse
SRS via Langmuir decay instability.

While relativistic correction to electron plasma frequency directly adiabatically in-
duces nonlinear detuning of the wave resonance, density modulation has a more complex
time-dependent effect due to ion dynamics [106, 107, 108]. For high-intensity relativistic
laser plasma interaction, the corresponding model studied by some authors [126, 89, 127]
calculates a relativistic frequency shift δ, given as

δ =
3ω2

0ω1

c2ωpek
2
2

. (3.39)

We also note the relevance of our model (3.35) to relativistic beat wave interactions
[89, 126, 127].

To approach the absolute regime of the backward SRS instability, there is a minimum
plasma length L0, i.e., basic amplification length or scattering length. In dimensionless
units, the absolute instability condition for backward SRS, can be written as

ω0L

c

β0

βte
>

2π

α

√
3
√

11 − 2α√
11 − α2 +

√
11 − 2α

, (3.40)

where α = ωpe/ω0 =
√
n0/ncr, and βte =

√
Te(keV )/511.

As discussed, the standard conservative form (δ = 0, Γ = 0) of 3WI in one dimension
is integrable [81]. However, with an introduction of dissipation (Γ > 0), closed form
analytical solutions are not available and a numerical solution is the only alternative. A
spatially uniform (time-only) version of (3.35) has been studied in detail, and it was shown
to exhibit a low-dimensional chaos under restricted conditions [84] (see 5.2.4). Naturally,
as indicated above, the spatially extended model of 3WI is more difficult to investigate.
Only recently, the 3WI have been solved and studied in space time. These results have
revealed rich physical behavior of saturated regimes corresponding to low-dimensional
chaos as well as to STC [85, 98, 114].

The most useful information on the SRS is contained in the reflectivity R, which
designates a fraction of incident laser intensity reflected backward [102],

R =
V0 |a1 (0)|2
V1 |a0 (0)|2 (3.41)

with its maximum value normalized to unity in the stationary case. To solve (3.35),
appropriate initial and boundary conditions are required. We choose physically realistic
boundary conditions, while the choice of the plasma slab length satisfies the criterion for
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the occurrence of the absolute instability. The wave amplitudes obey the corresponding
initial and nonzero source fixed boundary conditions,

a0 (x, 0) = 0 (for x > 0), a0 (0, t) = A0 (3.42)

a1 (x, 0) = a1 (L, t) = ε1A0 a2 (x, 0) = a2 (x, t) = 0

where A0 follows from (3.36) for E0 (0) = E0.
A series of numerical simulations of model (3.35), by means of a central difference

method, has been performed for different system (laser and plasma) parameters within
physically realistic values. The accuracy of the centered-time, centered-space numerical
scheme has been checked at each temporal step by using the modified Manley- Rowe
conservation relations [81, 105, 115], which follow from (3.35).

The following parameters are chosen: V0 = 9.5 × 10−3, V1 = 8.8 × 10−3, V2 = 2.9 ×
10−4,Γ = 1.6 × 10−6,.δ = 3.5 and ε1 = 10−2, corresponding to typical laser plasma
conditions [97, 102, 107]: n0 = 0.1ncr, Te = 1keV, L = 100c/ω0 and νe/ωpe = 10−5.

3.2.3 Bifurcations and Low-Dimensional Chaos

In the time-only aspect of the SRS we follow the evolution of the backscattered wave.
For the present exposition we study the bifurcation sequence while the incident pump
wave amplitude, as a control parameter, is varied. The justification for this choice of the
control parameter lies in the fact that the variation of the plasma slab length,keeping
the incident laser beam amplitude fixed, leads to the same bifurcation sequence. The
variation of the damping term on the other hand, alters only the quasiperiodic regime,
as discussed below, and the same effect is observed when plasma density is changed. The
robustness of the scenario was checked by varying theplasma slab length up to a factor
of 5, by changing the damping term by two orders of magnitude [94],(10−6 − 10−4) νe/ωpe

and varying the plasma density within the interval (0.001ncr − 0.1ncr).

As the relative pump strength β0 increases, starting from the value 0.01, the attractor
changes according to the symbolic sequence

FP → P → QP → I → C

where FP stands for unimodal fixed point, P for periodic, QP for quasiperiodic, I for
intermittent, and C for chaos. The quantitative boundaries in β0 between successive
attractors are depicted in Fig. 3.1.

The fixed point bifurcates to a stable limit cycle [Fig. 3.2(c)] through a supercritical
Hopf bifurcation. As the relative pump strength is further increased, an additional spatial
mode occurs, which is apparently associated with the second frequency in the quasiperi-
odic dynamics observed in the interval (0.026 < β0 < 0.029). The corresponding second
frequency occurring for the EPW can be accounted for by the appearance of a traveling
wave [Fig. 3.8(b)]. Within this finite parameter range, a mode locking occurs in which
two incommensurate frequencies become related by a ratio of integers and the winding
number, defined as the ratio of the two frequencies, is equal to 5. The corresponding
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Figure 3.1: The bifurcation sequence as a function of relative pump strength, [102].

Figure 3.2: (a) Stimulated Raman backscattering reflectivity, (b) power spectrum and (c)
phase diagram for β0 = 0.02534, [102].

phase space representation, a 2-torus, is represented in Fig. 3.3(c). Harmonics fn , ap-
pearing in the power spectrum of the quasiperiodic evolution, are related to the two main
frequencies by fn − f0 = n (f1 − f0), where f0 is the frequency of the peak to the left
of the most energetic frequency f1 [Fig. 3.3(b)]. The weak nonlinear effects stabilizethe
2-torus trajectory in the vicinity of the former periodic trajectory, which although lin-
early unstable remains visible, disclosing a beautiful illustration of another supercritical
Hopf bifurcation. At this point, it should be noted that the increase of the damping term
leads to the bifurcation sequence in which the quasiperiodic regime occurs without fre-
quency locking, which can be explained on the basis that increased damping suppresses
the evolution of the traveling mode. With further increase in β0, the manifestation of
another degree of freedom occurs through the destruction of torus without appearance of
the third frequency [Figs. 3.4(b) and 3.4(c)]. An interesting feature of this new regime
is the existence of two metastable regions of the attractor, namely, ”laminar” parts that
retain almost unchanged a quasiperiodic nature and intermittent chaotic bursts. In the
power spectra plots, the power spectrum of intermittent regime exhibits an increasing
noise level [Figs. 3.4(b) and 3.5(b)]. As the control parameter is further increased, the
fraction of time spent in laminar regions decreases, and fully developed temporal chaos
sets in, as reflected in the broadband power spectrum [Fig. 3.6(b)].Finally, the correla-
tion dimension values obtained by the standard Grassberger- Procaccia algorithm [128]
establish the low-dimensional nature of these attractors. The dimension increases from 1
(periodic) through 2.28 (quasiperiodic) to 3.7-4.7 (intermittent and chaotic).

All of the dynamical system diagnostics presented in this section analyzed the tem-
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Figure 3.3: Reflectivity, (b) power spectrum and (c) phase diagram for β0 = 0.027, [102].

Figure 3.4: (a) Reflectivity, (b) power spectrum and (c) phase diagram for β0 = 0.03,
[102].

Figure 3.5: (a) Reflectivity, (b) power spectrum and (c) phase diagram for β0 = 0.05,
[102].
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Figure 3.6: (a) Reflectivity, (b) power spectrum and (c) phase diagram for β0 = 0.1, [102].

poral aspect of the backscattered wave at the left boundary of the plasma slab. For a
system of partial differential equations (3.35), the temporal aspects must be correlated
with spatial information, and more detailed insight is gained from the analysis of spa-
tiotemporal patterns and the corresponding correlation functions. This is the subject of
the next section.

3.2.4 Spatiotemporal Wave Patterns

The simulation results of the stimulated Raman backscattering dynamics exhibit spa-
tiotemporal intermittency and spatiotemporal chaos and are described in terms of cor-
relation functions having spatial and temporal scales. The numerically observed spatial
states involved in the bifurcation sequence include coherent states, traveling waves, and
intermittent and chaotic states. The global picture of both spatial and temporal attract-
ing states for various spatiotemporal regimes for the backscattered wave and the EPW
are listed in Table I. In general, the qualitative space-time behavior of the pump wave is
almost identical to the corresponding patterns of the scattered wave. This is due to the
fact that the coherent structures of the backscattered wave are determined by the inci-
dent pump wave, while the features of the EPW represent the outcomes of the interaction
processes that take place between the pump and the backscattered wave. We give here a
more detailed account of these spatiotemporal structures. For small values of the relative
pump strength, the spatial structure resembles a semi-humplike structure that increases
in size as the damping term (Γ) decreases. The mirrorlike symmetry of the scattered wave
structure and the EPW structure with respect to each other is evident in Fig. 3.7. In
next regime, a spatially periodic structure of the scattered wave superimposed on one-half
of the hump occurs at regular time intervals, while no such structure can be noticed for
the EPW. Further increase of the control parameter β0 brings forth the appearance of
the propagating EPW mode and flattening of the underlying spatial structure for both
waves. The striking feature of the scattered wave pattern in this regime is the breather-
like coherent excitation oscillating in time [Fig. 3.8(a)]. As β0 increases and leaves the
parameter range corresponding to the mode locking temporal behavior, the most interest-
ing feature is the change in spatial symmetry, particularly for the EPW. As the relative
pump strength increases, the temporal translational symmetry of the backscattered co-
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Figure 3.7: Space-time patterns of (a) backscattered wave and (b) electron plasma wave
for β0 = 0.02534, [102].

Figure 3.8: Space-time patterns of (a) backscattered wave and (b) electron plasma wave
for β0 = 0.027, [102].

herent structures breaks up more dramatically than the corresponding one of the EPW.
A common feature of all four regimes is the same number of coherent structures in the
time direction.

The transition from the spatiotemporal intermittency to spatiotemporal chaos (Fig.
3.11) is continuous in the sense that, as the threshold is approached from below, the
number of turbulent domains slowly increases, accompanied with the breakup of laminar
domain fronts. The autocorrelation functions for the two regimes (Figs. 3.9, 3.10, and
3.12) clearly show that the correlations fall off gradually both in time and in space. The
well-defined correlation lengths (times) for these two regimes indicate that the dynamics
is uncorrelated for lengths (times) greater than these characteristic values. The fact that
the group velocity of the EPW is 30 times smaller than the backscattered wave veloc-
ity has important implications on the spatiotemporal characteristics of the corresponding
wave patterns. The correlation length of the EPW is consequently approximately 30 times
smaller than the correlation length of the backscattered wave (Figs. 3.10). Autocorrela-
tion functions provide clear qualitative, although quantitatively not adequate, evidence of
spatiotemporal chaos. Moreover, to determine the control parameter value at which the
transition from intermittency to chaos occurs, methods from the theory of critical phe-
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Figure 3.9: Space-time patterns of (a) backscattered wave and (b) electron plasma wave
for β0 = 0.06, [102].

Figure 3.10: Autocorrelation functions for (a) backscattered wave and (b) electron plasma
wave for β0 = 0.06, [102].

Figure 3.11: Spatiotemporal patterns of for (a) backscattered and (b) EPW for β0. = 0.1,
[102].
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Figure 3.12: Autocorrelation function for (a) backscattered and (b) EPW for β0. = 0.1,
[102].

nomena and phase transitions will be used. These aspects of the analysis are addressed
in the next two sections.

3.2.5 Quantitive Signatures of Spatiotemporal Regimes

To better understand the transition from regular to chaotic dynamics, the relationship
between the spatial and temporal degrees of freedom in the system is essential. In this
study we choose the local approach on the attractor of the EPW in order to define the
spatiotemporal quantities such as dimension and entropy. The approach is characterized
by determination of local orthogonal directionson the attractor (the local topological
dimensionality) along which the local data points are distributed. The embedding space,
and hence the attractor, is reconstructed with reference to spatial dependence. That
is, embedding procedure consists in taking time series of each spatial location as one
component of the embedding vector, and the number of spatial locations determines the
embedding dimension. The centers defining local regions on the attractor are randomly
selected in such a way that they nearly cover the entire surface of the attractor. The local
dimension is determined by the rank of the local data matrix defined by the preselected
number of nearest neighbors for each local center. The number of nearest neighbors is
determined by the condition that the local region they define is linear and their number
usually varies between 30 and 50. The test for local linearity consists in successively
decreasing the number of points in the local region until further decrease does not decrease
the number of dominant orthogonal directions [129]. The rank of the local data matrix is
determined by the singular value decomposition (SVD). If the local data matrix is labeled
U , then the singular values λi of U are equal to the square roots of the eigenvalues
of the data covariance matrix R = U

T
U , and the number of nonzero singular values

(eigenvalues) determines the local topological dimension of the attractor. Since it is
almost impossible to obtain exactly zero eigenvalues either in numerical simulations or
from experimental data, the main challenge in this approach is to determine the threshold
below which an eigenvalue should be considered to be zero. The topological dimension of
the whole attractor is calculated as the weighted average of local dimensions, i.e.,

〈D〉 = n1d1 + n2d2 + ..... + nsds,
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Figure 3.13: Topological dimension of EPW versus β0, [102].

where ni = mi/N, mi is the number of local regions in which dimension di occurs, and N
is the total number of local regions. Hence, as the local dimension is an integer value, the
topological dimension of the whole attractor may be fractal in nature. Note that because
of the nature of the embedding procedure, the dimension defined in such a way reflects
the spatial and temporal dynamics simultaneously.

The separation of true signal from noise is accomplished using the method formulated
on the basis of an information-theoretic criterion. Two such methods, the Akaike infor-
mation criterion [130] and the minimum descriptive length of Risannen [131], have been
extensively used in signal processing applications, particularly for the determination of
the number of signals in high resolution arrays. However, since the Akaike information cri-
terion tends to overestimate and the minimum descriptive length tends to underestimate
the number of signal sources, active research is going on to overcome the shortcomings
of the these two criteria. In our approach we have used the modified information- theo-
retic criterion, which does not show these deficiencies, and an interested reader can find
a complete account of this method in Ref. [132]. The resulting topological dimensions
for various spatiotemporal patterns of the SRS are presented in Fig. 3.13. As more and
more active modes take part in the dynamics, the dimension correspondingly changes and
various spatiotemporal bifurcations may be identified through the dimension changes.
Another important aspect of dimension calculations for extended systems, namely, den-
sity of dimension ρ ≡ D (L) /L, where L is the size of the system, has been verified as
independent of L, and details of the growth rate of dimension as a function of the system
size have been reported elsewhere [101].

Using the same embedding procedure, we have applied the Grassberger-Procaccia al-
gorithm for calculating the widely used correlation dimension. The obtained results show
very good agreement with the results for topological dimension for low-dimensional dy-
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Figure 3.14: Entropy of EPW for values of pump β0, [102].

namics (d < 8). For higher dimensional dynamics the correlation dimension is inaccurate
because of the intrinsic limitations of the algorithm. That is, the upper bound permitted
by the algorithm is 2 log10N, where N is the time dimension of the embedding matrix
(length of the time series) [133]. In general, however, the advantages of local analysis of
topological properties of the attractor are particularly evident in identifying important
topological features due to, for example, thin directions, which may indicate that the cor-
responding attractor cross section is a Canto set, or the effects due to the limited amount
of data [134]. Moreover, the criterion for separating signals from noise is the integral part
of this approach, while the correlation dimension, as well as other metric and probabilistic
dimensions, are quite sensitive to the presence of noise. Note that SVD is often used as
a noise reduction procedure before applying the correlation dimension algorithm. That
is, the few dominant eigenvalues in the singular value spectrum are retained based on the
certain arbitrary criterion,such as by counting those singular values (eigenvalues) that ex-
ceed a certain percentage of the largest singular value (eigenvalue), usually � 95% [135].
In either case, SVD is applied globally, while the information is lost on the local effects
on noise, which can be of significant importance for thin directions on the attractor.

Important indicators of the sensitivity to initial conditions of the system are Lyapunov
exponents, which represent the growth rates of edges of an infinitesimal tangent space to
the trajectory of an attractor. In terms of singular values λi, the local Lyapunov exponents
scale approximately as lnλi,. Hence, the number of local Lyapunov exponents is equal
to the local topological dimension, and the number of positive local Lyapunov exponents
averaged over the attractor increases with the increase of the control parameter, as well
as with the system size.

The singular value decomposition of the spatiotemporal data matrix corresponds to
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the spectral decomposition of the signal into spatial and temporal orthogonal modes,

u (x, t) =
N∑

i=1

λiφi (x)ψi (t) , (3.43)

with
λ1 � λ2..... > 0,

and
(φi, φj) = (ψi, ψj) = δi,j ,

which converges in norm. The pair (ψi, ψj) defines a spatiotemporal structure of energy
λ2

i [136]. The relative energy of each structure is given as the ratio of one structure energy
to the total energy of the.signa1 [136, 137].

pi = λ2
i /

N∑
i=1

λ2
i (3.44)

Here the characterization of the eigenvalue spectrum is based on the principle that the
information contained in the eigenvalues can be interpreted as a probability distribution,
so that each eigenvalue can be viewed as an indication of how likely it is to identify a
spatiotemporal structure within the whole spectrum. Based on the information-theoretic
definition of entropy, the normalized entropy can be defined as

H (u) = − lim
k→∞

1

ln k

k∑
i=1

pi ln pi. (3.45)

Because of the normalizing factor 1/ log k, the entropy is defined in the range between
0 and 1. If the dynamics of the system is such that only one eigenvalue is different
from zero (i.e., the energy is concentrated in only one eigenvalue), the spatiotemporal
entropy is equal to 0, indicating the lowest level of complexity. On the other hand, if the
energy is equidistributed, i.e., all eigenvalues are the same, the global entropy is equal
to 1, indicating the highest possible complexity. In analogy with the local topological
dimension, we can calculate local entropy while the global entropy can be obtained by
ensemble averaging over the attractor. The spatiotemporal entropy of the EPW as a
function of relative pump strength is presented in Fig. 3.14. The entropy evolves from a
value close to zero corresponding to the steady (laminar) state; increases as new coherent
structure emerge and the energy spreads out on the eigenvalues; and approaches the value
of 0.76, where many structures carry similar amounts of energy. Both the entropy and the
topological dimension display a clear distinction between STI and STC, and additional
work is necessary to relate the local aspects of these two quantities to the universal
characteristics of spatiotemporal intermittency and chaos in various physical systems.

3.2.6 Transition from Spatiotemporal Intermittency

to Spatiotemporal Chaos

A method to locate a parameter threshold value is based on the coarse graining of the
space-time data into binary values, according to which local spatiotemporal regions are
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Figure 3.15: Spatiotemporal pattern in binary reduction for β0 = 0.06, near intermittency
threshold, [102].

Figure 3.16: Spatiotemporal pattern in binary reduction for β0 = 0.1, well in the turbulent
regime, [102].
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Figure 3.17: Histogram of laminar domains sizes for β0 = 0.06, near the threshold, [102].

labeled only as either laminar or chaotic [138, 139]. Since in the laminar (quasiperiodic)
regions the local amplitude is lower than in turbulent regions, by setting an arbitrary
cutoff a binary representation may be obtained that easily distinguishes between chaotic
and nonchaotic domains. The obtained representation seems to be independent on the
precise cutoff value within the accuracy of the calculation. The two-state representation
for the regimes corresponding to β0 =0.06 and β0 = 0.1 are presented in Figs. 3.14 and
3.15, respectively. Assuming an analogy to directed percolation [140], the laminar phase
corresponds to a state where chaotic (turbulent) states percolate through the lattice until
the size in the time direction, the time-correlation length, is reached. Directed percolation
is known for exhibiting a continuous (second order) phase transition, usually characterized
by a critical exponent that scales the variation of the order parameter near the transition
point. The order parameter in this framework is defined as the mean number of laminar
or turbulent domains. The distribution of sizes of laminar domains, or the corresponding
distribution of sizes of clusters of laminar sites, defines a correlation length (or size) that
characterizes the patterns; Figs. 3.16-3.18, clearly confirm the existence of a critical
threshold value. Near the threshold (β0 =0.06 ), the distribution of sizes of laminar
domains is characterized by the power law behavior (with the characteristic exponent
of the order of 3.0), while deep in the chaotic region (β0 =0.1 ) the behavior follows
the exponential behavior with the characteristic exponent 1.5. An analogous statistical
analysis was performed for the time domain distributions, and the temporal approach
displays features similar to those obtained for the spatial distributions. The threshold
in this case remains approximately the same (β0 = 0.06), although the exponents are
different. The distribution follows an algebraic decay, with a characteristic exponent 3.2,
while above the threshold the decay is exponential with the characteristic exponent 1.2.

3.2.7 Conclusions

A study of the open, convective, weakly confined dissipative model of SRS as a paradigm
of 3WI in an extended system was presented. The numerical simulation reveals a partic-
ularly beautiful example of a quasiperiodic route, accompanied by frequency locking, to
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Figure 3.18: Histogram of laminar domains sizes for β0 = 0.1, well in the turbulent regime,
[102].

spatiotemporal chaos via spatiotemporal intermittency [102]. The striking feature of this
scenario is intermittency in both space and time scales, with laminar regions exhibiting the
quasiperiodic nature of the preceding attracting state, as distinguished from the chaotic
domains by the change in spatial symmetry. The occurrence of the second frequency in
the power spectrum of the quasiperiodic regime is apparently due to the appearance of
a new spatial mode in the case of the backscattered wave (traveling wave in the case of
the electron plasma wave), suggesting a complex interplay between spatial and temporal
degrees of freedom. Changes in the topological dimension of the chaotic attractor can be
directly correlated with changes in the number of active modes, and a similar conclusion
is valid for the spatiotemporal entropy. An important item of information provided by
this analysis is that it supports the view that the route to low-dimensional chaos repre-
sents the main dynamical frame on which the route to spatiotemporal chaos is built. The
coarse graining of the space-time data into binary variables enables the use of the methods
from the theory of critical phenomena to draw qualitative parallels between the transition
from spatiotemporal intermittency to spatiotemporal chaos and directed percolation. The
final claim in this section establishes the place of 3WI in the growing family of physical
phenomena that display the intermittent route to spatiotemporal chaos [114].

3.3 Self-Organization in a Dissipative Three-Wave

Interaction- Saturated SRS Paradigm

A nonlinear three-wave interaction in an open dissipative plasma model of a stimulated
Raman backscattering is studied. An anomalous kinetic dissipation due to electron trap-
ping and plasma wave breaking is accounted for in a hybrid kinetic-fluid scheme. We
simulate a finite plasma with open boundaries and vary a transport parameter to examine
a route to spatio-temporal complexity. An interplay between self-organization at micro-
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kinetic and macro-fluid scales is found through quasi-periodic and intermittent evolution
of dynamical variables, dissipative structures and related entropy rates. A consistency
with a general scenario of self-organization is examined [124, 125].

3.3.1 Introduction

In recent papers on complexity and self-organization in plasmas a profound underlying
structure in strongly nonlinear and complex plasma phenomena was revealed [141, 142].
Self-organization is a generic process of a creation of order in a nonlinear far-from-
equilibrium system open to an environment [143]. Free energy supply, nonlinear instability
and structural bifurcation which result in dissipation, entropy production and its subse-
quent removal from a system are key governing points [142, 143]. The above concept, as
a working hypothesis, was successfully applied in studies of markedly diverse phenomena
of the macro-scale MHD and micro-kinetic self-organization in plasmas. For a continual
pumping of free energy and efficient excess entropy removal, generic self-organization to
an intermittent state was found [142, 143].

In this section we examine an open convective dissipative model of a stimulated Ra-
man backscattering. In fluid simulations (vide supra), rich spatio-temporal complexity,
which exhibits transition to intermittency and chaos following a quasiperiodic route was
revealed [102]. Detailed analysis of spatiotemporal patterns, examining the partition of
energy among coherent structures has found a growing complexity and chaos as the pump-
ing increases. However, based on general advancements in studies of plasma complexity
[141, 143] it appears plausible that due to turbulence related anomalous dissipation, self-
organization to a state of reduced complexity should be realized. To emulate the effect of
entropy balance a hybrid three-wave interaction model that includes a phenomenological
kinetic dissipation via particle trapping and wave breaking, a model, originally proposed
by [104, 124].

3.3.2 Physical Preliminaries on Nonlinear Kinetic SRS

A resonant nonlinear three-wave interaction , as a physical concept, is a paradigmatic
phenomenon which has found applications [81, 114, 123]. Stimulated scattering in a
plasma represents a wide class of three-wave interactions related to nonlinear coupling
of a finite amplitude electromagnetic pump wave to the electrostatic plasma (electron
and/or ion) wave and the scattered electromagnetic wave [105]. Assuming that resonant
matching between frequencies and wave numbers are satisfied, the pump parametrically
excites the stimulated growth of the daughter waves from their thermal noise level.

Stimulated Raman scattering involves parametric coupling of an electromagnetic pump
to an electron plasma wave and a scattered electromagnetic wave [97]. Various applica-
tions in laboratory: laser and radio-frequency wave driven plasmas, as well as in space
and astrophysical plasmas were attempted [144, 145, 146, 147, 148]. Here, a nonlinear
evolution of a stimulated Raman backscattering in an open dissipative plasma model is
examined. Generally taken, we have shown invariants breaking points to an onset of non-
stationarity for conditions of nonlinear phase detuning (3.39). Spatiotemporal complexity
in a fluid model of stimulated Raman backscattering in a bounded weakly dissipative
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plasma was attempted in [102]. A continual increase in complexity with a control param-
eter (e.g., pump strength) was predicted by this model as shown above, thus establishing
its place in a family of paradigmatic physical phenomena that display an intermittent
route to spatio-temporal chaos [114]. However, the effects of anomalous Raman dissipa-
tion and plasma electron heating followed by entropy expulsion, were omitted. It is a
purpose of this section to introduce a plausible entropy inventory by a phenomenological
modelling of anomalous kinetic dissipation related to Raman complexity, following [124].
In long saturated regimes, self-organization (SO) generic to an open dissipative system
under a continuous free energy supply is expected [141].

Extensive studies of nonlinear stimulated Raman backscattering have been performed
by analytics, fluid and particle simulations [97, 105, 144], and references therein. In a
strongly driven case, Raman instability exponentiates until arrested by nonlinear and dis-
sipative effects. The saturation comes, basically, through pump depletion and/or higher-
order nonlinearities as well as kinetic dissipation related to electron trapping and plasma
wave breaking [97, 105, 144]. While pump depletion is readily included in fluid modelling,
the latter effects are inherently kinetic. However, after more than three decades of in-
tensive particle simulation studies, nonlinear Raman scattering is understood to possess
relatively clear, albeit anomalous overall features.

As a result of electron trapping and breaking of large plasma waves a hot tail-
suprathermal electron population is generated. The corresponding velocity of hot (fast)
electrons roughly equals the phase velocity of the electron plasma wave. As a general fea-
ture, two temperature (Maxwellian like) electron distribution is recorded, for the thermal
-bulk and suprathermal -hot tail electron distributions. Energy exchange and hot compo-
nent thermalization leads to an increase of the bulk temperature at the expense of plasma
wave dissipation. However, actual details of this overall scenario are determined by com-
plex wave turbulence and the electron transport, both influenced strongly by boundary
and other plasma conditions. This qualitative understanding of anomalous Raman fea-
tures has enabled useful scaling relations and semi-empirical formulas, typically extracted
by averaging over time and shots of short-run particle simulation data. Generally taken,
a realistic long time saturation (e.g., 10 000 plasma wave periods) does not appear to be
assessable to even top performance particle simulations due to required computation time
and limitations of the numerical scheme involving large number of particles [97, 151, 150].

It is this situation that has motivated us to address a problem of anomalous Raman
in a long time evolution. A potential saturation to self-organizing plasma states using a
general concept of complexity in plasmas in a system open to an environment is presented
[124]. Firstly, a phenomenological hybrid fluid model to try to emulate basic physics of
anomalous Raman scattering, as a precursor to state-of-the-art future particle simulation
with open boundaries, is introduced.

At this point, we refer to an example of extensive analysis of nonlinear Raman satura-
tion by Rose et al., [144, 145, 146] . In distinction to a simple adiabatic cubic nonlinearity
(e.g., relativistic type) in our model equation for the electron plasma wave, these au-
thor(s) introduce nonlinearly coupled Langmuir-ion wave dynamics. Based on Zakharov’s
fluid model, processes like Langmuir decay, wave collapse and density modification are
included in such description.. One- and two-dimensional (1-2D) simulations allowed com-
parison with realistic laser-plasma experimental conditions. In comparison, a weakly
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coupled three-wave interaction model which include basic kinetic effects in 1D Raman
model will be shown below. Although simple, kinetic dissipation gets self-consistently
coupled with nonlinear Raman dynamics to study self organized saturated states. An
important fact appeared, that both of mentioned approaches predict an intensity depen-
dent spectral broadening and incoherence paradigm for Raman backscatter spectrum, as
recently observed in number of experiments and simulations [144, 152, 153].

3.3.3 A Three-Wave Dissipative Interaction Model

Stimulated Raman backscattering in a plasma is a paradigm of a three-wave parametric
interaction where by a strong electromagnetic wave (0- laser pump) decays into an electron
plasma wave (2) and backscattered wave (1) downshifted in frequency. This nonlinearly
coupled 3WI process obeys a resonant matching condition for wave frequencies and wave
numbers.

In the one-dimensional case, which is of main importance, the linear parametric Raman
backscatter growth rate is given

γ0 ≈ 0.5β0

√
α/ (1 − α)ω0, (3.46)

where α is the ratio between the electron plasma frequency and the frequency of the
pump:

α = ωpe/ω0 =
√
n/ncr (3.47)

and the quantity β0, as shown earlier, is a relative pump strength.
In a bounded, uniform, fully ionized plasma, the spatio-temporal evolution of the

coupled waves’ normalized, slowly-varying complex amplitudes ai (ξ, τ) governed by the
known set of partial differential equations in dimensionless units, as presented in the
previous chapter, namely

∂a0

∂τ
+ V0

∂a0

∂ξ
= −a1a2, (3.48)

∂a1

∂τ
− V1

∂a1

∂ξ
= a0a

∗
2, (3.49)

∂a2

∂τ
+ V2

∂a2

∂ξ
+ γa2 + iσ |a2|2 a2. = β2

0a0a
∗
1, (3.50)

where time and space coordinates are as usual, measured in units ω−1
0 and L−1 respectively,

with plasma wave damping rate given by γ. Ions are kept fixed to preserve the plasma
quasineutrality. Damping of the light waves is neglected, while T designates the bulk
electron temperature directly proportional to EPW group velocity, V2 ∼ Te, (3.37). An
important feature of the system (3.48-3.50) is the self-modal cubic term in the plasma
wave equation. It appears as a nonlinear phase shift due to a detuning of a large amplitude
plasma wave. A time-only (space-only) version of (3.48-3.50) was discussed before in
detail, and it was shown to exhibit bifurcation to a low-dimensional chaos under restricted
conditions. The spatially extended model is of a more physical significance and have
revealed rich complexity related to low-dimensional as well as spatio-temporal chaos [85,
102, 114].
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The system (3.48-3.50) can be solved in space-time for standard initial and finite
boundary conditions. In the loss-free steady state with zero phase shift, it predicts the well
known elliptic function solutions, together with three (Manley-Rowe) conserved integrals
[102, 123]. However, it was shown above that for a nonzero phase shift (σ > 0) in finite
boundaries, the third phase involving invariant is broken (3.27). Thus a violation of the
steady-state assumption, points to a nonstationary Raman saturation. Indeed, subsequent
evolution exhibits a quasiperiodic route to low dimensional intermittency to finally result
in a fully developed spatiotemporal chaos, in previous fluid model. However, we note
that in a physical sense chaotic dynamics is related to plasma wave breaking followed
at a kinetic level by a strong nonlinear electron acceleration and heating. In turn, hot
electrons can Landau damp freshly SRS driven plasma waves to suppress and strongly
alter Raman instability evolution and possibly limit the level of kinetic complexity. To
perform studies in this direction a phenomenological hybrid 3WI dissipative SRS model
is introduced. The set of 3WI equations is solved simultaneously with simple model
equations for hot and bulk plasma heating. In this way, effective damping γ (t) and
the electron temperature T (t) in 3WI, appear as dynamical variables, in contrast with
a standard model that assumes a constant plasma background. Therefore, dissipative
effects on a long time Raman saturation and kinetic self-organization in an open system
can be emulated [124].

3.3.4 Kinetic-Hybrid Scheme

It was chosen to simulate conditions relevant to anomalous Raman saturation in an open
system, which means allowing an energy exchange between an interaction region and the
plasma environment. To emulate basic kinetic effects missed by the earlier fluid 3WI
model of (3.48-3.50), a phenomenological “hybrid” scheme which includes generation of
hot electrons, that are trapped and accelerated in large amplitude plasma wave was intro-
duced [124]. Assuming that a part of plasma wave energy is transferred to electrons that
are resonant with the forward propagating electron plasma wave, hot electron generation
equation together with a 3WI set (3.48-3.50) can be numerically solved. As a consequence,
the suppression of Raman instability by hot electrons through a Landau damping is found.
We further assume that the effective damping (γ term) of plasma waves is due to both
linear Landau damping on hot electrons and nonlinear term, due to bulk electron acceler-
ation via electron trapping in large EPW. Finally, a simple total energy balance equation
to model bulk heating via the redistribution of the absorbed energy between bulk (ther-
mal) and hot (suprathermal) electrons is added. It seems that, although straightforward,
this idea appears to be a rare attempt to treat a rather complex, inherently kinetic regime
of anomalous Raman by a simple fluid-based model. Simplifying the electron transport
to spatially averaged dynamics a hybrid like coupled mode scheme that includes effects of
both thermal and hot electrons on Raman instability is introduced. Open boundaries are
carefully accounted for, thus enabling to model conditions of both current-free streaming
and inhibited electron transport. A brief check of the model performance against particle
simulation is done, in order to try closer fits by adjusting a free transport parameter in
the scheme. In that way, a longtime Raman saturation in an open system is addressed, an
important question that remains difficult to answer even by highest performance particle
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simulations [97, 150].
We start by assuming the electron distribution function, including thermal (bulk) and

hot component, to be approximated by bi-Maxwellian electron distribution [97, 124]:

F (x, t, v) = nh (x, t) fh (v) + nb (x, t) fb (v) , (3.51)

where nh and nb (� nh) stand for slowly varying hot and bulk electron density, respec-
tively, with each fi (v) normalized to unity. We assume that the total hot electron current
includes a source term due to trapped resonant electrons (in the thermal Maxwellian tail).
Therefore we write

jh (x, t) =

∫
hot

vF (v) dv = nh (x, t)

∫ ∞

−∞
vfh (v) dv (3.52)

+nb (x, t)

∫ vph+vtr

vph−vtr

vfb (v) dv,

where vph is the plasma wave phase velocity and vtr is characteristic velocity of resonant
electrons (v ∼ vph) with orbits trapped in a trough of a large amplitude plasma wave (a2)

(in physical units, vtr (t) ∼ (2eE2/mk2)
1/2), where the maximum E2 amplitude allowed is

limited by the plasma wavebreaking condition [97, 110, 111].
Equation of continuity for hot electrons is written in a standard form

d

dt
nh (x, t) ≡ ∂

∂t
nh (x, t) + ∇ · jh = 0, (3.53)

or after performing the spatial average by integration, defined as

〈....〉L =
1

L

∫ L

0

(....) dx, (3.54)

where nh (t) is hot electron density averaged over the plasma length L, we obtain

d

dt
nh (x, t) +

1

L
jh (x, t)

∣∣L
0 = 0. (3.55)

Using the electron current one gets equation for the hot electron generation

d

dt
nh (t) =

nb (L, t)

L

∫ vph+vtr(L,t)

vph−vtr(L,t)

vfb (v) dv − κnh (t) , (3.56)

We note vtr (0, t) = 0, due to the boundary condition for a plasma wave. The loss term
is due to electrons which escape through open plasma boundaries, with the transport
coefficient κ = kvh/L ≈ kvph/L and coefficient k equal to 1 and 2 for a free streaming and
a Maxwellian flow, respectively. We now proceed to evaluate the effective damping rate in
the plasma wave equation (3.50). We assume that a total damping is due to both linear
Landau and nonlinear (trapping and wave breaking) effects, namely, the total damping
rate: γ (t) = γLandau + γnl , where for the linear Landau term we shall use a standard
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formula appearing in the literature [97] Further, we introduce the spatially integrated
plasma wave energy density, through

W (t) =
1

L

∫ L

0

1

8π
|E (x, t)|2 dx. (3.57)

The rate of the electron plasma wave energy dissipation through linear and nonlinear
processes is

2γW (t) = 2γLandauW (t) +
mnb (L, t)

2L

∫ vph+vtr(L,t)

vph−vtr(L,t)

v3fb (v) dv, (3.58)

where an integral term, gives a nonlinear contribution to a plasma wave damping, thus
effectively determining the value of γnl.

Finally, equation for the total energy balance between the plasma wave, the thermal
and hot electron component, by starting from a general conservation law (wi denotes
energy, φi denotes energy flux) is given

d

dt

∑
i

wi (x, t) =
∂

∂t

∑
i

wi (x, t) + div
∑

i

φi (x, t) = 0. (3.59)

For spatially averaged (integrated) quantities one has to evaluate the energy flux at
open boundaries

d

dt

∑
i

Wi (x, t) +
1

L

∑
i

Φi (x, t)
∣∣L
0 = 0. (3.60)

For our system, the plasma wave, thermal and hot electron component: Wi(t) ⇒
W +Eth+Eh, the electron bulk and hot energy densities are simply: Eth = nbTb and Eh =
nhTh; and the average energy flux, is given by Φth = ±vthEth and Φh = ±vhEh . For the
Maxwellian distribution the above energy flux has to be multiplied by a weighting factor
� 0.65. However, in real plasmas, an inhibited energy flux is modified by a parameter
k ∼ (0 − 1); in a largely heuristic model of a highly complex electron energy transport
[97]. The ±sign indicates the flux direction at the plasma boundary (at x = 0, L). By
using the above expressions, the equation for the thermal energy variation is given as

d

dt
[nb (t)Tb (t)] = 2γW (t) − d

dt
[nh (t)Th (t)] − k

L
[Φth + Φh − Φq]

∣∣L
0 , (3.61)

where we have introduced Φq as the return flux of fresh (cold) ambient electrons through
an open plasma boundary (vide infra). We note in passing , a simplified form of (3.55)
with respect to a lack of a finite relaxation time, that is normally required for a heat
transfer via e.g. hot-bulk electron collisions.

3.3.5 Open Boundary Model

A simulation model with boundaries open to electromagnetic waves and plasma electrons
is introduced. Accordingly, a transport between an interaction region and a large sur-
rounding plasma environment is allowed. For electrons which escape from an interaction
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Figure 3.19: Raman reflectivity in time versus transport parameter k, for (a) closed (
inhibited transport) and (b) open system, [124].

Figure 3.20: Raman reflectivity in time versus transport parameter k, for (a) closed (
inhibited transport) and (b) open system, [124].
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Figure 3.21: Hot electron density variation in time for (a) closed and (b) open system,
[124].

layer (length L) fresh ambient electrons are re-injected in order to preserve the plasma
quasineutrality. Accordingly, a long-time Raman saturation could be observed under
conditions with physically realistic current free boundaries.

A straightforward procedure is briefly sketched. The total electron current at the
boundary is written as an algebraic sum of the outgoing and the incoming components:
Jtot = Jout+Jin , with Jout = Jth+Jh, for thermal and hot electron contributions. Further,
Jin = nqv0, where nqv0 stands for a current of ambient electrons streaming into a plasma
layer. By requiring the total current at the boundary to be zero, one readily evaluates
Jin in terms of the thermal and hot components. The energy flux carried by ambient
electrons (with temperature T0) is simply Φq � JinT0 , making the calculation of the loss
term in the thermal balance equation an easy task.

In further text, we refer to the above model as the ”open” one, in contrast with the
”closed” plasma model where an electron transport is inhibited by a build up of a space
charge. The latter case corresponds to e.g. plasma-vacuum boundary, with the energy
flux (Φ), coefficient restricted to low values (few percent). As for the Maxwellian with an
open boundary we get the factor, k ∼ 0.65; one should expect a wide range of dynamical
regimes between these two extreme transport cases [97].

3.3.6 Micro-Scale and Macro-Scale Self-Organization

The Raman complexity obtained in simulations is briefly analyzed. Parameters of the
“standard case” studied in depth in a fluid 3WI model are chosen (vide supra) [102, 124].
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Figure 3.22: Bulk electron temperature in time versus k for (a) closed and (b) open
system, [124].

Figure 3.23: Raman reflectivity in time shows complexity of (a) quasiperiodic and (b)
intermittent type, [124].
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Initial plasma parameters are: the electron density is 0.1 of the critical density, the
electron temperature of 0.5 keV and the plasma length L = 100c/ω0. Further, the electron
transport coefficient k is taken to be the basic control parameter. A continuous pumping
is applied to observe different saturated states for an open and closed (isolated) system.
Typically, the reflection and transmission coefficients in time, as well as the evolution of
hot electron density and bulk temperature, are plotted. The pump strength is equal to
0.025. For two cases of an open (k = 0.5) and nearly closed (k = 0.007) plasma system,
after transient pulsations reflectivity saturates to a quasisteady state. As expected, the
transmittivity follows the same scenario. However, while for the open system reflectivity
saturates to a high-finite value, in a strongly confined-closed system reflectivity quickly
drops to zero due to a complete Raman suppression (see Figs. 3.19 and 3.20). More precise
insight into a phase space dynamics finds out that, while the closed system saturates to an
exact steady state (fixed point), in the open case, small periodic oscillations (limit cycle)
are present. Moreover, in the latter case, the moderate hot electron population, which
is locked to a finite-plasma wave as a source of hot electrons, saturates to a quasisteady
state. In distinction, in the closed system, hot density is high and nonstationary, typically
an order of magnitude higher than above, rapidly generated during an abrupt dissipation
of Raman driven large plasma waves (Fig. 3.21). It gradually relaxes in later times, due
to a convective cooling through the boundaries. Similar to hot population, important
difference exists in the bulk temperature evolution. In the open system, temperature
saturates to a steady-state, moderately above an initial-ambient temperature. This is
due to a continual energy input via kinetic dissipation balanced by efficient convection
losses. In the closed system, rapid and large temperature rise is observed, to reach its
maximum by halting Raman instability, later to experience slow cooling through transport
inhibited boundaries (Fig. 3.22).

Further, by carefully varying a control parameter k, generic structural bifurcations
along the route to complexity are studied (see Figs. 3.23-3.26). For k = 0.05, in the
system, a bifurcation to a new state of kinetic self-organization is revealed. Structural
instability transits to a quasiperiodic dynamical state, observed readily as a train of tem-
poral pulses in the reflectivity and transmittivity. Hot electron population follows, with
strong quasi-periodic pulsations peaked around 20% of the initial electron density. On the
other hand, the bulk temperature, after its initial growth, exhibits strong sawtooth oscil-
lations reminiscent of the MHD type observed in magnetically confined fusion plasmas.
By further exploring a parameter space for the open system with k = 0.9 a transition
to a quasiperiodic dynamics, interrupted by chaotic bursts is found. Closer insight into
the attractor space finds irregular portion of the dynamics, pointing to an intermittent
nature of this regime. Indeed, hot electrons are intermittently ejected in a form of intense
jet spikes (Th ∼ 22keV ) as a striking feature of this type of kinetic self-organization (Fig.
3.25). Bulk temperature follows an intermittent scenario, by exhibiting quasiperiodic
(QP) fluctuations, somewhat above its initial value (Fig. 3.26). Finally, a temporal route
to complexity by plotting a phase space attractor for the hot electrons is shown (Fig.
3.27). By varying a transport parameter k (0.7 − 0.9) a gradual onset of complexity and
chaos is revealed, starting with typical “stretching and folding” features of the periodic
trajectories.
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Figure 3.24: Raman transmittivity in time for (a) quasiperiodic and (b) intermittent
regime, [124].

Figure 3.25: Hot electron density in time shows (a) quasiperiodic and (b) intermittent
pulsations, [124].
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Figure 3.26: Bulk electron temperature in time exhibits (a) sawtooth and (b) intermittent
pulsations, [124].

3.3.7 Dissipative Structures and Entropy Rate

Self-organization (SO) in strongly nonlinear far-from equilibrium systems can lead to a
creation of ordered states that reflect an interaction of a given system with its environ-
ment. These dynamical structures or patterns, named dissipative structures to stress the
crucial role of dissipation in their creation, have become a central theme of the science of
complexity [141, 143]. On the other hand, there is a fundamental role of the entropy, in
particular, the rate of entropy change in an open system. The rate of entropy production
and its removal basically governs self-organization features of a system. A large amount
of effort has been spent in attempts to relate the entropy rate extrema to structural
bifurcations and transitions between different ordered states [141, 143].

First, focus is at self-organized dissipative structures developed at macro scales. In-
deed, in above model, basic wave and fluid density variables were assumed to vary slowly
in space-time. Therefore, we expect that original spatiotemporal profiles, found in sim-
ulations, should correspond to large dissipative structures, self-organized at macroscale
levels. As an illustration, we plot the plasma wave profile (Fig. 3.28), in particular, to
reveal a genuine spatiotemporal nature of an intermittent regime as compared to regular
dynamical regimes of the steady-state and QP type. Spatiotemporal complexity of qua-
sisteady and traveling wave patterns with regular and chaotic features is found in different
states of self-organization.

However, a hybrid nature of this model will also allow to recover kinetic type proper-
ties of self-organization. By using an analytical dependance of the electron Maxwellian
distribution on varying hot (bulk) temperature and density (3.51) a genuine picture of
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Figure 3.27: Phase diagrams for hot electrons, show stretching and folding of orbits
reminiscent of chaos, [124].

Figure 3.28: Spatiotemporal dissipative structures of electron plasma wave for different
k values exhibit a varying level of complexity; from the steady-state via quasi-periodic to
intermittent regimes, [124].

Figure 3.29: 3D view of fe (v) for different saturated regimes reveals micro-kinetic SO of
both thermal and suprathermal electron components, [124].
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Figure 3.30: Dissipative plasma wave structures vs. entropy rate in time. Positive entropy
rate jumps coincide with onset of chaos, while negative bursts indicate transition to a
laminar phase of SO at macro-scales, [124].

Figure 3.31: Intermittent electron distribution function versus entropy rate in time. Simi-
lar to Fig. 3.30 , structural bifurcations at micro-scales coincide with entropy rate extrema,
[104].

kinetic self-organization at plasma microscales is exposed. To show the self-organization
featuring micro-levels, the electron velocity distribution function is plotted. In Fig. 3.29
a three-dimensional view of the electron velocity distribution in time for different sat-
urated Raman regimes is shown, as indicated by values of parameter k. Kinetic self-
organization of varying complexity is revealed in thermal and hot regions of the electron
distribution. Furthermore, one can observe a complex connection and interplay between
self-organization at macro and micro levels in a plasma.

Finally, in Fig. 3.30 the entropy rate dS(t)/dt in time together with a spatio-temporal
profile of the scattered wave energy is presented. To calculate the entropy S related to
electron distributions as: S(t) = Sb(t) + Sh(t), one uses

Si (t) = −
∫ L

0

dx

∫ ∞

−∞
dvfi (x, v, t) ln fi (x, v, t) , (i = b, h) . (3.62)

For an intermittent regime, featuring an interchange between chaotic and laminar
phases, clear evidence of structural transitions corresponding to the maximum (positive)
and minimum (negative) entropy rate is found. As a striking example of self-organization
in an open system, a rapid entropy increase which coincides with an onset of a chaotic
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Figure 3.32: Raman reflectivity in time from 11
2
D EM particle-in-cell simulations, for

laser pump of 0.02 shows remarkable agreement with Fig. 3.19 (a) obtained from 3WI
hybrid model, [151].

phase is revealed. Subsequent anomalous dissipation and entropy growth is halted by a
sudden entropy expulsion into the environment. Negative burst in entropy rate indicates a
bifurcation from a chaotic, back to a laminar quasiperiodic phase. An intermittent nature
of this regime is shown through a repetitive pattern of behavior. We note that complex
spatiotemporal dissipative wave structures are mapped onto a more simple entropy rate
time series. Intervals of near zero entropy rate during a laminar phase, mean a net balance
between the entropy production and the expulsion. This appears to be an example of a
stationary nonequilibrium state possibly realized in a strongly nonlinear open system
[143].

3.3.8 Summary

In summary, above simple findings appear to be early indication of a generic intermittent
scenario in a kinetic self-organization of anomalous Raman instability. Although phe-
nomenological rather than rigorous, above dissipative 3WI open model has self-consistently
accounted for the entropy production and removal, for both thermal and suprathermal
electrons. In this way, rich transient Raman complexity gradually gets self-organized and
attracted to definite saturated dynamical states, such as: steady-state, quasi-periodic and
intermittent ones. At this point, one is able to claim a type of consistency with the work-
ing hypothesis and general scenario of self-organization in plasmas. As a further step, an
important justification for such hybrid modeling of saturated Raman complexity by the
open boundary particle simulation may be expected [149]. As an illustration, we show
in Fig. 3.32, particle-in-cell simulation data for a model of an isolated plasma slab (thin
foil layer) in a vacuum [151]. For the same parameters as above, particle simulations evi-
dently support the Raman reflectivity patterns (Fig. 3.19) for a nearly closed (k = 0.007)
plasma system; recovering also quasi-periodic incoherent spectra similar to those shown
above. Generally taken, intensity dependent route to incoherent SRS spectral broadening
consistent with this model has been also observed in relativistic laser-plasma interaction
experiments, see e.g., Refs. [152, 153].

93

93



94



Chapter 4

Relativistic Plasma Interactions

Ever since the much acclaimed paper of Akhiezer and Polovin [154] plasma theorists
have been attempting to comprehend complex dynamics related to the propagation of
high and ultra-high intensity electromagnetic (EM) radiation through a plasma. This
topic was successfully revisited a number of years later by Kaw and Dawson [155] whose
analysis threw more light on the propagation of coupled longitudinal-transverse waves
of arbitrary intensity. The high phase velocity case was soon solved exactly by Max and
Perkins [156]. The problem of relativistic laser-plasma interactions is of particular interest
concerning the fast ignition concept relevant to contemporary laser inertial confinement
fusion research [157, 158]. Moreover, the understanding of relativistic laser pulse evolution
in a plasma is basic to many new applications, including optical-field-ionized x-ray lasers
[159], plasma-based electron accelerator schemes [160, 161], as well as, the interpretation
of some astrophysical phenomena ( see [162], and references, therein). Currently, the field
of relativistic laser matter interaction has diverged in two main broad directions; the first,
related to laser fusion, high energy densities and laboratory astrophysics, and the second,
related to ultra high field science, high energy particle acceleration and photon beam and
ultra-fast attosecond phenomena [163]. Many of these applications require stable channel
guiding of intense laser beams over longer distances, without significant energy losses
[164]. The pioneer workers in this field [154, 155, 156], did not consider the stability of
the plane-wave solutions, related to nonlinear interaction between normal plasma modes.
However, in a highly nonlinear system we have to deal with nonlinearly coupled modes
under various plasma conditions.

4.1 Electronic Parametric Wave Coupling

In a plasma exists a number of instabilities that can be classified as parametric excitations
of resonantly coupled waves [165]. This is a multi-wave process since in practice an
externally driven pump wave can interact with a whole spectrum of waves in a plasma.
However, in most cases the process can be well described as three wave interaction as
long as certain resonant triplet of waves evolves (almost) independently of the others.
The three-wave interaction is the lowest-order nonlinear effect for a system approximately
described by a linear superposition of discrete waves. In order for nonlinear 3WI to occur,
the wave frequencies and wave vectors must satisfy matching conditions
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ω− = ω0 − ω1, k− = k0 − k1, (4.1)

where modes ”0” and ”1” represent pump and plasma waves and mode ”-” represent
scattered wave (Stokes wave). When the pump amplitude exceeds a certain threshold,
the remaining two waves which are initially at noise level start growing absorbing energy
from the pump wave. In addition to the above wave triplet described by (4.1), another,
usually weaker triplet having two waves in common with the first one can be observed in
experiments and simulations. The resonant conditions for this wave triplet are

ω+ = ω0 + ω1, k+ = k0 + k1, (4.2)

where ω+ denotes upshifted frequency by the frequency ω1. This wave is known as anti-
Stokes wave. The fact that the triplets (4.1) and (4.2) share two waves can be used
as a concept to control the chaos in three-wave coupling [102, 166]. There is a rich
experimental and theoretical support in laboratory and space plasmas for nonlinear wave-
wave interactions that involve EM waves, Langmuir waves and ion-acoustic waves. The
decay schemes for these processes are

(i) photon −→ photon + Langmuir wave

(ii) photon −→ photon + ion-acoustic wave

where the first type of the decay is known as stimulated Raman scattering (SRS) and
the second type as stimulated Brillouin scattering (SBS). These scattering processes are of
particular interest to inertial confinement fusion since the fusion targets are characterized
by large regions of an underdense plasma. Much works have been devoted to stimulated
Raman and Brillouin scattering instabilities, concerning their ability to serve as a source
of high energetic particles which may preheat the core of a fusion pellet. The stimulated
scattering can be large enough to reflect a significant part of the laser light and thus
to decrease the laser efficiency at the target [167]. As has been shown by experiments
and computer simulations there can be a rich interplay between these two instabilities
[168, 169, 170]. In present-day laser-fusion research SRS instability is of a major concern
[168, 171, 172, 173].

4.1.1 Stimulated Raman Scattering

The stimulated Raman scattering is a parametric decay of an incident EM wave (ω0, k0)
into a scattered light (ωs, ks) and an electron plasma (Langmuir) wave (ωEPW , kEPW ).
The matching conditions [97, 174], for the frequencies and wave numbers are

ω0 = ωs + ωEPW , k0 = ±ks + kEPW , (4.3)

respectively, where

k0 =
ω0

c

(
1 − n

ncr

)1/2

, (4.4)
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ks =
ωs

c

(
1 − ω2

p

ω2
s

)1/2

, (4.5)

+ (-) denotes forward (backward) scattering, n is the density, ncr = nω2
0/ω

2
p is the critical

density and ωp = (ne2/(ε0m))1/2 is the plasma frequency. In the low-temperature limit
the dispersion equation for Langmuir wave is ω2

EPW = ω2
p+3k2

EPWv
2
t , where vt = (T/m)1/2

is the electron thermal velocity and T is the temperature.
In the process of SRS, the EM pump wave is scattered by ripples of the electron plasma

density. A ponderomotive force that arises due to the beats of the pump and scattered
light further enhances these density ripples. There is a positive feedback loop and therefore
an instability can occur. However, since the minimum frequency of EM waves in a plasma
is ωp, as can be seen from the frequency matching condition (ω0 > 2ωp), SRS instability
can occur for electron densities n < 0.25ncr. Note that this condition can be shifted
to higher densities due to the presence of highly energetic particles or/and due to large
amplitude electromagnetic waves.

The phase velocity of the plasma wave produced during parametric interaction can be
slow enough to reach back into the tail of the background plasma electron distribution
function. The tail electrons can obtain energy from the wave by becoming trapped in
the electron plasma wave and damping it. In fact, this dominantly occurs for stimulated
Raman backward scattering (B-SRS) where the phase velocity of the electron plasma
wave for low density is vph ≈ ωp

2k0

. For stimulated Raman forward scattering (F-SRS)
the phase velocity is nearly the velocity of light and a very low number of particles have
initial energy to be trapped and accelerated. However, when the pump wave propagates
through a plasma for a large enough distance, a large amplitude electron plasma wave
can be driven producing a significant number of high energetic electrons.

4.1.2 Relativistic Dispersion Relation for Cold Plasma

In order to obtain insight into relativistic parametric instabilities, in this section we derive
a hybrid dispersion equation for EM wave scattering in an unmagnetized homogeneous
cold plasma, [175, 176]. The ions are fixed as a cold plasma beckground and dynamics of
electrons is relativistic. We assume that the radiation field is linearly polarized (E = Ee

y
)

and consists of a pump wave

A0 =
1

2
A0eye

i(k0·x−ω0t) + c.c. (4.6)

and two daughter waves

A+ =
1

2
A+eye

i(k·x−ωt)ei(k0·x−ω0t) + c.c. (4.7)

A− =
1

2
A−eye

−i(k·x−ω∗t)ei(k0·x−ω0t) + c.c. (4.8)

propagating in x direction. Here, A is the vector potential, index ”0” denotes the laser
wave, while ”+” and ”-” stand for daughter waves, Stokes (ω−ω0,k−k0) and anti-Stokes
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(ω + ω0,k + k0), respectively. The amplitudes of the scattered waves are assumed to be
much smaller than the amplitude of the pump wave (A+, A− � A0). As one can see the
frequency and wave vector matching conditions are included in expressions (4.7) − (4.8),
so ω and k represent respectively the frequency and wave vector of ES wave. The starting
point for the description of the interaction of these waves in a cold plasma fluid are
Maxwell equations

E = −∇φ− ∂A

∂t
, (4.9)

B = ∇× A, (4.10)

∇× B = μ0j + ε0μ0
∂E

∂t
, (4.11)

the continuity equation
∂n

∂t
+ ∇ · (nv) = 0, (4.12)

and the relativistic equation of motion

m
dγv

dt
= −e(E + v × B), (4.13)

where E and B are the electric and magnetic fields, φ is the scalar potential, j is the
current density, n is the electron density, v is the velocity and γ is the relativistic Lorentz
factor.

Using vector identity ∇× (∇× A) = ∇(∇ · A) −∇2A, from Maxwell equations one
can obtain

1

c2
∂2A

∂t2
−∇2A + ∇

(
1

c2
∂φ

∂t
+ ∇ · A

)
= μ0j, (4.14)

and, on the other hand, the equation of motion (4.13) can be rewritten as

∂γv

∂t
=

e

m

(
∇φ+

∂A

∂t

)
− c2∇γ. (4.15)

Here, equations (4.13), (4.14) and (4.15) will be examined order by order in the amplitudes
of the incident waves1, by writing,

j = −env = j[1] + j[2] + j[3] + ... (4.16)

where
j[1] = −en0v

[1], (4.17)

j[2] = −en0(v
[2] + n[1]v[1]), (4.18)

j[3] = −en0(v
[3] + n[1]v[2] + n[2]v[1]), (4.19)

1The approach presented in this section is in fact weakly-relativistic since it requires an expansion of
the relativistic factor. A fully relativistic approach can be used in the case of circularly polarized EM
waves since the amplitude of the electric field and the electron quiver velocity remain constant.
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and

γ ≈ 1 +
1

2

v2

c2
+ ... = 1 +

1

2

(v0 + v+ + v−)2

c2
+ ... (4.20)

Using renormalization eA/m → A and radiation gauge ∇ · A = 0, in first-order of
perturbations we have

v⊥[1](ω0, k0) = A0, (4.21)

v⊥[1](ω + ω0, k + k0) = A+, (4.22)

v⊥[1](ω − ω0, k − k0) = A∗
−, (4.23)

where ”*” denotes complex conjugate. No density fluctuations are produced in first-order,
n[1] = 0.

In second order from the continuity equation and equations (4.14) and (4.15) we write,
respectively,

∂n[2]

∂t
+ ∇ · v[2]

‖ = −∇(n[1]v
[1]
‖ ) = 0, (4.24)

1

c2
∇φ[2]

∂t
= −μ0n0e

2

m
v

[2]
‖ , (4.25)

(eφ/m→ φ), and

∂v
[2]
‖
∂t

= ∇φ[2] − 1

2
∇‖(v

[1]
⊥ · v[1]

⊥ ), (4.26)

so that we have

v
[2]
‖ =

1

2

kω

ω2 − ω2
p

(v
[1]
⊥ · v[1]

⊥ )ω, (4.27)

φ[2] = −1

2

ω2
p

ω2 − ω2
p

(v
[1]
⊥ · v[1]

⊥ )ω, (4.28)

n[2] =
1

2

k2

ω2 − ω2
p

(v
[1]
⊥ · v[1]

⊥ )ω. (4.29)

The beating of the pump and scattered waves give perturbations of the plasma quan-
tities at (2ω0, 2k0):

2

2From equations (4.30) − (4.32) one can obtain the following expressions for perturbations in the
longitudinal direction at (2ω0, 2k0) [177, 178],

v
[2]
‖ (2ω0, 2k0) = −E0

e2

m2

k0

ω0

1

4ω2
0 − ω2

p

cos 2(k0x − ω0t),

E[2](2ω0, 2k0) = E2
0

e

m

ω2
p

2ω2
0

k0

4ω2
0 − ω2

p

sin 2(k0x − ω0t),

n[2](2ω0, 2k0) = −E2
0

e2

m2

k2
0

ω2
0

1

4ω2
0 − ω2

p

cos 2(k0x − ω0t).
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v
[2]
‖ (2ω0, 2k0) =

2k0ω0

4ω2
0 − ω2

p

(A0 · A0), (4.30)

φ[2](2ω0, 2k0) = −1

2

ω2
p

4ω2
0 − ω2

p

(A0 · A0), (4.31)

n[2](2ω0, 2k0) =
2k2

0

4ω2
0 − ω2

p

(A0 · A0), (4.32)

at (ω + 2ω0, k + 2k0):

v
[2]
‖ (ω + 2ω0, k + 2k0) =

(k + 2k0)(ω + 2ω0)

(ω + 2ω0)2 − ω2
p

(A0 · A+), (4.33)

φ[2](ω + 2ω0, k + 2k0) = − ω2
p

(ω + 2ω0)2 − ω2
p

(A0 · A+), (4.34)

n[2](ω + 2ω0, k + 2k0) =
(k + 2k0)

2

(ω + 2ω0)2 − ω2
p

(A0 · A+), (4.35)

at (ω − 2ω0, k − 2k0):

v
[2]
‖ (ω − 2ω0, k − 2k0) =

(k − 2k0)(ω − 2ω0)

(ω − 2ω0)2 − ω2
p

(A∗
0 · A∗

−), (4.36)

φ[2](ω − 2ω0, k − 2k0) = − ω2
p

(ω − 2ω0)2 − ω2
p

(A∗
0 · A∗

−), (4.37)

n[2](ω − 2ω0, k − 2k0) =
(k − 2k0)

2

(ω − 2ω0)2 − ω2
p

(A∗
0 · A∗

−), (4.38)

and at (ω, k):

v
[2]
‖ (ω, k) =

kω

ω2 − ω2
p

(A∗
0 ·A+ + A0 · A∗

−), (4.39)

φ[2](ω, k) = − ω2
p

ω2 − ω2
p

(A∗
0 · A+ + A0 ·A∗

−), (4.40)

n[2](ω, k) =
k2

ω2 − ω2
p

(A∗
0 · A+ + A0 · A∗

−). (4.41)

Since A± � A0, the second (longitudinal) harmonics of the scattered waves [2(ω ±
ω0), 2(k ± k0)] can be neglected.

In third order the total currents at the frequencies and wave vectors of the pump and
scattered waves are derived. Since we have

∂2A

∂t2
− c2∇2A = −ω2

pv
[1] +

e

mε0

j[3], (4.42)
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one can obtain an amplitude dependent dispersion equation for the pump wave. At the
peak of the wave amplitude we have

ω2
0 = ω2

p

[
1 − β2

4

(
3

2
− 2c2k2

0

4ω2
0 − ω2

p

)]
+ c2k2

0, (4.43)

where β = eE0

mω0c
is the laser strength. As we can conclude from equation (4.43), a high

intensity wave introduces a relativistic shift in its natural frequency (or a shift in the
wave number). For very low densities ω0 � ωp, the amplitude dependent part of equation

(4.43), can be approximated as β2

4
, whereas near the critical density ω0 ≈ ωp, this term is

≈ 3β2

8
.

For the scattered waves, on the other hand, we have

D+A+ = ΓD+
1 A+ − ΓD2A

∗
−, (4.44)

D−A∗
− = ΓD−

1 A
∗
− − ΓD2A+, (4.45)

where Γ =
ω2

pβ2

4
and D± =

[
(ω ± ω0)

2 − ω2
p − c2(k ± k0)

2
]
,

D±
1 =

(
c2k2

ω2 − ω2
p

+
c2(k ± 2k0)

2

(ω ± 2ω0)2 − ω2
p

− 3

)
,

D2 =

(
c2k2

ω2 − ω2
p

+
2c2k2

0

4ω2
0 − ω2

p

− 3

2

)
.

Finally, equations (4.44) and (4.45) can be combined to give the hybrid dispersion equation

D−D+ = Γ(D−D+
1 + D+D−

1 ) + Γ2(D2
2 −D+

1 D−
1 ). (4.46)

Note that the term ∼ Γ2 can be neglected.

Solutions of the Relativistic Dispersion Relation

The hybrid dispersion equation (4.46) is a sixth order equation in ω. It was solved
numerically for a broad range of densities and laser strengths as a function of the real
wave number k normalized to the wave number of the pump wave k0. The solutions of
the dispersion equation [176], the real ωr and imaginary part ωi (the temporal growth
rate) of the ES wave frequency ω are normalized to the frequency of the pump wave ω0.

In Fig.4.1 the solutions of the hybrid equation (4.46) are shown for plasma density
n = 0.1ncr and laser strengths (a) β = 0.3 and (b) β = 0.6. The solution for k/k0 > 1 is
associated with the backward stimulated Raman scattering (B-SRS) instability, whereas
the solution k/k0 < 1 represents the forward stimulated Raman scattering (F-SRS) in-
stability. The temporal growth rate for B-SRS and F-SRS instabilities are distinct for
considered parameters. Moreover, instability branches are well separated in k space. For
sufficiently high laser intensity, the relativistic correction to the mass of electrons oscil-
lating in the incident electric field causes the relativistic modulational instability (RMI)
[179]. The source of the RMI is the dependence of the wave dispersion on the amplitude
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Figure 4.1: Solutions of the hybrid dispersion equation (equation 4.46) for n = 0.1ncr

and laser strengths (a) β = 0.3 and (b) β = 0.6. The solid lines are the growth rate (ωi)
and the dashed lines are the real part of the frequency (ωr). The frequencies and wave
numbers are normalized to ω0 and k0, respectively, [176].

of waves (see equation (4.43). The consequent effect is that small perturbations of the
original wave envelope become narrower and larger following an accumulation of the wave
energy into a smaller space [179]. In Fig.4.1b, the low-frequency, low-wave-number tail
connected to F-SRS branch corresponds to this instability. The relativistic modulation
propagates in the direction of the incident large-amplitude EM wave.

In view of the Stokes and anti-Stokes sidebands, it should be pointed out that the
contribution of the anti-Stokes wave (4.7) to B-SRS can be neglected, since this wave is
non-resonant for backward scattering. For F-SRS and RMI both waves, Stokes (4.8 and
anti-Stokes (4.7), give the contribution. In particular for k/k0 � 1, the amplitude of the
anti-Stokes wave is of order of the amplitude of the Stokes wave (A+ ≈ A−) [180].

For higher electron densities, n = 0.2ncr (Fig. 4.2) and n = 0.25ncr (Fig.4.3) the
solutions are plotted for several laser strengths, (a) β = 0.2, (b) β = 0.3, (c) β = 0.4
and (d) β = 0.6. As we can see, for n = 0.2ncr (Fig.4.2a) there is a gap between Raman
branches that disappears with increasing the laser strength (Fig.4.2b). The RMI branch
appears for higher EM wave intensities with a gap that separates the RMI and SRS
instability (Fig.4.2c). Further increasing the incident wave intensity results in merging of
all branches (Fig.4.2d). The behavior of the solutions shown in Fig.4.3 is similar to the
behavior described above, although it should be noted that the backward and forward
Raman branches are already connected for β = 0.2.

In general, as one can conclude from Figs. 4.1-4.3, for n ≤ 0.25ncr the RMI has a lower
growth rate than the SRS instability. For low plasma densities the B-SRS instability is the
leading instability. With increasing density or/and laser strength the Raman branches get
closer and merge. As is expected, an increase in the laser strength increases the growth
rates of the instabilities.

As an illustration of the solutions in the range of densities n > 0.25ncr, in Fig.4.4
we show unstable solutions of the hybrid dispersion equation for n = 0.4ncr and laser
strengths β = 0.4 (Fig.4.4a), β = 0.422 (Fig.4.4b), β = 0.45 (Fig.4.4c) and β = 0.6
(Fig.4.4d). As we can see, in a plasma with density > 0.25ncr, when SRS is halted, only
the RMI is found (figure 4.4a). However, an increase in the laser strength results in the
appearance of the B-SRS branch, relativistically shifted to high densities (Fig.4.4b). For
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Figure 4.2: Solutions of the hybrid dispersion equation (equation 4.46) for n = 0.2ncr and
laser strengths (a) β = 0.2, (b) β = 0.3, (c) β = 0.4 and (d) β = 0.6. The solid lines are
the growth rate (ωi) and the dashed lines are the real part of the frequency (ωr). The
frequencies and wave numbers are normalized to ω0 and k0, respectively, [176].

higher laser strengths, the SRS instability again becomes the leading instability (Fig.4.4c).
Finally, the RMI and SRS instability branches merge (Fig.4.4d).

4.1.3 Summary

As one can conclude, a relativistic EM wave is unstable in a plasma, with different regimes
that depend on density (and other parameters) and EM wave intensity. In general, B-SRS
is the leading instability. F-SRS competes with B-SRS for higher densities. When SRS
is halted (n > 0.25ncr + relativistic shift) only the RMI can grow. As it was shown,
the relativistic description of parametric instabilities introduces a broadening of unstable
regions in k space and merging of unstable regions of different instabilities. Although the
laser strengths considered here are somewhat larger than allowed by expansion (4.20),
the obtained results show good agreement with previously reported results. The majority
of these results have been obtained under various approximations such as: cold plasma,
weak relativistic effects, circular polarization, very low density plasma, the quasistatic
approximation, one dimensional scattering geometry, etc. [175, 180, 181, 182, 183, 184].
A unified three-dimensional approach to the problem of electron parametric instabilities
of relativistically intense laser light in a cold plasma, including harmonic generation is
presented in [185].

At the end, it should be pointed out that the hybrid dispersion equation (4.46) was
solved for real values of the wave number (the initial value problem). This corresponds,
strictly speaking, to the case when the interacting waves always stay in the plasma (an
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Figure 4.3: Solutions of the hybrid dispersion equation (equation 4.46) for n = 0.25ncr

and laser strengths (a) β = 0.2, (b) β = 0.3, (c) β = 0.4 and (d) β = 0.6. The solid lines
are the growth rate (ωi) and the dashed lines are the real part of the frequency (ωr). The
frequencies and wave numbers are normalized to ω0 and k0, respectively, [176].
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Figure 4.4: Solutions of the hybrid dispersion equation (equation 4.46) for n = 0.4ncr and
laser strengths (a) β = 0.42, (b) β = 0.422, (c) β = 0.45 and (d) β = 0.6. The solid lines
are the growth rate (ωi) and the dashed lines are the real part of the frequency (ωr). The
frequencies and wave numbers are normalized to ω0 and k0, respectively, [176].
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infinite or periodic plasma model) [105]. Complications arise from the fact that in the case
of real (finite) plasmas the waves involved in the interaction escape from the interaction
region. Therefore we get the boundary value problem with additional complexity. In
the following sections by using computer simulations we shall consider the propagation of
intense EM waves in a finite homogeneous plasma.

4.2 Computer simulations

Numerical modeling is crucial to our understanding of complex plasma phenomena. The
basic idea of computer simulations is to numerically solve an evolution of a plasma system
by using mathematical equations that basically describe the system on an accepted phys-
ical level. This approach to plasma complexity enables a numerical plasma experiment
with detailed diagnostics. Such numerical experiments are of a great value for understand-
ing results from the real ones. Simulations are also used for experiments that cannot be
performed in the laboratory either due to their size or due to the characteristic time scale
of certain physical processes. However, simulations are not a substitution for laboratory
and space experiments and observations. They are restricted by computer performances
and usually we can only sample limited set of initial conditions. Nevertheless, computer
simulation fills a large gap between theory and experiment and by combining these three
approaches it is possible to obtain detailed information on complex processes in plasmas.
Today’s supercomputers offer an excellent platform for various simulation methods, thus
developing rapidly the third methodology of scientific research.

During last decades various types of simulation approaches in plasmas have been
introduced. Among these are: a magneto-hydro-dynamics code, fluid code, Vlasov and
particle-in-cell codes, etc. In general, these simulation codes are based on kinetic or/and
fluid description of plasmas. Fluid simulations work by solving numerically the fluid
(hydrodynamic) equations whereas kinetic simulations are based on the plasma kinetic
equation (Vlasov equation) or on particle simulation. The particle simulation computes
the motion of charged particles, interacting with each other and with externally applied
fields. The hybrid code is a combination of these two approaches: e.g., particle model is
used for ions and dynamics of electrons is treated by using the fluid model.

In laser-fusion oriented research two simulation approaches evolved and became widely
used: Vlasov simulations and prevailing particle-in-cell simulations (PIC). Vlasov simu-
lation method provides a much lower noise level than PIC simulations. However, Vlasov
simulations are very expensive for investigations of high intensity wave-plasma interac-
tions in 2-3D, since the phase space required by this simulations becomes very large.

4.2.1 Particle-in-cell simulations

Electromagnetic relativistic particle-in-cell (PIC) simulations [150, 186], are a powerful
tool for studying strong laser-plasma interaction. The simulation method for EM rela-
tivistic PIC is based on Maxwell equations

∇ · E =
ρ

ε0

, (4.47)
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Figure 4.5: The basic cycle of a particle simulation code.

∇ · B = 0, (4.48)

∇×E = −∂B
∂t
, (4.49)

∇× B = μ0j +
1

c2
∂E

∂t
, (4.50)

closed by the relativistic equation of particle motion

d (γv)

dt
= F = q(E + v ×B), (4.51)

where ρ is the charge density, j is the current density and μ0 is the magnetic permeability.
In a PIC simulation, plasma is represented by a large number of quasi-particles each of
which models the action of a large number of physical particles. While coordinate and
particle velocities remain continuous quantities in this simulation scheme, the electric and
magnetic fields and the charge and current densities are discretized on a spatial grid. The
simulation cycle starts with some appropriate initial conditions for the particle positions
and velocities. This initial choice of conditions is related with the ”geometry” of the
physical problem which is in the focus. In Fig.4.5, a basic computational cycle is shown.
From particle positions and velocities at each time step, we compute the charge and
current densities (ρ, j) on the spatial grid. These computations require some weighting
methods at the grid points that are dependent on particle positions. Next, using Maxwell
equations we calculate electric and magnetic fields (E,B) and then use these fields, again
performing a weighting, to find the Lorentz force F and advance in time the particle
velocities v and positions x.

The choice of code characteristics, i.e. time step and length of grids, should provide
good accuracy and stability to make simulations correct over many computational cycles.
The time step should be small enough to resolve the highest frequency in the problem
and the choice of grid length should be fine enough to resolve the Debye length. Fur-
thermore, to avoid nonphysical results due to the finite difference approximation used to
solve equations (4.47)-(4.51), the time step Δt and the grid spacing Δx have to satisfy
the following inequality (Courant condition) [150, 186, 187],

Δx > cΔt. (4.52)

Thus, the time step and the grid spacing should be chosen in such a way that the particles
during one time step cannot cross a distance larger than the size of the cell.
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4.3 Weakly Relativistic Electromagnetic Solitons

Relativistic electromagnetic (EM) solitons in laser driven plasmas were analytically pre-
dicted and found by particle simulations [154, 188, 189, 190, 191, 192, 193]. Relativistic
solitons are EM structures self-trapped by locally modified plasma refractive index via
two effects: the relativistic electron mass increase and the electron density drop by the
ponderomotive action of intense laser light[154, 189]. A large effort was put into studies
of one-dimensional (1D) relativistic EM solitons in an ultraintense laser interaction with
underdense and overdense plasmas [194, 195, 197, 198, 199, 200, 201]. For laser pulses
longer than the electron plasma wave wavelength, spatially modulated depleted pulse,
due to stimulated Raman scattering, readily in nonlinear stage breaks-up into a slow
train of ultra-short 1D relativistic EM solitons [191, 194, 195]. Moreover, soliton acceler-
ation toward the plasma-vacuum interface can produce bursts of reflected low-frequency
EM radiation [230]. Recently, circularly polarized subcycle relativistic EM solitons were
found and studied in 2D and 3D by particle simulations [195, 196]; while the ion motion
influence on dynamics and the lifetime of 1D and 2D relativistic solitons was investigated
in [195, 197].

Evolution of a relativistic laser pulse in a long-scale moderately underdense plasma was
studied analytically and by computer simulation [194, 195, 197, 198]. While the circular
polarization case was investigated in much detail [193, 197, 198, 199, 200], here, we treat a
more complex linear polarization case. Linearly polarized laser light sets electrons into lon-
gitudinal motion by relativistic Lorentz force generating coupled longitudinal-transverse
wave modes. In this situation, by relativistic fluid and particle simulations for a long
laser pulse, we have recently analyzed nonlinear interplay between forward and backward
stimulated Raman scattering and relativistic modulational instability [194]. Parametric
down-cascade evolves into a weak turbulence, which saturates into a photon condensate
at the bottom of the light spectrum. This phenomenon, similar to Langmuir condensate,
corresponds to strong energy depletion and a laser beam break-up, as observed in many
simulations. In the final stage of saturation, behind the pulse front, the train of intense
ultra-short standing relativistic solitons is formed. It was estimated, for ultra-short laser
pulses [195], that 30 to 40% of the laser energy can be trapped inside these low-frequency
electromagnetic solitons creating a significant channel for laser beam energy conversion.
Below, the problem of existence, stability and dynamics of linearly polarized electromag-
netic solitons is studied by an one-dimensional analytical model for a weak relativistic
nonlinearity. A simple dynamical equation of the nonlinear Schrödinger (NLS) type, with
two extra nonlocal (derivative) nonlinear terms is derived. The conserved quantities, the
photon number and the Hamiltonian, are calculated and a soliton solution in an implicit
form is found analytically. Further, the soliton stability is examined and compared with
the circular polarization case. Analytical results are confirmed by numerical simulations
of the derived NLS model, as well as, of fully relativistic nonlinear equations. Finally, the
saturation amplitude and the frequency for large relativistic solitons observed in numerical
simulations are analytically estimated, [201].
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4.3.1 Dynamical Equations

The relativistic wave equation and the cold electron momentum equation, in terms of
vector and scalar potential (A and φ, respectively), in the Coulomb (radiation) gauge,
where ∇ · A = 0, are written as [202]

∇2
A − 1

c2
∂2

∂t2
A = −4π

c
J⊥, (4.53)

where J⊥ is the transverse component of the total electron current J = J⊥ + J
�
= env,

where n is the electron density and ions assumed to be fixed, and

∂p

∂t
+ (v∇)p = e∇φ+

e

c

∂

∂t
A − e

c
v × (∇ × A) , (4.54)

where p = γmv, is the electron momentum, v, is the electron velocity and γ = (1 + p2/m2c2)
1/2

is the relativistic Lorentz factor. The relativistic electron momentum equation can be
transformed by using the vector identity which after a straightforward algebra gives

∂

∂t

(
p − e

c
A

)
= e∇φ−mc2∇γ + v ×

[
∇ ×

(
p − e

c
A

)]
, (4.55)

that is the equation for the generalized momentum
(
p − e

c
A
)
. By taking the curl of the

above relation, one can readily conclude that if ∇ × (p − e
c
A
)

is equal to zero initially,
it will remain zero at later times. Therefore, an important relation, p

⊥
= e

c
A, is found,

which after a substitution in J⊥, simplifies the wave equation in terms of the vector
potential A, [89, 204].

Accordingly, in one dimensional case, relativistic wave equation, the continuity equa-
tion and the electron momentum equation, read [201],(

∂2

∂t2
− c2

∂2

∂x2

)
a = −ω

2
p

n0

n

γ
a, (4.56)

∂n

∂t
+

∂

∂x

(
np

mγ

)
= 0, (4.57)

∂p

∂t
= −eE|| −mc2

∂γ

∂x
, (4.58)

where a = eA/mc2 is the normalized vector potential in y direction, n is the electron
density, p is the electron momentum in x direction, γ = (1 + a2 + p2/m2c2)1/2, E|| is the
longitudinal electric field, n0 is the initial electron-ion density and ωp = (4πe2n0/m)1/2 is
the electron plasma frequency.

In a weakly relativistic limit for |a| << 1 and |δn| << 1 we expand the right hand side
of the (4.56) and introduce the normalized perturbed electron density δn = (n− n0)/n0

and dimensionless variables x→ (cω−1
p )x and t→ (ω−1

p )t to obtain [199],(
∂2

∂t2
− ∂2

∂x2

)
a = −

(
1 + δn+

a2

2

)
a. (4.59)
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Further, by combining the linearized equations of continuity (4.57) and the electron
momentum (4.58) we get for the perturbed electron density [199],

∂2δn

∂t2
+ δn =

1

2

∂2

∂x2
a2. (4.60)

In distinction to circular polarization [9,13], linearly polarized waves have odd har-
monics of the vector potential a and even harmonics of the electron density δn [154, 199].
Further, we introduce the slow time varying complex envelopes in a form

a =
1

2

[
Ae−it + A∗eit

]
; δn = N0 +

1

2

(
N2e

−i2t +N∗
2 e

i2t.
)

(4.61)

and find the envelopes N0 and N2 by substituting (4.61) into (4.60) and collecting the
zero and second harmonic terms (e−i2t)

N0 =
1

4
(|A|2)xx; N2 = −1

6
(A2)xx, (4.62)

where subscripts x designates derivations with respect to x-coordinate.
By substituting (4.61) and (4.62) into the wave equation (4.59) and collecting first

harmonic terms (e−it) we obtain the wave equation for the vector potential envelope A,

i
∂A

∂t
+

1

2
Axx +

3

16
|A|2A− 1

8
(|A|2)xxA+

1

48
(A2)xxA

∗ = 0. (4.63)

The eq. (4.63) has a form of the generalized nonlinear Schrödinger (NLS) equation
[205] with two extra nonlocal (derivative) nonlinear terms. We can derive the conserved
quantities [201, 206]: photon number P

P =

∫
|A|2dx, (4.64)

and Hamiltonian H

H =
1

2

∫ {
|Axx|2 − 3

16
|A|4 − 1

8
[(|A|2)x]

2 − 1

12
|A|2|Ax|2

}
dx. (4.65)

We further look for a stationary and localized solution of (4.63) in a form

A = α(x)eiλ2t, (4.66)

with the boundary conditions

α(±∞) = 0, α(x) <∞. (4.67)

Under the assumptions (4.66) and (4.67) the first integration of (4.63) gives

(αx)
2 = 2

α2λ2
(
1 − 3

32
α2

λ2

)
1 − α2

3

. (4.68)

Additional integration of (4.68) gives a localized soliton solution in an implicit form
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±λx =
1

2
√

2
ln

√
1 − 3

32
α2

λ2 +
√

1 − α2

3∣∣∣∣√1 − 3
32

α2

λ2 −
√

1 − α2

3

∣∣∣∣ −
4

3
λ ln

1
3

√
32λ2 − 3α2 +

√
1 − α2

3√∣∣1 − 32
9
λ2
∣∣ , (4.69)

with a soliton amplitude a0 = 4
√

2√
3
λ.

This is linearly polarized soliton with a vector potential a oscillating with the frequency
ω = 1 − λ2, slightly below the plasma frequency.

For the soliton strength λ above the critical value λ ≥ λc = 3
4
√

2
(a0 ≥

√
3) the solution

(4.66) has a form of a ”cusp” soliton [16]; the centrally highly pointed waveform. In the
small amplitude limit λ << λc one neglects the non-local (ponderomotive) terms and the
solution (4.66) becomes the well-known secant hyperbolic (NLS) soliton.

4.3.2 Relativistic Soliton Stability

To check the stability of the soliton (4.66) we use the Vakhitov-Kolokolov stability criterion
[205, 207]

dP0

dλ2
> 0, (4.70)

where P0 is the soliton photon number defined by (4.64). The function P0(λ) for the
soliton solution (4.69) is calculated analytically as

P0(λ) =
16
√

2

3
λ + 2

(
1 − 32

9
λ2

)
ln

1 + 4
√

2
3
λ∣∣∣1 − 4

√
2

3
λ
∣∣∣ . (4.71)

The curve P0(λ), shown in Figure 1, represents the stationary solutions of (4.63) which
correspond to the minimum of the Hamiltonian H for the fixed photon number P .

According to the condition (4.70) the soliton (4.69) turns out to be stable in the region
λ < λs ≈ 0.44 (a0 < as ≈ 1.44) indicating that cusp solitons are also unstable (λs < λc).
More generally, we can now conclude that small amplitude linearly polarized solitons
(a0 < 1) within the weakly relativistic model (4.59)-(4.60) are stable.

On the other hand, for circularly polarized EM waves, fully nonlinear relativistic
soliton solution of (4.56) and (4.57) has been analytically found [9,13], as

a(x, t) =
2λ cosh(λx)

cosh2(λx) − λ2
exp(i

√
1 − λ2t), (4.72)

with a(x, t) = ay + iaz , where indices denote y and z components of the vector potential.
The soliton amplitude is a0 = 2λ

1−λ2 and frequency ω =
√

1 − λ2. However, in the
circular polarization case ω is the angular velocity of the rotation of the polarization plane
(with constant amplitude) while for the linear polarization it stands for the frequency of
the oscillating vector potential.

A condition for the electron density greater than zero imposes a constraint on the

maximum soliton amplitude, as a0 <
√

3 and frequency 1 > ω >
√

2
3

(0 < λ <
√

3/3).
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Figure 4.6: Photon number P0(λ) variation for solitons with linear and circular polariza-
tion with an illustration of the Vakhitov-Kolokolov stability criteria, [201].

To further check the stability of the circularly polarized solitons (4.72) we can use the
similar procedure as for the case of linearly polarized solitons. Therefore, the correspond-
ing soliton photon number P0(λ) reads

P0(λ) =
4 arctan( λ√

1−λ2
)

(1 − λ2)3/2
+

4λ

1 − λ2
, (4.73)

while according to the Vakhitov-Kolokolov stability criterion (4.71) we conclude that the
circularly polarized solitons remain stable ( dP0

dλ2 > 0) inside the whole region 0 < a0 <
√

3
of existence (Fig.4.6 ). However, this approach is valid only for the limited class of
circularly polarized perturbations and does not give an answer for arbitrary perturbations.
Our first analytical studies on the stability of the circularly polarized solitons under
arbitrary perturbations reveal that the circularly polarized perturbations are the special
case given as a trivial solution of the corresponding eigen value problem.

The shape of the curve P0(λ) (Fig.4.6) for the linearly polarized solitons predicts the
existence of the soliton instability region λ > λs ≈ 0.44. However, the Vakhitov-Kolokolov
criterion just solves a linear stability problem for solitons indicating a presence of expo-
nentially growing or decaying modes; therefore, giving no prediction about the subsequent
nonlinear evolution of unstable solitons or about stability of the localized structures with
arbitrary profiles. According to the nonlinear analysis [208], for the generalized NLS
equation with a similar shape of the corresponding curve P0(λ), beside the stationary so-
lution there exist two other regimes of the soliton dynamics: (a) soliton collapse and (b)
long-lived relaxation oscillations around the stable soliton amplitude. In our case, due to
the local cubic nonlinear (NLS) term in (4.63), one can plausibly expect such dynamical
regimes. However, the presence of two extra nonlocal nonlinear terms in (4.63) indicates
the possible existence of some other dynamical states.

4.3.3 Numerical Results

In order to check analytical results and prediction of the regimes of the soliton dynamics
we performe direct numerical simulation of the model equation (4.63) using a numerical
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algorithm based on the split-step Fourier method [209], originally developed for the NLS
equation. The main feature of the split-step Fourier method is numerical calculation of
the spatial derivatives in the Fourier space in each integration time step. In our case, the
spatial derivative of the additional nonlinear term (nonlocal term) is also calculated in
the Fourier space.

Numerical results prove that the initially launched solitons (4.69) with the soliton
parameters inside the stability region λ < λs ≈ 0.44 remains stable. Solitons with pa-
rameters outside the stability region evolve toward the corresponding stable soliton with
long-lived relaxation oscillations. The evolution of the initially launched soliton with am-
plitude a0 ≈ 1.6 (λ ≈ 0.2) outside the stability region is shown on Fig. 4.7a. A similar be-
havior exhibit initially perturbed solitons with photon number P < Pmax = P0(λs) ≈ 4.79
inside the stability region λ < λs or different localized structures with small deviation
from the stable equilibrium state. As an example of such dynamics, the time evolution
of two Gaussian structures with different amplitudes but with the same photon num-
ber P = 2.875 are shown on Fig. 4.7b and Fig. 4.7c. The evolution in both cases is
long-lived relaxation oscillations around the stable soliton amplitude (4.69) with λ ≈ 0.2
(a0 ≈ 0.653) which corresponds to the exact value of the photon number P = 2.875..
These dynamical regimes exist also in NLS equation and they are analytically predicted
and numerically confirmed in [209]. However, when the initial perturbation increases,
the period grows with oscillations becoming strongly nonlinear to exhibit new types of
long-lived localized dynamical structures (Fig. 4.7d). Further deviation from the stable
equilibrium state can lead to a rapid aperiodic growth of the amplitude and the soliton
collapse (Fig.4.7e).

The understanding of different dynamical regimes is important for an insight into the
low-frequency process of formation of stable relativistic solitons behind the laser pulse
front inside the photon condensate [194]. More detailed determination of the regions in
the parameter plane (P, λ) or separatrix curves in the phase space for different dynamical
regimes would require additional analytical and numerical study which is out of the scope
of this paper.

4.3.4 Ultra-Relativistic Solitons

Above considerations related to linearly polarized solitons were restricted to a weakly
relativistic regime, therefore being not applicable for describing large amplitude solitons
observed numerically in [8]. For that purpose we have to use a different approach. A di-
rect numerical simulation of the fully nonlinear relativistic one-dimensional fluid-Maxwell
system (4.56)-(4.58) was performed to study propagation of a long, strong relativistic laser
pulse in a uniform, underdense plasma. Our algorithm based on the second order accu-
racy Lax-Wendorff method and leap-frog central scheme [194], was exploited. Linearly
polarized pico-second pulse was launched into a plasma (10 evolution of the mean pulse
energy and other plasma parameters was followed. Numerical results given in Fig.4.9
show the spatiotemporal evolution of the pulse energy, revealing the generation of a train
of intense ultra-short relativistic (almost) standing EM solitons inside the photon conden-
sate (ω < ωp). Large relativistic solitons at a late time instant, after propagation of the
pulse, are shown in Fig.4.8. In Fig.4.10 two characteristic neighboring solitary structures
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Figure 4.7: Spatiotemporal evolution of different initial structures a) Soliton in the insta-
bility region with amplitude A0 = 1.6; b) Gaussian structure with amplitude A0 = 0.536
and photon number P = 2.875; c) Gaussian structure with amplitude A0 = 0.536 and the
same photon number as in (b); d) An example of oscillating dynamical structures and e)
An example of collapse dynamics, [201].
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Figure 4.8: Ultra-relativistic standing solitons formed behind the short laser pulse (T =
1.5ps; a0 = 0.6, [201]).

Figure 4.9: Spatiotemporal EM energy density inside a photon condensate; from 1D
fluid-Maxwell simulation of laser pulse(a0 = 0.5) propagation (from left to right) in a
underdense plasma (n0 = 0.1ncr) show slowing intense solitary structures, [201].

As(x) are presented, along with electron density δns(x) and the associated longitudinal
momentum px(x). Simulations clearly reveal that apart from stable small amplitude soli-
tons, the family of large relativistic solitons, saturating at A0 ≈ 2.5 exists as well. The
saturated value of the soliton amplitude depends on the laser intensity a0 as well as on
other parameters, e.g. the laser pulse duration. However, our study has shown that the
soliton amplitude typically saturates at A0 ≈ 2.9 for intensities a0 ≈ 0.7 − 0.8.

As earlier analytical model fails for large amplitudes we have used a different approach
to estimate saturating values of the vector potential and its corresponding frequency.
Namely, our numerical data strongly support the following substitution

a(x, t) = A(x) cos(ωt); p(x, t) = P (x) sin(2ωt);

δn(x, t) = N0(x) +N2(x) cos(2ωt) (4.74)
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Neglecting p2 in γ, but retaining p in the motion equation, after a simple trigonometric
transformation we get

γ =
√

1 + a2 =

√(
1 +

A2

2

)
+
A2

2
cos(2ωt). (4.75)

The first term under the square root is larger than the absolute value of the second
term, allowing the approximate expansion

γ ≈ γA +
A2

4γA
cos(2ωt), (4.76)

where γA =
√

1 +A2/2. Furthermore, under approximations (4.74-4.76) the following set
of equations can be obtained

Axx =

[
5γ2

A − 1

4γA
− ω2

2
(3γ2

A − 1) +
γ2

A + 2

4γ4
A

A2
x + ω

3γ2
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2γA
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]
A
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+
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N1 =
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2γA

(
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4γ2
A

)
+

A2
x

2γ3
A

(
1 − 3A2

4γ2
A

)
+ 2ωP (4.77)

P =
ω(1 + γ2

A)AAx

2γ2
A

(
4ω2γA −N0 + A2

16γ2

A

N1

)
Solving the above system under assumption that maximum soliton amplitudes saturate

at δn = −1 (n = 0) gives the result A0 = 2.67 for ω0 = 0.72 close to the values obtained
by direct numerical simulation of the fully relativistic system (A0 ≈ 2.9 and ω0 ≈ 0.73).
The difference in these results can come from, e.g. neglecting higher harmonics in A and
consequently in γ. Nevertheless, we have demonstrated the existence of large linearly
polarized electromagnetic solitons with an estimate for the soliton parameters A0 and ω0

.

In conclusion, we have investigated existence and stability of 1D relativistic electro-
magnetic solitons in a cold underdense plasma, and have analytically found solutions and
regions of stability of linearly polarized relativistic EM solitons in agreement with the
relativistic fluid-Maxwell and particle simulations [194]. Analytical estimates gave the
maximum amplitude and the frequency of large relativistic solitons close to simulation
data. Difference in linear and circular polarization was singled out, e.g., in a role of the
2nd harmonic term in the relativistic γ-factor present for the linear polarization. The
question of multi-dimensional effects, such as e.g. transverse stability of 1D solitons for
symmetry breaking perturbation [59], deserves further attention.
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Figure 4.10: Two neighboring solitons with the corresponding vector potential As(x),
density perturbation δns(x) and linear momentum Px(x).

4.4 Stimulated Raman Scattering Cascade into Pho-

ton Condensation

The interaction of a relativistic laser pulse with an underdense plasma is investigated by
fluid-Maxwell and particle-in-cell simulations. A nonlinear interplay between backward
and forward stimulated Raman scattering instabilities produces a strong spatial modu-
lation of the light pulse and the down cascade in its frequency spectrum. The Raman
cascade saturates by a unique photon condensation at the bottom of the light spectrum
near the electron plasma frequency, related to strong depletion and possible break-up of
the laser beam. In the final stage of the cascade-into-condensate mechanism, the depleted
downshifted laser pulse gets gradually transformed into a train of ultra-short relativistic
light solitons, [194].

4.4.1 Introduction

Linearly polarized relativistic EM radiation sets plasma electrons into the longitudinal mo-
tion by the strong (v × B) forces changing the nature of electromagnetic wave (EMW)
to a coupled longitudinal-transverse mode. So are one dimensional (1D) electronic para-
metric instabilities : stimulated Raman forward- and backward-scattering (F-SRS and
B-SRS, respectively) and relativistic modulational instability (RMI) [105, 211, 174, 212].
They do not appear isolated, but are often nonlinearly interlinked with other instabilities
[180, 185]. Here, we shall mostly discuss F-SRS and B-SRS induced by picosecond, mod-
erate to high intensity laser pulses in long length-scale plasmas. Particular attention will
be paid to the effects of their mutual interplay and couplings to RMI. This results in rich
1D dynamics, reflecting in a spectral broadening and cascading process which transfers
the incident laser energy to higher order scattering modes. Along the propagation beam,
there is typically a Raman cascade in the light spectrum from fundamental (laser) fre-
quency toward lower frequencies. The first Stokes line is significant, however, further with
laser propagation it becomes a new pump, which decays via a secondary Raman scatter-
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ing. This cascade process is halted around the plasma frequency, the cutoff frequency
for light propagation. We find that continuing instability growth through stimulated Ra-
man cascade downshifts a power maximum from the fundamental to the bottom of the
light spectra. This unique stimulated photon condensation following a Raman cascade,
appears as a striking consequence of the relativistic laser instabilities. This is similar to
a situation with the Langmuir condensate in a weak turbulence theory [2, 11] where a
condensate is due to a Langmuir decay spectral cascading down to small wave numbers.
As is well known, among these electronic instabilities, the SRS type is particularly signifi-
cant concern, because the excited electron plasma wave (EPW) has a high phase velocity
of order the velocity of light (F-SRS), it can produce very energetic electrons after the
damping of EPW, such electrons can preheat the fuel in laser fusion applications [97].

The SRS instability can be most simply characterized as the resonant decay of an
incident laser EM wave (ω0, k0) into a scattered Stokes EM wave (ωs, ks) plus an EPW
(ωepw, kepw) (Langmuir wave) with the following matching conditions for frequencies and
wave numbers,

ω0 = ωs + ωepw, k0 = ±ks + kepw

Here, +ks and −ks denote stimulated forward and backward Raman scattering (F-SRS/B-
SRS), respectively.

In addition to the above wave triplet described by the above equation for SRS, usually,
another weaker resonant three-wave coupling process with the first anti-Stokes scattered
EM wave, can be observed in experiment and simulation.

ωs = ω0 + ωepw, ±ks = k0 + kepw

By this three-wave coupling, one can obtain an upshifted frequency by the electron plasma
wave frequency ωepw.

An EM wave which propagates in a plasma has dispersion relation ω2
0 = ω2

pe + k2
0c

2,
EPW has dispersion relation ω2

epw = ω2
pe + 3k2

epwv
2
the, here, c, ωpe and vthe are speed of

light, electron plasma frequency and electron thermal velocity, respectively. The minimum
frequency for EM wave propagating inside plasma is ωpe, so it is clear that the SRS
instability requires that

ω0 ≥ 2ωpe =⇒ n ≤ γncr/4 (4.78)

where n and ncr are the plasma density and the critical density for EM wave propagating
in plasma, respectively, γ is relativistic Lorentz factor.

When these scattered EM waves, including Stokes and anti-Stokes modes, propagating
inside plasma backward or forward, if their intensities exceed the corresponding thresh-
olds of three-wave coupling processes, like the incident laser EM wave, they become new
pumps, new instabilities then can be excited. Further, the new excited scattered EM
waves to excite new instabilities if the corresponding thresholds are still exceeded suc-
cessively. A stimulated Raman cascade process with the following frequency and wave
number matching conditions,

ωs,j = ω0 ± jωepw ; ±ks,j = k0 ± jkepw

117

117



then therefore takes place in intense laser-plasma interaction. The scattered EM waves
include, not only the first-, second-, · · · , high-order Stokes modes (j = −1,−2, · · · ), but
also the first-, second-, · · · , high-order anti-Stokes modes (j = 1, 2, · · · ), respectively.

When a relativistic laser propagates in underdense plasma, B-SRS and F-SRS can
develop, they do not appear isolated but are often interconnected [194]. A nonlinear
interplay between B-SRS and F-SRS produces a strong spatial modulation of the laser
pulse and stimulated Raman cascade in its frequency spectra of scattered EM waves. The
continuing instability growth through stimulated Raman cascade downshifts the power
maximum from the fundamental to the bottom of the EM wave spectra. It gets saturated
by the photon condensation mechanism, related to strong depletion and possible break-
up of the laser beam. In the final stage of the cascade-into-condensation mechanism, the
depleted downshifted laser pulse gradually transforms into a train of ultra-short relativistic
EM solitons [194, 213].

When making a comparison between homogeneous temporal instability growth rates
of B-SRS and F-SRS in a weakly relativistic case, we conclude that their ratio is roughly
(ne/nc)

3/4, where nc is the critical electron density, which means that the Raman back-
scatter growth time is 5 − 30 times shorter than its forward-scatter counterpart when
the plasma density is varied from 0.1nc to 0.01nc . However, it should be noted that
B-SRS becomes saturated efficiently at a very early stage of evolution, while F-SRS and
RMI can get close and even merge to a unique F-SRS/RMI instability, which competes
with the B-SRS instability in the process of anomalous absorption of laser energy. B-
SRS saturation can occur due to pump depletion (for parameters applied here) or due to
particle trapping, which could be dominant in low density plasmas.

All of above processes were intensively studied by theory and simulations [182, 214,
215, 199, 183]. However, due to analytical difficulties related to nonlinear electron dynam-
ics and anharmonicity in the plasma response for linearly polarized light as compared to
circularly polarized laser light, the former has received less theoretical consideration. So,
an attempt to solve a fully nonlinear system of cold electron-fluid and Maxwell equations
for 1D propagation of high-intensity, linearly polarized laser light in a uniform underdense
plasma is presented. Further, detailed analysis is performed by 1D (2D) PIC simulations
[194, 216]. The PIC method can follow the exact evolution of the laser light and plasma
waves and particles on short time scales, much less than the laser period.

4.4.2 Relativistic Fluid-Maxwell Simulation

A long laser pulse enters the plasma and propagates in the x−direction, inducing both
transverse and longitudinal electron motion. We consider only a purely one-dimensional
case, in which the EM field is described by longitudinal (Ex) and transverse (Ey) electric
field components and magnetic field Bz . For further treatment it is convenient to normal-
ize all the physical quantities to dimensionless values by introducing light-speed units. We
express length x in cω−1

0 and time t in ω−1
0 units, and normalize the electron fluid velocity

v, momentum p, fields E and B, vector potential A, and density ne to c,mc, mcω0e
−1,

mω0e
−1, mce−1, and n0, respectively. Here c,m, e, ω0 , and n0 designate, as usual, the

vacuum speed of light, electron mass and (absolute) electron charge, laser light frequency,
and initial uniform electron density, respectively. In this way, Maxwell equations in 1D
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reduce to [194],
∂Ex

∂t
=
nepx

γ
, (4.79)

∂Ey

∂t
+
∂Bz

∂x
=
neA

γ
, (4.80)

∂Bz

∂t
+
∂Ey

∂x
= 0, (4.81)

∂A

∂t
= −Ey, (4.82)

in dimensionless units, while the cold electron fluid quantities are described by the conti-
nuity and electron motion equations

∂ne

∂t
= − ∂

∂x

(
nepx

γ

)
, (4.83)

∂px

∂t
= −Ex − ∂γ

∂x
, (4.84)

where γ = (1 + p2
x + A2)

1/2
, the transverse momentum py is replaced by the vector po-

tential A, under Coulomb gauge (Sect. 12.2.1); with immobile ions as a neutralizing
background. Unlike the weakly relativistic case amplitude case (weak pump case and lin-
ear stability analysis) in the strong-pump limit considered here, the only exact analytical
solution of the system of equations (4.79)-(4.84) can be found for idealized circularly po-
larized EM pump. Direct numerical solving of the above system has not been performed
often in the past [217]. So, effort has been invested into a construction of a stable numer-
ical scheme for solving the 1D system (4.79)-(4.84) in a fully relativistic form, without
any approximations. The fluid equations were treated by the second-order accuracy Lax–
Wendroff method. As for the EM fields, a leap-frog-type central scheme was applied, with
simultaneous calculation of all values, assisted by averaging exact electric and magnetic
fields to approximate mesh node values at every space and time step.

In order to study the properties of backward and forward propagating EM waves;
reflectivity R and transmittivity T are introduced at spatial point

R (x, t) =
(
F−) /E2

0 , T (x, t) =
(
F+
)
/E2

0 , (4.85)

where F+ and F− are forward and backward propagating EM fields

F± = Ey ±Bz. (4.86)

The aim of the simulation is to study penetration of a long (> psec) linearly polarized
relativistic laser pulse into a long (L > 1mm) moderately dense (ne < nc/4) plasma, as
relevant for fast ignition in laser fusion. A relative laser intensity a0 was varied in the
interval 0.1 − 1, where

a0 = eE0/meω0c � 8.85 × 10−10I1/2λ0, (4.87)
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Figure 4.11: Frequency spectra of forward propagating laser pulse at point in space, (a)
x = 60λ0 and (b) x = 200λ0, respectively inside plasma for a0 = 0.1 and ne = 0.1nc,
[194].

laser intensity I is given in W/cm2, and λ0 laser wavelength in microns (μm); therefore,
roughly, the intensity range 1016 − 1018W/cm2 , was covered for laser light wavelength of
1μm.

For lower pump intensity (a0 = 0.1) and the plasma density ne < 0.1 nc, forward-
propagating stimulated Raman scattering in a linear regime occurs, with Stokes compo-
nent in the frequency spectrum far dominant over anti-Stokes one Fig.4.11. Along the
propagating beam, there is a cascade in the light spectrum from fundamental (laser) ω0−
frequency toward lower frequencies. The first Stokes line is significant, however, along
the propagation path, the Stokes mode further decays via a secondary Raman scattering.
This cascade process is eventually halted near the electron plasma frequency—the cutoff
for the light propagation.

Further, the laser intensity a0 was raised to higher values of 0.2 and 0.3. Fig.4.12,
demonstrates the spatial profile of the laser beam energy (averaged over the laser period)
at different moments of time. Although, still a moderately relativistic case, typically
strong spatial modulation, pulse depletion and break up takes place. The characteristic
nonlinear modulation spatial scale is 2πc/ωp or here, about (∼ 3λ0) corresponding to F-
SRS/RMI processes [194]. Similar relativistic modulation effects are regularly observed
in particle simulations with ultra-short pulse high intensity laser pulses [187, 214, 199,
183, 218, 219]. Having a significant growth rate, the predominantly convective B-SRS
instability (in the pulse frame) develops at the pulse front and saturate over short distance
in a back of the pulse. Strong backscattering depletes the body of a pulse by creating like
a notch at some point in the pulse [218].

In addition, two-dimensional PIC simulations have been performed to find qualitative
agreement with the above behavior [194]. The simulation box of (200λ0 × 50λ0) with
uniform cold plasma and density ne = 0.1nc is put in vacuum. In Fig.4.13 the 2D laser
pulse EM energy profile is plotted at three moments in time. Again, laser pulse break-up
is observed at roughly the same spot as seen in earlier fluid simulations. Further, Fig.4.14
gives a view of transmitted light spectrum, together with a spectral intensity at the
central axis (top). Raman cascade containing first anti-Stokes and first and second Stokes
sidebands, is clearly revealed. Continuing the study by extensive 1D PIC simulations,
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Figure 4.12: Spatial distribution of laser EM energy density for (a) a0 = 0.2, ne = 0.1nc

at t = 160T0 and (b) a0 = 0.3, ne = 0.1nc at t = 100T0, from fluid simulation, [194].

remarkable spectral properties are observed, pointing to their general complex character
(Fig.4.15). Namely, B-SRS spectra reveal the SRS cascade toward lower frequency mode
numbers, gradually down-shifting the maximum to the bottom of the spectrum. This
unique stimulated photon condensation following the Raman cascade is a striking example
of complexity in relativistic laser-plasma interactions, as was qualitatively predicted in
Chapter 11 on 3WI dynamics [124]. Indeed, above scenario is well consistent with 3WI
model of B-SRS with the relativistic frequency shift, which by increasing laser intensity
can trigger nonlinear bifurcations on the route to spatio-temporal turbulence, as was
first proposed by Škorić et al, [98, 102, 124, 151] (vide supra). In order to give a wider
parameter survey, F-SRS and B-SRS spectra are shown in Fig.4.16, revealing the Raman

cascade into photon condensation with a spectral energy accumulation at the cut-off
frequency.

Next, the relativistic 1D EM particle simulations of the SRS, Raman cascade, transi-
tion from Raman cascade into photon condensation and the generation of large amplitude
relativistic EM soliton, by linearly-polarized intense laser interacting with a underdense
uniform plasmas, are presented in more detail [216].

4.4.3 Particle Simulations

One-dimension and three-velocity (all quantities depend on x-coordinate and the particle
momenta have three components) fully relativistic EM particle-in-cell (1D3V-PIC) code
is used. The total length of simulation system is 3L (c/ω0), where c and ω0 are the speed
of light and the laser EM frequency in vacuum, respectively. The L long plasma begins
at x=0 and ends at L, in the front and rear side of the plasma layer, there are two L
long vacuum regions. Ions are initially placed as a neutralizing background and are kept
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Figure 4.13: 2D distribution of EM energy density at three moments in time during pulse
propagation (a0 = 0.2, ne = 0.1nc) from 2D PIC simulation. Laser pulse break up is
clearly observed, [194].

Figure 4.14: Transmitted light spectrum variation in transverse direction (bottom) and
spectral distribution on the axis (top) from 2D PIC simulation of Fig.4.13.

Figure 4.15: B-SRS spectra from 1D PIC simulation for parameters of Fig.4.14; (a) a0 =
0.2 and (b) a0 = 0.3 (ne = 0.1nc), [194].
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Figure 4.16: Forward-SRS spectra from 1D PIC for (a) a0 = 0.2, ne = 0.05nc, (b)
a0 = 0.5, ne = 0.07nc, (c) a0 = 0.3, ne = 0.13nc and backward-SRS spectrum, (d)
a0 = 0.4, ne = 0.07nc, [194].

immobile. The number of cells is 10 per 1 c/ω0 and 80 particles are put in each cell.
The linearly-polarized laser with the electric field E0 along the y-direction is launched
at the position where 200c/ω0 long distance before plasma. Its normalized amplitude is
a0 = eE0/meω0c, where e and me are the electron mass and charge, respectively. The
electrons which enter vacuum region build a potential barrier that prevents electrons of
leaving the plasma. For these electrons as well as for outgoing EM waves, two 100c/ω0

long additional numerical damping regions are used [216].
It should be noted that, in the following parts of this paper, by taking the EM fields

at the front and rear positions both are 100c/ω0 long distance away from plasma, the
spectra for both frequency and wavenumber, the reflectivity and the transmissivity, and
the temporal growth of all EM modes are calculated, respectively. The time, electric
field and magnetic field are normalized to the laser period 2π/ω0, mω0c/e and mω0/e,
respectively; the time is taken zero, ω0t = 0, when the laser arrives at the vacuum-plasma
boundary.

Stimulated Raman Cascade into Photon Condensation

Our first simulation are performed by taking plasma density n = 0.03ncr, plasma length
L = 1000c/ω0, temperature Te = 1.0keV and the normalized laser amplitude a = 0.3,
respectively.

The long plasma is initially uniform in density and the intense laser pulse is radiated
continuously in our simulations. There is enough time for the growth of instabilities and
rich interplay between many relativistic electronic parametric instabilities, such as F-SRS,
B-SRS and RMI [194, 216]. When an intense laser propagates in underdense plasma, SRS
can be first excited by the intense laser EM wave coupling into a scattered EM wave
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Figure 4.17: The temporal growth for reflected EM wave (left plot) and transmitted
EM wave (right plot) both measured in vacuum in the case of plasma n = 0.03ncr,
L = 1000c/ω0, Te = 1.0keV and laser amplitude a = 0.3, respectively. From Fig. 4.18 to
Fig. 4.22 the same simulation parameters are used, [216].

plus an EPW. In such a low plasma density, as shown in Fig.4.17, in the early linear
growth stage, B-SRS has lower growth rate and longer growth time than that of the F-
SRS, it gets saturated efficiently at a very early stage of evolution due to plasma heating
and trapping. With time goes on, F-SRS and RMI can get close and merge to unique
F-SRS/RMI instability, after that, which can compete with the B-SRS instability.

The frequency spectra and wave numbers for reflected EM, transmitted EM and ES
waves are plotted in Fig.4.18, respectively. One can see that, during the SRS process,
the excited dominant ES wave is EPW with frequency ωpe ≈ 0.17ω0; the corresponding
scattered Stokes EM wave has its frequency ωs ≈ 0.83ω0. The wave numbers for both
backward and forward scattered EM waves are ks ≈ 0.83k0, the EPW have two dominant
peaks, the first peak with kepw ≈ 1.83k0 for B-SRS and the second peak with kepw ≈ 0.17k0

for F-SRS, respectively. Therefore, for both B-SRS and F-SRS, they can well-explained
by three-wave resonant coupling decay with the corresponding matching conditions for
frequency ω0 = ωs + ωepw and for wave number k0 = ks + kepw are well-satisfied.

It should be noted that, in our low plasma density case, the wavenumbers measured
in vacuum nearly equal to that which measured inside plasma.

Fig.4.19 (top) shows the snapshots for the energy density of EM field, it demonstrates
the spatial distribution of transverse EM energy density, in its early stage, B-SRS radiates
its EM energy through soliton-like structures, as shown in Fig.4.19, which corresponds to
the peaks in the reflectivity plot. When the unique F-SRS/RMI instability dominate and
can compete with the B-SRS instability, as a result, the strong spatial self-modulation of
the order of 2πc/ωpe ≈ 5.8λ0 which comes from F-SRS/RMI instability and the depletion
of the laser pulse are taken place and observed from Fig.4.19 (bottom).

In a linear regime, B-SRS and F-SRS Stokes sidebands in the spectra are far dominant
over the anti-Stokes modes. Following that, there is a clear stimulated forward Raman
cascade process, as nicely shown in Fig.4.21. The scattered Stokes EM waves include the
first- to fifth-Stokes modes. In addition, the first- to fourth- anti-Stokes modes can also
be observed. As expected, at early times, laser driven cascade shows descending spectral
intensity toward higher harmonics. The stimulated forward Raman cascade is eventually
halted at the cut-off, close to the background electron plasma frequency 0.15ω0. The spec-
tral gap between the laser fundamental and the lowest Stokes mode is apparent (Fig.4.21
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Figure 4.18: The frequency spectra for the reflected and transmitted EM waves both
measured in vacuum and for ES wave measured inside plasma. The wavenumbers for
electric field Ey and for ES field Ex both measured inside plasma, [216].
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Figure 4.20: The temporal reflectivity of EM wave measured in vacuum, [216].
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Figure 4.21: The frequency and wavenumber spectra of transmitted EM wave measured
in vacuum (top); the frequency spectra of reflected EM wave(bottom), [216].
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Figure 4.22: The temporal growth of transmitted EM Stokes (S) and anti-Stokes (aS)
modes, [216].

and below). Continuous laser energy transfer by Raman cascade to low-frequency self-
trapped EM mode further enhances the unique photon condensate.

From the frequency and wavenumber spectra of backscattered EM wave, stimulated
backward Raman cascade still can be observed, which include both Stokes and anti-Stokes
EM modes, however, it does not reveal a clear Raman cascade process like shown in stim-
ulated forward Raman cascade process due to complex backscattered EM wave. Another
interesting feature is that, there is the broadening of the backscattered EM spectra, from
laser frequency to the perturbed electron plasma frequency. In the meantime, the reflec-
tivity exhibits a spiky behavior, as shown in Fig.4.20, which is a result of condensation
and modulational instability generating spiky turbulence [194].

To illustrate the onset and growth of the stimulate forward Raman cascade, the plots
for the temporal evolution of dominant Stokes and anti-Stokes EM modes measured in
vacuum, are given in Fig.4.22. The fundamental laser EM mode has a clear depletion
of the EM energy which corresponds to the depression in the temporal evolution plot of
laser EM mode. Both for Stokes and anti-Stokes EM modes, high-order mode with low
growth rate grows later in time than of the low-order mode. Another fact is that, there
is clear second growing process with the decrease of EM mode, this perhaps comes from
the transition from high-order mode to low-order one. In the later time, the continuing
instability growth through stimulated Raman cascade downshifts a power maximum from
the fundamental to the bottom of the EM wave spectra. They clearly reveal a tendency
of a transition from the Raman cascade regime to regimes of energy accumulation nearly
at the perturbed electron plasma frequency which is the cutoff frequency for EM wave
propagating in plasma, the so-called photon condensation.
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Figure 4.23: The frequency spectra of transmitted EM wave, for n = 0.03ncr, L =
1000c/ω0, Te = 1.0keV ; for laser amplitude a = 0.2 (left) and a = 0.4 (right), [216].

Effect of Laser Intensity on SRS Cascade into Photon Condensation

What role does the laser intensity play in SRS evolution and stimulated Raman cascade
into photon condensation? To understand this question, several simulations have been
performed only by changing laser amplitude. As shown in Fig.4.23, the frequency spectra
of transmitted EM wave for laser amplitude a = 0.2 and a = 0.4, respectively, are
presented here.

It is clear that the cascade-to-condensation transition becomes more pronounced with
increasing laser intensity [194]. In the lower laser amplitude case, few Stokes and anti-
Stokes EM modes are excited, further, with decreasing laser amplitude, the stimulated
Raman cascade into photon condensation and even SRS do not take place. In the higher
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Figure 4.24: The frequency spectra of transmitted EM wave, for n = 0.03ncr, L =
1000c/ω0, Te = 1.0keV and a = 0.1, [216].
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Figure 4.25: The frequency spectra of transmitted EM wave for different plasma density
and for fixed L = 1000c/ω0 and temperature Te = 1.0keV . For (a) n = 0.01ncr and
a = 0.3, (b) n = 0.01ncr and a = 0.6, (c) n = 0.05ncr and a = 0.3, [216].

intensity case, more Stokes and anti-Stokes modes are excited with short growing and
persistent time than that in the lower laser amplitude case; however, the bandwidth of
the modes become larger than that in the lower amplitude case, further with increasing
laser amplitude, the modes will merge each other, which quickly suppresses the growth of
the above processes.

For much lower laser intensity a = 0.1, as shown in the Fig.4.24, there is no much
Stokes and anti-Stokes EM modes to be excited. In addition to natural laser EM mode,
only three other modes, i.e., the first Stokes EM mode, first anti-Stokes EM mode and
the mode at electron plasma frequency ωepw, are excited.

In a low density plasma, in the regions of strong photon-condensation, first, large por-
tion of electrons are pushed away due to the large ponderomotive force of EM field, the
resulted electron density redistribution results in nonlinearity; second, dispersion effect
comes into play an important role due to the electron mass increase relativistically by
their responding to the intense EM field [198]. Therefore, in addition to various instabil-
ities, these effects can lead to many well-known nonlinear phenomena, for example, the
generation of relativistic EM soliton [196, 220].

As shown in Fig.4.26, the soliton has regular EM and ES structure in space, i.e., its ES
field Ex has one-cycle structure, the corresponding transverse electric field Ey is the half-
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Figure 4.26: The snapshots for ES field profile (averaged over EPW wavelength) and
EM field structures (averaged over laser period) in the case of plasma n = 0.03ncr, L =
1000c/ω0, Te = 1.0keV and laser amplitude a = 0.5, respectively, [216].

cycle and the magnetic field Bz is the one-cycle structure, respectively. And the spatial
EM field structure is oscillatory in time, but the ES field structure is not. The explanation
comes directly from Maxwell’s equations. The Faraday law gives Bz ∼ ∂Ey/∂x; indeed,
the x-derivative of the Gaussian soliton profile Ey gives Bz in Fig.4.26. Similarly, from the
Poisson equation, integration over x of the Gaussian density cavity leads to the ES field
Ex in Fig.4.26. Moreover, PIC data and analytics, e.g., equations (4-7) of [201], show that
zero-harmonic term dominates the electron density perturbation. Therefore, the Poisson
equation gives the corresponding non-oscillatory ES field structure, like Ex in Fig.4.26;
from which we know that, the size of EM soliton is about 5λ0, which approximately
equals to the electron plasma wavelength λpe = c/ωpe. About the ES and EM structures
of soliton, it has been discussed in Ref. [221, 222, 223], the acceleration of soliton also
has been explained there, i.e., in addition to the inhomogeneity of plasma density, the
acceleration of relativistic EM solitons can depend upon, not only the incident laser
amplitude, but also upon the plasma length.

In conclusion, fully relativistic EM 1D-PIC simulation results on the SRS, stimulated
Raman cascade and the transition from Raman cascade into photon condensation, induced
by linearly-polarized intense laser interacting with underdense homogeneous plasmas were
shown At appropriate laser amplitude and plasma conditions, large relativistic EM soliton
forms due to the strong photon condensation.
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4.5 Ultra Relativistic EM Solitons in Intense Laser

Interaction with a Low Density Plasma

Ultra relativistic electromagnetic solitons due to strong photon condensation, induced
by a linearly polarized intense laser interacting with an underdense uniform collisionless
plasma, are studied by particle simulations. In homogeneous plasma, both standing and
accelerated solitons are observed. It is found that the acceleration of the solitons depends
upon not only the laser amplitude but also the plasma length. The electromagnetic
frequency of the solitons is between half- and one-time of the unperturbed electron plasma
frequency. The electrostatic field inside the soliton has a one-cycle structure in space,
while, the transverse electric and the magnetic fields have half- and one-cycle structures,
respectively. The acceleration of the solitons is briefly discussed.

4.5.1 Introduction

The mechanism of the relativistic EM soliton formation and its structure have been an-
alytically investigated and observed by particle simulation of the interaction of intense
laser radiation with underdense and overdense plasmas [193, 201, 224, 225, 226, 227, 228].
The EM solitons found in one-dimensional (1D) and two-dimensional (2D) particle simu-
lations consist of slowly or non-propagating electron density cavities inside which an EM
field is trapped and oscillates coherently with a frequency below the unperturbed electron
plasma frequency, and with a spatial structure corresponding to half a cycle (subcycle
soliton) [229]. In homogeneous plasmas, EM solitons have been found to exist for a long
time, close to the regions where they were generated, and eventually decay due to their
interaction with fast particles and the transforming their energy into fast particles. In
inhomogeneous plasmas, EM solitons are accelerated with the acceleration proportional
to the gradient of the plasma density towards the low density side. When an EM soliton
reaches some critical plasma region, for example, the plasma-vacuum interface, it radiates
its energy away in the form of a short burst of low-frequency EM radiation [230]. The
interaction of two 2D solitons leads to their merging and the resulting soliton retains the
total energy of the two merged solitons [195, 198, 231].

In previous section, we mainly paid attention at SRS cascade scattering and the tran-
sition from Raman cascade into photon condensation [216]. As a follow up of above work,
here, we will concentrate on and present 1D-PIC simulation results of the large, ultra rel-
ativistic EM solitons due to strong photon condensation following that stimulated Raman
cascade, induced by a linearly polarized intense laser pulse in long underdense plasma.
The standing, backward-, and forward-accelerated EM solitons are observed. It is found
that in homogeneous plasma the acceleration of the EM solitons depends upon both the
laser amplitude and the plasma length. The EM frequency of the solitons is between
half- and one times of the background electron plasma frequency. The ES field inside
the soliton has a one-cycle structure in space, while the transverse electric and magnetic
fields have half-cycle and one-cycle structures, respectively. The acceleration of the EM
solitons are briefly discussed. Finally, the influences of the plasma temperature and the
ion dynamics on the formation of the EM solitons are investigated.
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4.5.2 Ultra Relativistic EM Solitons

A one-dimensional and three-velocity fully relativistic EM particle-in-cell (1D3V-PIC)
code is used in our simulations. The length of the plasma layer is L (c/ω0), which begins
at x=0 and ends at x = L, where c and ω0 are the speed of light and the laser frequency
in vacuum, respectively; at the front and rear side of the plasma, there are two L long
vacuum regions. Ions are initially placed as a neutralizing background and are kept
immobile. The number of cells is 10 per 1 c/ω0 and 80 particles are put in each cell.
The linearly polarized laser pulse, which with the electric field E0 along the y direction
and the normalized amplitude a = eE0/meω0c, is launched at the distance 200c/ω0 from
the plasma front interface, where e and me are the electron mass and electron charge,
respectively. The plasma electrons which enter the vacuum region build a potential barrier
that prevents more electrons leaving the plasma. For outgoing electrons as well as EM
waves, two 100c/ω0 long additional numerical damping regions are used.

The time, electric field, and magnetic field are normalized to the laser period 2π/ω0,
meω0c/e, and meω0/e, respectively. The time is taken as zero, ω0t = 0, when the unit-step
laser pulse arrives at the front vacuum-plasma boundary.

All simulations are performed by using an underdense homogeneous low density plasma,
n = 0.032ncr. The unit-step intense laser pulse is injected continuously; there is enough
time for growth, development, and rich interplay between many relativistic electronic
parametric instabilities, such as the stimulated backward Raman scattering (B-SRS),
stimulated forward Raman scattering (F-SRS), and the relativistic modulational instabil-
ity (RMI), etc. [194, 216].

In such laser plasma conditions, SRS can be first excited by the intense laser EM
wave coupling into a scattered EM wave plus an EPW. In the early linear stage, B-
SRS has a lower growth rate and longer growth time than that of the F-SRS. B-SRS
irradiates its EM energy through spiky-like temporal structures and becomes saturated
at an early stage due to electron heating by trapping and EPW breaking. At later times,
F-SRS and RMI become closer and merge to a unique F-SRS/RMI instability, which
can later dominate and compete with the B-SRS instability; as a result, a strong spatial
self-modulation of the order of 2πc/ωpe ≈ 5.6λ0 and depletion of the laser pulse will take
place. Following that SRS, there is a clear stimulated Raman cascade scattering with the
excitation of higher-order Stokes and anti-Stokes mode EM waves [216]. At early times,
the laser pump driven Raman cascade develops a descending spectrum toward higher order
harmonics. The Raman cascade is eventually halted at the lowest Stokes harmonic, close
to the perturbed electron plasma frequency. In the later time, the continuing instability
growth and laser energy transfer through Raman cascade downshifts EM energy from
the fundamental to the bottom of the EM frequency spectrum, i.e., the low frequency
trapped EM mode. It reveals a tendency to transition from the Raman cascade regime to
EM energy accumulation, i.e., the so-called photon condensation [194, 102, 151, 232, 233].
The cascade-to-condensation transition becomes more pronounced with increasing laser
amplitude and increasing plasma density.

In the regions of strong photon-condensation, first, a large part of the electrons is
pushed away by the ponderomotive force of the EM field, creating a local electron density
cavity; second, the relativistic electron mass increases, both locally reducing the plasma
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Figure 4.27: The snapshots for electron density n/ne and for EM energy density E2
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z

averaged over laser wavelength λ0 in the case of plasma n = 0.032ncr, L = 900c/ω0,
Te = 350eV and laser amplitude a = 0.3, respectively, [222].

refractive index and resulting in self-trapping of EM energy Therefore, at proper laser
amplitude conditions, due to strong photon condensation, the well-known physical phe-
nomenon of nonlinear EM energy localization in the form of the relativistic coherent EM
soliton becomes possible. Since the photon number in the Raman cascade is conserved,
the frequency downshift results in a correspondingly large increase in the amplitude of
the lowest harmonics [194, 216, 196, 220].

Standing EM Soliton

In the case of plasma density n = 0.032ncr, length L = 900c/ω0, temperature Te = 350eV
and laser amplitude a = 0.3, following that stimulated Raman cascade scattering and
strong photon-condensation, the snapshots for electron plasma density n/ne and EM
energy density E2

y + B2
z are shown in Fig.4.27. A spatially localized, non-propagating

electron density cavity is created. Inside the density cavity, an EM field is trapped and
oscillates coherently; that is, a large amplitude relativistic EM soliton is formed. There
is no the gradient of the plasma density, therefore, the formed EM soliton belongs to the
standing case, and exists within our simulation time, close to the regions where it was
generated [230].

In Fig.4.28, the frequency spectra for ES field Ex and EM field Ey, which are trapped
inside the soliton, are plotted. In addition to the laser fundamental and the excited
perturbed EPW, the EM component with frequency ωEM

sol ≈ 0.13ω0 ≈ 0.72ωpe and the
ES component with frequency ωES

sol ≈ 0.87ω0 are observed, respectively. If only from the
point of view of the frequency, it seems that, one can explain this phenomenon roughly by
a three-wave resonant coupling process during the existence of the EM soliton. The size of
the EM soliton is about Δxsol ≈ λepw ≈ 5.6λ0, where λeaw and λ0 are the electron plasma
wavelength and laser wavelength in vacuum, respectively. As shown in Fig.4.29, the ES
field Ex, which is trapped inside the soliton, has a one-cycle structure in space, while the
corresponding transverse electric field Ey has a half-cycle and the magnetic field Bz a
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Figure 4.28: The spectra of ES filed and EM field which trapped inside soliton region.
The simulation parameters are the same as used in Fig.1, [222].

one-cycle structure, respectively. The spatial EM field structure is oscillatory in time, but
the ES field structure is not [194, 216]. In our simulations, laser amplitude was weakly
to moderately relativistic (a < 1), however, the created EM solitons are indeed largely
ultra-relativistic, and the maximum amplitude of the EM soliton grows with increasing
laser amplitude and saturates at roughly similar maximum amplitude (ultra-relativistic)
amax

sol ≈ 5 − 6 [216].

It should be stated here, that the EM soliton field frequency is 0.13ω0, smaller than
the background electron plasma frequency ωpe ∼ 0.18ω0. This comes from the strong
relativistic effect, which makes the electron mass increase from me to γme, and can
then decrease electron plasma frequency from ωpe to ωpe/γ

1/2. Therefore, it is possible
that localized EM structure, with frequency smaller than background ωpe, can exist and
propagate inside plasma.

By keeping the plasma parameters unchanged and increasing the laser intensity only,
EM soliton scenarios appeared to be different from the above standing case. Both, the
backward-accelerated and forward-accelerated EM solitons are observed [222, 234].

Backward- and Forward Accelerated EM solitons

In two cases where the laser amplitude a = 0.4 and a = 0.5 (see Fig.4.30 for laser
amplitude a = 0.4), following Raman cascade and strong photon-condensation, a spatially
localized large amplitude EM soliton due to strong photon-condensation begins to form.
However, the soliton dynamics appears to be different from that of the standing soliton
case; the observed EM soliton is now accelerated backwards towards the plasma-vacuum
interface. After arriving at the plasma-vacuum interface, it radiates its energy away in the
form of a short burst of low-frequency intense EM wave, due to a non-adiabatic interaction
with the plasma-vacuum boundary. During the radiation of the EM soliton, as a result,
one can observe a very high transient reflectivity larger than that of the B-SRS process
(Fig.4.30, top). In the higher laser amplitude a = 0.5 case, the story is the same as that
for the laser amplitude a = 0.4 case, i.e., a spatially localized backward-accelerated large
amplitude EM soliton can be still observed. However, due to the larger acceleration, the
”lifetime” of the EM soliton inside the plasma is shorter than that of the laser amplitude
a = 0.4 case. Similarly, a very high transient reflectivity, larger than that of the B-SRS
process, can be also observed during the radiation of the EM soliton.

By analyzing the frequency spectra in vacuum after the radiation of the EM soliton,
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Figure 4.29: The snapshots for ES field structure (averaged over the EPW wavelength
λepw) and EM field structure (averaged over the laser wavelength λ0). The simulation
parameters are the same as used in Fig.4.27, [222].

we can obtain that the EM frequencies of the soliton are ωEM
sol ≈ 0.67ωpe for the laser am-

plitude a = 0.4 case, and ωEM
sol ≈ 0.61ωpe for the laser amplitude a = 0.5 case, respectively

[222].

If we further increase the laser amplitude to a = 0.6 and a = 0.7, the most interesting
phenomenon is that the observed EM solitons are neither the standing ones nor the
backward-accelerated ones, rather, the large amplitude EM solitons are now accelerated
forward.

The scenarios before the formation of the EM solitons are the same as stated before,
i.e., due to strong photon-condensation, as shown in Fig.4.31, for laser amplitude a =
0.6. A spatially localized large amplitude EM soliton can be still formed. However,
the interesting feature is that the observed EM soliton now accelerates in the forward
direction. Again, after the EM soliton arrived at the plasma-vacuum interface, it radiated
its energy away in the form of a short burst of low-frequency EM waves. As expected, a
very high transient transmissivity during the radiation of the EM soliton can be detected
as shown in Fig.4.31 (top). For higher intensity a = 0.7 the situation is the same as for
a = 0.6 case.

Similarly, by analyzing the frequency spectra in vacuum after the radiation of the
EM soliton, we found that the EM frequencies of the soliton are ωEM

sol ≈ 0.56ωpe for the
laser amplitude a = 0.6 case, and ωEM

sol ≈ 0.50ωpe for the laser amplitude a = 0.7 case,
respectively [222].
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Merging of Two Ultra Relativistic EM Solitons

By performing many simulations, we also found that, in the case of the plasma density
n = 0.032ncr, length L = 1400c/ω0, temperature Te = 350eV and laser amplitude a = 0.3,
as shown in the Fig.4.32, two spatially localized large amplitude EM solitons emerge and
coexist inside the plasma. After their formation, the two EM solitons both are accelerated
backward with different accelerations, as time goes on, the back one can overtake the front
one. After that, the two EM solitons then merge together to form a new EM soliton, which
with the large amplitude nearly equals the sum of the two EM solitons. This newly formed
large amplitude EM soliton exists and does not separate again within our simulation time

To conclude, the formation of both the standing and the accelerated large amplitude
EM solitons due to strong photon condensation, induced by linearly polarized intense
laser interacting with an underdense uniform collisionless plasma, is studied by 1D-PIC
particle simulations. We found that, in addition to the inhomogeneity of the plasma
density, the acceleration of the EM solitons depends upon both the laser amplitude and
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Figure 4.32: The snapshots for EM energy density E2
y +B2

z averaged over laser wavelength
λ0 in the case of plasma density n = 0.032ncr, length L = 1400c/ω0, temperature Te =
350eV and laser amplitude a = 0.3, respectively, [222].

the plasma length. The EM frequency of the solitons is between half- and one-time of the
unperturbed electron plasma frequency. The transverse electric field Ey, magnetic field
Bz, and ES field Ex inside the soliton have half-, one-, and one-cycle structures in space,
respectively.

4.6 Stimulated Electron Acoustic Scattering in High

Intensity Laser Plasma Interaction

The propagation of a laser light through an under-dense plasma is an active research
topic. Much works have been devoted to stimulated Raman and Brillouin scattering
instabilities, concerning their ability to produce energetic particles which can preheat the
core of a fusion pellet. The stimulated scattering from an electron plasma wave (EPW)
(Raman scattering -SRS) or ion acoustic wave (IAW) (Brillouin scattering -SBS) can be
large to reflect a significant part of the laser light and decrease the coupling efficiency
at the target. As was shown by experiments and computer simulations there can be a
rich interplay between these two instabilities [169, 168, 170]. Although understanding of
basic principles of laser parametric coupling to the EPW and IAW is quite satisfactory,
the quantitative predictions are often in large disagreement with observations from real
experiments. There was a recent upsurge of interest to explain unexpectedly high SRS
reflectivity obtained in experiments emulating conditions of National Ignition Facility
targets [235, 236].

4.6.1 On the Electron Acoustic Waves

Recently, D. S. Montgomery et al. reported observation of a novel stimulated electron-
acoustic wave scattering (SEAS) to explain ”single hot spot” experiments performed at
Trident laser facility [237, 238]. Namely, in the linear theory, the so-called electron-
acoustic wave (EAW) exists, i.e. a strongly damped linearized Vlasov-Maxwell (VM)
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mode whose phase velocity is between an EPW and an IAW; often neglected in studies of
wave-plasma instabilities. However, analytical studies of non-linear one-dimensional VM
solutions have found that strong electron trapping can occur even for small amplitude
electrostatic wave, resulting in undamped non-linear travelling waves (BGK-like) [240,
241] or, with an inclusion of small dissipation, in weakly damped travelling solutions [241].
The main difficulty in resolving SEAS from the standard SRS in laser-plasma experiments
is that the backscattered light spectrum can cover the nearly continuous broad range of
frequencies due to a simultaneous growth of instabilities at different spatial locations in a
non-uniform plasma, complex wave-plasma dynamics due to the system length, etc. The
first observation of backward SEAS and reinterpretation of earlier experimental results
from low plasma densities [237, 238], has encouraged further investigation of domains and
conditions for SEAS. However, under reported conditions the energy in the SEAS mode
still remained well bellow (3000 times) the observed backward SRS level.

4.6.2 Stimulated Raman and Acoustic Wave Scattering

Further, excitation of SEAS and its interconnection with SRS instability is investigated
by particle simulation of a propagation of a linearly polarized laser through a plasma
layer placed in vacuum. An electromagnetic relativistic 1d3v PIC code was used. The
number of grids was 25 per 1c/ω0 (ω0 is the laser frequency), with minimum 50 parti-
cles/grid. The length of a simulation system was 220c/ω0 and ions were kept immobile
as a neutralizing background. The electrons which enter vacuum build a potential barrier
that prevents other electrons of leaving the plasma. However, due to strong heating some
energetic electrons can reach boundaries of the system. For these electrons, as well as
for electromagnetic waves additional damping regions were used. In number of simula-
tions, besides stimulated Raman backscattering, we have observed an intense reflection
recognized as SEAS instability, with its main contribution in regions with over-critical
density for ordinary SRS. Strong SEAS reflection, which can several times exceed SRS
reflectivity, is followed by large heating of a plasma, which was the first report of such a
plasma behavior given by [176, 242, 243, 244, 245].

From our simulation data SEAS is identified as a resonant three-wave parametric
interaction [165] involving the laser pump (ω0, k0), the backscattered lightwave (ωs, ks)
and the trapped electron-acoustic wave (EAW) (ωa, ka). In the linear instability stage,
resonant conditions ω0 = ωs+ωa and k0 = −ks+ka are well satisfied, while electromagnetic
waves (pump and Stokes wave) satisfy standard dispersion equation ω2

0,s = ω2
p+c2k2

0,s. The
backscattered wave is always found to be driven near critical, i.e. ωs ≈ ωp which implies
ks ≈ 0 and Vs ≈ 0 (ωp = (ne2/(ε0mγ))

1/2 is the plasma frequency, γ is the relativistic
factor, and Vs = c2ks/ωs is the light group velocity). Therefore, the Stokes sideband is
a slowly propagating, almost standing electromagnetic wave. The above decay scheme
is observed for a wide range of laser intensities, plasma densities and temperatures. It
is known that high temperatures can significantly alter the growth rates and sometimes
suppress parametric instabilities [250]. However, according to [241], efficient excitation
of trapped EAW (ωa < ωp), is to be expected in the range vph/vt = 1 − 2 (vph and vt =
(T/m)1/2 are the phase and electron thermal velocities). Thus, for SEAS excitation at the
threshold, high thermal velocity which closely match the EAW phase velocity is important.
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Figure 4.33: Spectrum of electromagnetic (top) and electrostatic (bottom) waves in the
plasma layer (n = 0.6ncr, L = 40c/ω0) for time interval tω0 = 322 − 1379. The initial
electron thermal velocity is vt/c = 0.28, [242].

To illustrate an onset and growth of SEAS instability, spectra of electromagnetic-light
(EM) waves and electrostatic (ES) waves are plotted in Figs. 4.33- 4.34.

Fig.4.33 shows discrete spectra in an early phase of SEAS instability. The density and
the plasma length are n = 0.6ncr (ncr = n(ω0/ωp)

1/2) and L = 40c/ω0, respectively, the
longitudinal thermal velocity is vt/c = 0.28 and the laser strength is β = (eE0)/(mcω0) =
0.3 (E0 is the amplitude of the electric field). The backscattered EM wave grows at the
electron plasma frequency ωp ≈ 0.72ω0 (the laser pump line at ω/ω0 = 1 is not shown),
while corresponding EAW is at ω0 − ωp ≈ 0.28ω0. Note that apart from ES noise around
a natural plasma mode (ωp ≈ 0.72ω0), ponderomotively driven non-resonant modes are
also present (not shown in Fig.4.33) at 2-nd, ω = 2ω0 and k = 2k0 (vph/c ≈ 1.44), as well
as at zero-harmonic [177, 178]. From obtained data, it follows that the phase velocity of
the EAW is vph/c = (ω0 − ωp)/k0 ≈ 0.41.

In Fig.4.34 nonlinearly broadened EM and ES spectra of fully developed SEAS are
shown for a plasma with n = 0.4ncr, L = 40c/ω0, vt/c = 0.20 and laser strength β = 0.3.
The instability growth results in the plasma frequency decrease and strong electron heat-
ing which tends to suppress the further growth. Above is reconfirmed in the post -SEAS
stage, after the instability was halted (vide infra). Once EAW has died off, dominant
ES response is weak EPW, which peaks at perturbed ωp ≈ 0.54ω0 (the decrease of 0.06
from the initial state ), while the decreased Stokes sideband appears at ωs ≈ 0.58ω0.
Moreover, a blue-shifted, modulated and incoherently broadened EM spectrum (Fig.4.33)
seems consistent with the 3WI backscatter complexity induced by the nonlinear phase
shift, as was predicted by one of these authors [102, 151, 236].
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Figure 4.34: Spectrum of electromagnetic (top) and electrostatic (bottom) waves in the
plasma layer (n = 0.4ncr, L = 40c/ω0) for time interval tω0 = 1291 − 2348. The initial
electron thermal velocity is vt/c = 0.2, [242].

4.6.3 SEAS Model

We propose a SEAS model as a resonant parametric coupling of three waves ai(x, t) exp[i(kix−
ωit)] , in a weakly varying envelope approximation [102, 105],

∂a0

∂t
+ V0

∂a0

∂x
= −M0asaa, (4.88)

∂as

∂t
− Vs

∂as

∂x
= Msa

∗
0aa, (4.89)

∂aa

∂t
+ Va

∂aa

∂x
+ Γaaa = Maa

∗
0as, (4.90)

where Vi > 0 are the group velocities, Γa is damping rate for EAW (Γ0 = Γs = 0 for
light waves is used), Mi > 0 are the coupling coefficients and ai are the wave amplitudes,
where i = 0, s, a, stand for the pump, backscattered wave and EAW, respectively. Since
considered model is a short plasma, in order to get high reflectivity, instability needs to
be absolute. With standard boundary conditions a0(0, t) = E0, as(L, t) = aa(0, t) = 0,
the backscattering becomes an absolute instability if

L/L0 > π/2, (4.91)

[91, 105], where L0 = (VsVa)
1/2/γ0 is the interaction length and γ0 = E0(MsMa)

1/2 is the
uniform growth rate. Since observed Vs ≈ 0 for the backscatter, the condition (4.91) is
readily satisfied (L0 ≈ 0). Explicit form of (4.88) and (4.89) is easy to get (light waves),
however for EAW (4.90) no linear dispersion relation in analytical form exists [237, 240,
241, 251]. Since damping rate Γa = 0, the EAW is characterized by the longitudinal
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Figure 4.35: Reflectivity in time from the plasma layer (n = 0.4ncr, L = 40c/ω0) for
different initial electron thermal velocities vt/c and β = 0.3, [242].

absorption length La = Va/Γa, SEAS-backscatter instability becomes absolute under an
extra condition [105],

L0/La < 2. (4.92)

In a linear theory EAW is a highly damped mode, so the absorption length La is taking
small values. However, as concluded earlier, the key factor for an onset and growth
of SAES is nearly critical ”standing” backward Stokes wave (L0 ≈ 0), so that Vs ≈ 0
satisfies (4.91) and also minimizes the threshold E0 for SEAS instability [242], γ0 >
0.5Γa(Vs/Va)

1/2.

4.6.4 Simulations

The temperature effect can be clearly seen near the threshold intensity for SEAS (β ∼
0.3). Since the longitudinal thermal velocity of electrons can easily increase due to e.g.
the Raman instability, the temperature in transverse direction was set to 500eV, with
a longitudinal temperature taken as a control parameter. However, we note, that the
SEAS instability was readily observed for isotropic distribution, as well. Just above the
threshold, high electron temperature may be essential for an instability growth. This is
illustrated by Fig.4.35 in which reflectivity (R = 〈Sr〉/〈S0〉, Sr and Si are Poynting vectors
for reflected and incident wave, respectively, and 〈 〉 denotes time averaged values) are
shown for β = 0.3, n = 0.4ncr, L = 40c/ω0 at several temperatures, vt/c =0.19, 0.20, 0.28
and 0.30. There is an optimum temperature for perfect matching with an excited EAW
which results in a maximum SEAS reflectivity. For vt/c = 0.2 observed reflectivity is very
high - nearly 140% of the incident laser light. One calculates vph/vt ≈ 2.64, 2.50, 1.84
and 1.72 for vt/c = 0.19, 0.20, 0.28 and 0.30, respectively. For temperatures ≤ vt/c =0.18
and β = 0.3 the instability was not observed during time period of tω0 = 5000.

For laser intensities well above the threshold there appears no need for high electron
temperatures to excite SEAS. For example, already at T = 500eV, with a strong rela-
tivistic pump β = 0.6, n = 0.6ncr and L = 40c/ω0 instability develops fast and quickly
saturates within tω0 = 500. In Fig.4.36, time evolution of SEAS reflectivity and the
electron distribution function f(vx/c) for the initial (tω0 = 0) and the state after the
instability (tω0 = 1000) are plotted. This effect, seems related to relativistic interactions,
important for e.g. fast ignitor research, and will deserve future attention. First estimates
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instability), [242].

point out at the relativistic-nonlinear frequency shift (NLFS) of the electrostatic wave
driven by a laser, as a possible cause [177, 178]. At relativistic intensity, large NLF gen-
erates broad ES harmonics which can cover resonant EAW frequency. SEAS resonance
is broadened, while instability can grow rapidly, instead from a low background noise,
directly from a finite ES harmonic, seeded by a laser. As seen in Fig.4.36, SEAS produces
large relativistic heating which deforms an initial Maxwellian into ”water-bag” alike dis-
tribution and generates highly energetic electrons with main contribution near v = ±vph

of the EAW.

Finally, we briefly address a question of coexistence and interrelation between SRS and
SEAS. The simulated system consists of two connected underdense plasma layers L1 and
L2, of the length L1 = 20c/ω0 and L2 = 80c/ω0 with corresponding densities n1 = 0.2ncr

and n2 = 0.6ncr, respectively. Initial temperature is taken at 500eV. Our choice of
densities makes L1 strongly active for Raman instability, while L2 (overdense for SRS)
is practically in a role of a heat sink. Simulations show common picture, an excitation
of strong SRS marked by intermittent reflectivity pulsations (see Fig.4.37, tω0 < 1000)
[102, 151, 236]. The instability eventually gets suppressed by strong heating of supra-
thermal and bulk electrons. Since hot electrons quickly escape the Raman region (L1)
they enter and heat the sink (L2). Moreover, a striking feature emerges at late times,
with a reflection of a second intense pulse much larger than the original Raman signal
(Fig.4.33, tω0 ≈ 2700). This is readily identified as SEAS which originates from the large
”sink”, once the temperature has grown to resonate with EAW to enable excitation of
SEAS. Therefore, SEAS mediated by SRS becomes a dominant process, as an example of
a complex interplay possibly relevant to our understanding of future experiments.

In summary, in first particle simulations in a plasma not accessible to SRS, strong
isolated SEAS reflection from trapped EAW was observed near the electron plasma fre-
quency. A three-wave parametric model was discussed, in particular, a role of a standing
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Figure 4.37: Time history of the reflectivity from two connected plasma layers (n1 =
0.2ncr, L1 = 20c/ω0, n2 = 0.6ncr, L2 = 80c/ω0, β = 0.3). Initial reflectivity bursts from
ordinary SRS in L1 are followed at late times by a huge SEAS pulse generated in L2,
which was heated by hot electrons from L1, [242].

Stokes sideband for excitation of an absolute SEAS instability. While in reported ex-
periments [237] SEAS to SRS signal ratio was smaller than 10−3, we find conditions in
which SEAS dominates over standard SRS. Further study of SEAS role, e.g in relativistic
laser-plasmas, deserves future attention.

4.7 Stimulated Trapped Electron Acoustic Wave Scat-

tering, EM Soliton and Ion-Vortices in Subcriti-

cal Plasmas

Stimulated trapped electron acoustic wave scattering by a linearly polarized intense laser
in a subcritical plasma is studied by particle simulation. The scattering process is a three-
wave parametric decay of the laser pump into a critical Stokes electromagnetic sideband
wave and the trapped electron acoustic wave (see, previous section). As the ion acoustic
wave grows in time it breaks locally, followed by a large relativistic electromagnetic soliton.
A new phenomenon, MeV ion-vortex in ion phase-space forms by local electromagnetic
and electrostatic fields inside the soliton. It is found that the electron acoustic wave mode
is similar to the kinetic electrostatic electron nonlinear waves, [234].

4.7.1 Introduction

As indicated above, in addition to the standard SRS, a new type of stimulated backscatter-
ing, involving the so-called electron acoustic waves (EAWs) was recently reported in single
hot spot experiments [237, 238]. At relativistic intensities it was first exposed by Nikolić,
Škorić, et al., by particle-in-cell (PIC) simulations in subcritical plasmas [242, 244]. More
recently, by PIC simulations, Valentini, O’Neil and Dubin have investigated the excita-
tion of EAWs and the stability of the EAWs against decay, and found that the EAW is a
nonlinear wave with a carefully tailored trapped particle population, and the excitation
process must create the trapped particle population [252]. Previous authors examining
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the linear Vlasov dispersion relation, already noted two ES branches, corresponding to the
well-known, high-frequency EPW, and a low-frequency Landau damped branch, termed
electron acoustic waves (EAWs), whose frequency and phase velocity are between an
ion-acoustic wave (IAW) and an EPW [246, 247].

Relativistic solitons, predicted by a theory and observed in simulations, are localized
electromagnetic (EM) structures self-trapped by a locally modified plasma refractive index
through the relativistic electron mass increase and the electron density depletion by the
ponderomotive force of a strong laser pulse. In homogeneous plasmas, standing solitons
persist for a long time, and eventually decay due to interaction with fast electrons. In
inhomogeneous plasmas, solitons get accelerated with an acceleration proportional to the
gradient of the plasma density towards the low density side. When the soliton reaches a
plasma-vacuum interface, it radiates away its energy in the form of a short intense low-
frequency burst of EM radiation [197, 216, 230, 248]. Ion acceleration by EM solitons,
due to the energy gain during the ion interaction with the slow-varying EM fields trapped
inside the soliton, has been studied in the past. EM soliton propagating with a high
speed, for the purpose of particle acceleration, could provide the wakeless regions with
regular electric and magnetic fields, with which particles can interact and gain net energy,
transforming the soliton energy into the energy of the fast particles [248].

In this section, stimulated trapped electron acoustic wave scattering (T-SEAS) in-
stability induced by a linearly polarized intense laser interacting with a plasma layer at
a subcritical density range (ncr/4 < n/γ < ncr, which is overdense for standard SRS,
where γ is relativistic factor), is studied by 1D PIC simulations, [234]. This instability
takes place whether the ion dynamics is taken into account or not. Still, with ion dy-
namics, an excited ion acoustic wave grows in time and breaks, accompanied by a large
relativistic EM soliton. As a new phenomenon, a MeV energy ion-vortex structure in the
momentum phase-space forms by localazed EM and ES soliton fields. Ion-vortices both
in homogeneous and in inhomogeneous plasmas are found. Previously, PIC simulations
of subcritical plasmas by Adam et al., [180, 249] concentrated on electron effects in early
stages of relativistic SRS parametric instability in 1D and 2D model, in particular. We
found similar electron effects in 1D, still, they lack spectral data to test EPW/EAW non-
linear dispersion. We note, that, e.g. the electron hole detected in Fig. 3, [180, 249], could
be related to a relativistic EM soliton structure, as revealed in this work. Also, in the
asymptotic stage, their reference to ”... ES component being strongly Landau damped
...” could be an actual evidence of EAWs (p. 4767, Ref. [249]). As will be discussed,
this electron acoustic wave (EAW) mode is similar to the kinetic electrostatic electron
nonlinear (KEEN) waves, which are stable, nonlinear, multimode coherent structures in
plasmas as was introduced by Afeyan et al.[253].

4.7.2 Simulation Model

In our simulations, fully relativistic EM 1D-PIC code is used. The 100 c/ω0 long plasma
begins at x = 0 and ends at x = 100 c/ω0; at the front and rear sides of the plasma
layer, there are two 200c/ω0 vacuum regions, where c and ω0 is the speed and carrier
frequency of laser pulse, respectively. The number of cells is 20 per 1 c/ω0, 100 electrons
and 100 ions are put in each cell. Plasma density is n = 0.6ncr, where ncr is the critical
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density. The electron and ion temperature are Te = 5Ti = 1keV , and with the mass
ratio is mi/me = 1836. Linearly polarized laser plane wave, with electric field E0 along
the y direction and normalized laser amplitude a = eE0/meω0c = 0.6, is initialized at
x = −50 c/ω0, where me and e are the electron mass and electron charge, respectively.
The time, electric field, and magnetic field are normalized to 2π/ω0, meω0c/e, andmeω0/e,
respectively; time is taken as zero, t = 0, when laser pulse arrives at the front vacuum-
plasma boundary. In the plots, the ES field Ex is averaged over electron plasma wavelength
λpe = c/ωpe, EM fields Ey, Bz and EM energy density E2

y + B2
z are averaged over laser

wavelength λ0 = c/ω0, respectively.

4.7.3 Stimulated Trapped Electron Acoustic Wave Scattering

Plasma density is taken beyond n > 0.25ncr, so that the standard SRS is excluded. We
found when the laser amplitude a > 0.4, T-SEAS instability takes place. In a linear stage,
as shown in Fig.4.38, its spectrum is well explained by a resonant three-wave parametric
decay of an intense laser pump into the slow backscattered Stokes EM sideband and the
trapped EAW. The backscattered Stokes EM wave in vacuum region is found to be driven
critical, i.e., near the relativistic electron plasma frequency ωs = 0.62ω0 ≈ ωpe/γ

1/2,
where γ =

√
1 + a2 is relativistic factor, while the corresponding EAW has the frequency

ωeaw ≈ 0.40ω0 < ωpe. The wavenumber for EM wave inside the plasma has two peaks;
one with kp

s ≈ 0.12k0 another with kp
0 ≈ 0.80k0, which correspond to backscattered and

laser EM waves, respectively; while, the wavenumber for EAW is keaw ≈ 0.92k0; here,
k0 = ω0/c is the wavenumber of laser light in vacuum. We further assume the relativistic
electron plasma frequency as ω∗

pe ≈ 0.61ω0, which is smaller than the initial laser pump

induced ωpe/γ
1/2 ≈ 0.69ω0, since, in the region of intense EM and EAW waves, larger

relativistic effect reduces the local electron plasma frequency. The EM waves for both
pump and Stokes mode satisfy the standard dispersion relation ω2

0,s = ω∗2
pe + c2(kp

0,s)
2.

Then, in the early T-SEAS instability, the matching conditions for both the frequency
ω0 = ωs + ωeaw and the wavenumber kp

0 = −kp
s + keaw appear to be satisfied. Note that

the natural relativistic electron plasma mode ωpe/γ
1/2 ≈ 0.69ω0 is also weakly excited.

During the T-SEAS instability, as shown in Fig.4.39 (top), large portion of electrons is
trapped in the ES potential of the large EAW, this is why a term ’T-’ before ’SEAS’ is put.
In a nonlinear saturation, there is a rapid growth and strong localization of the Stokes
EM wave by forming narrow intense spiky EM structures with downshifted laser light
trapped inside, as shown in Fig.4.39 (bottom). The train of relativistic EM spikes gets
eventually irradiated through the front vacuum-plasma boundary in a form of an intense
reflection burst of the downshifted laser light. The large trapped EAW excited inside
plasma with low phase velocity quickly heats up bulk electrons to relativistic energies,
which will eventually suppress T-SEAS instability. To illustrate the onset and growth of
the T-SEAS instability, in Fig.4.40, the plots for the temporal evolution of the dominant
backscattered EM mode | Ey(k) |2 and EAW mode | Ex(k) |2, both measured inside
the plasma, are given. One can see the temporal evolution clearly; after the early linear
phase a nonlinear process then follows while further growth of EM and ES wave gets
saturated. If we assume, for both EM and ES mode harmonics, the linear parametric
growth in the form Ek(t) ∼ Ek(0)eγt; then, by using our data, we can estimate their

145

145



0 300 600

   t
0.0

0.5

1.0

1.5

   
   

 R
(t)

t = 44.17

  to 86.25

0 1 2
ω/ωο

0.00

0.01

0.02

0.03

|(E
y-

cB
z)

(ω
)|2

t = 44.17
  to 86.25

0 1 2

ω/ω0

0.0000

0.0005

0.0010

|E
x(

ω)
|2

t = 210.40
  to 252.48

0.0 0.4 0.8

ω/ω0

0.000

0.005

0.010

|E
x(

ω)
|2

t = 84.76

0.0 0.5 1.0 1.5 2.0
k/ko

0.00

0.02

0.04

|E
x(

x)
|2 t = 84.76

0.0 0.5 1.0 1.5 2.0
k/ko

0.0

2.0

4.0

|E
y(

x)
|2
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corresponding growth in the initial stage of T-SEAS instability. The growth rate for the
backscattered EM mode is γs ≈ 0.176ωs = 0.113ω0, the corresponding growth rate for
EAW is γeaw ≈ 0.267ωeaw = 0.107ω0, respectively.

In order to clarify the T-SEAS instability growth, we follow a simple model [232,
91, 102, 244, 242], for parametric coupling between three waves ai(x, t)exp[i(kix − ωit)],
satisfying the frequency and wave number resonant matching conditions, which for weakly
varying envelopes in dimensionless units reads:

∂ai/∂t+ Vi∂ai/∂x+ Γiai = Mia
∗
jak (4.93)

where Vi > 0 are group velocity (i, j, k = 0, s, eaw denote pump EM, backscattered EM,
and EAW modes, respectively), Γeaw is an effective damping rate for EAW; Γ0 = Γs = 0 for
EM waves is used. Mi > 0 are the coupling coefficients and ai are the wave amplitudes.
With standard open boundary conditions a0(0, t) = E0 and as(L, t) = aeaw(0, t) = 0,
the backscattering grows as an absolute instability, only if L/L0 > π/2, where L0 =
(VsVeaw)1/2/γ0 is the interaction length and γ0 = E0(MsMeaw)1/2 is the uniform growth
rate. The group velocity of the backscattered EM wave is −Vs = c2ks/ωs ≈ 0.19c; even
if we assume that the group velocity for EAW is so large that Veaw ≈ c and a very small
uniform growth rate γ0 ≈ 0.1ω0 (the growth rates for both backscattered EM wave and
EAW are greater than 0.1ω0, as have been shown above), then the L0 ≈ 4.3c/ω0. So
aposteriori, for plasma length L = 100c/ω0, the condition L/L0 > π/2 for the absolute
instability to take place, is readily satisfied. This means that intensive T-SEAS instability
can indeed develop as observed for our simulation conditions.

The EAW mode found in our simulation is very similar to the kinetic electrostatic
electron nonlinear (KEEN) waves. The KEEN waves, which were reported by Afeyan et
al.[253], are stable, long-lived nonlinear, multimode coherent structures in plasmas, which
can only be driven by sufficiently strong electric fields. The frequency of the excited KEEN
waves is in a band around the electron acoustic frequency. In the case of KEEN waves,
no flattened electron velocity distribution function need be invoked and no single mode
behavior is observed [253]. However, in our case, we found that the observed EAW is nearly
a single mode, as in Fig.4.38 the peaked frequency spectra of the ES wave shown. Also,
the kinetic effects play an important role on the stimulated EAW scattering, due to the
large electron relativistic heating by T-SEAS process, the initial Maxwellian distribution
then deforms into ”water-bag” alike distribution and generates highly energetic electrons
with main contribution near the phase velocity ±vph of the EAW.

4.7.4 Electromagnetic Soliton and Ion-Vortices

We found that early T-SEAS instability behavior is similar, whether the ion dynamics
is taken into account or not. However, with ion dynamics, for times longer than ion
period 2π/ωpi, the IAW is excited and persists in time [248]. Already, before the IAW
onset, electron trapped orbits (EAW) are well developed [249], (Fig.4.40) to be rapidly
destroyed by strong EM transverse and ES longitudinal fields and stochastic heating to
relativistic energies. The IAW peak in our early spectrum is hard to detect, as the strong
trapped EAW is dominant. Once the T-SEAS instability is halted, as in Fig.4.38 (middle)
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Figure 4.40: Temporal growth for EAW mode Ex and backscattered EM mode Ey both
measured inside plasma, respectively, [234].

t = 21.82

0 20 40 60 80 100

x (c/ω0)

-0.010

-0.005

0.000

0.005

0.010

p x
/m

ic

t = 214.18

0 20 40 60 80 100
-0.06

-0.03

0.00

0.03

0.06

 t = 115.30

0 20 40 60 80 100

 x (c/ω0)

0.0

1.0

2.0

E
y2 +

B
z2

 t = 214.18

0 20 40 60 80 100
0.0

1.0

2.0

t = 214.18

0 20 40 60 80 100

x (c/ω0)

0.0

0.3

0.6

0.9

1.2

n e
/n

0

t = 214.18

0 20 40 60 80 100

x (c/ω0)

0.0

0.3

0.6

0.9

1.2

n i
/n

0

t = 214.18

0 20 40 60 80 100

x (c/ω0)

-0.4

0.0

0.4

(n
i-

n e
)/

n 0

t = 214.18

0 20 40 60 80 100

 x (c/ω0)

-0.3

0.0

0.3

Ex

Figure 4.41: Snapshots for ion phase-space, EM energy density E2
y +B2

z , plasma density,
and ES field Ex, respectively, [234].

148

148



the ES spectrum shows, the IAW mode with frequency ωiaw ≈ 0.023ω0, which approxi-
mately equals to the natural ion plasma frequency ωpi = (me/mi)

1/2ωpe ≈ 0.021ω0, can
be observed, clearly. The excited IAW propagates forward driven basically by two effects:
direct laser ponderomotive force (PF) action on ions and by much stronger, indirect effect,
due to relativistic electron dynamics, through fields (currents) created in the violation of
plasma quasi-neutrality. It is clear that a complete picture of such a complex paradigm
of multi-scale nonlinear interactions can be revealed only by relativistic PIC simulations.
Still, the direct PF effect is visualized in Fig.4.41 (top, left), where early IAW is mod-
ulated by PF, i.e. wavenumber equal to the 2nd harmonic of laser light. Furthermore,
a growing nonlinearity and slow finite velocity of driven IAWs quickly leads to a strong
steeping of the wavefront and its eventual break-up. At later times, at t > 21.82, as
observed in Fig.4.41, ion orbits begin to overturn, close to x = 40 c/ω0 point, while the
steep IAW density shock wave front breaks. After that, by EM energy localization in the
density cavity, one EM soliton is nucleated at the same position and continues to grow
in time to saturate at t ≈ 252.94 with the maximum EM energy E2

y +B2
z ≈ 2.5. During

its growth, firstly, large number of electrons are expelled from the high EM field region
by the relativistic ponderomotive force ( ∼ ∂γ/∂x) [201]. At the front of the soliton
(x ≈ 40 c/ω0) at t = 214.18, because of large inertia, slow ions pile up and one sharp ion
density peak is formed. Simultaneously, electrons do not accumulate at the front and rear
side, because of their small inertia. Then, at the narrow region around the soliton front
edge x ≈ 40 c/ω0, a net positive charge forms, as the (ni − ne)/n0 plot in Fig.4.41 shows.
Behind the ion density peak, namely inside the soliton region, to preserve the charge
neutrality, more electrons will be pushed away to balance the ion density peak by the
ES field of the charge separation. Thus, a net negative charge region forms. This charge
distribution results in a double layer structure, as in Fig.4.41 the ES field Ex plot shows.
Both, the relativistic EM soliton field and the local large Ex sheath field via interplay can
strongly accelerate or decelerate ions. Ions with initial negative velocity inside the soliton
are reflected by sharp ion density peak, will first experience a deceleration process, and
then accelerated again by soliton fields; while ions with positive velocity experience just
the reverse processes. As a result, as the ion phase-space plot at t = 214.18 shows in
Fig.4.41, eventually, a trapped ion-vortex (ion-hole) structure is formed.

The size of the ion-vortex is close to the soliton width, i.e., Δxvortex ≈ Δxsoliton ≈ 1 ∼
2λpe. The maximum ion-vortex energy is large, in the range 1 ∼ 2 MeV. Qualitatively, an
early excess charge in the electron density hole appears to trigger ion-vortex formation;
analogous to a large water eddy caused by the hole at the river bottom. We can roughly
estimate the maximum ion energy by simply assuming that ions are initially accelerated
in the effective planar capacitor (capacity-C) with plates (area-A) at the soliton width
(d) on the potential (U=Q/C) due to a locally expelled total electron (hole) charge (Q).
This appears consistent with the ES profile (Ex in Fig.4.41), in the soliton cavity region
(x ≈ 25 − 40 c/ω0). By using C = ε0A/d, rough estimates for d and Q = eδneAd readily
predict the few MV range.

As an intense laser pulse propagates through the plasma layer, electrons spontaneously
and via interactions with the laser spread out into vacuum by forming the charge sep-
aration ES fields at both boundaries; ions tend to follow electrons to keep the charge
neutrality. As a result, the plasma density will decrease from the center to both bound-
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aries gradually with time. As an inhomogeneous plasma is formed, the EM soliton will be
then accelerated down the density profile [230]. We found that similar large relativistic
EM solitons often form in the frontal region of the plasma and are accelerated backwards
toward the front plasma-vacuum interface. As large amplitude EM soliton propagates
into the boundary, as shown in Fig.4.42 (top), by large EM field and ES field inside the
soliton the energy exchange between the soliton and ions continually takes place. Major-
ity of ions are accelerated and trapped inside the soliton region. Along the soliton path,
as shown in Fig.4.42 (bottom), several trapped ion-vortices (ion-holes) in the phase-space
form and persist with time. The EM soliton gradually loses energy and its amplitude
decreases. After the EM soliton arrives at the plasma-vacuum boundary, related ion ac-
celeration and trapping is completed, also the formation of new ion-vortices stops. At
later times, created ion-vortices blur and become hard to discern and eventually disap-
pear due to energy loss and thermalization inside the bulk plasma. Finally, as shown in
Fig.4.43, the soliton transverse electric field Ey is a half-cycle structure in space, while,
the corresponding magnetic field Bz is an one-cycle structure. From Maxwell’s equations,
i.e., the Faraday law Bz ∼ ∂Ey/∂x, the x derivative of the Gaussian soliton profile Ey

can lead to the Bz structure as shown in Fig.4.43. Moreover, the EM structure is periodic
in time. [222, 232, 233] We also performed a run for inhomogeneous plasma by taking a
linear density profile, n = 0.35 − 1.05ncr and laser amplitude a = 0.6, other simulation
parameters are kept fixed. The same scenario as before emerges, i.e., generation of large
amplitude EM soliton which travels down the gradient of the plasma density, however,
this time leaving behind in the wake the chain of ion-vortices.

In conclusion, the T-SEAS instability induced by a linearly polarized laser in a sub-
critical plasma which is overdense for standard SRS was studied by particle simulation.
Its spectrum is initially well explained by a resonant three-wave parametric decay of the
laser pump into the critical Stokes EM sideband and the trapped EAW, and it takes place
whether the ion dynamics is taken into account or not in its initial stage (Sect. 12.5).
However, when ion dynamics is considered, novel physical phenomena were observed: the
excitation of large IAW, the generation of large EM soliton after the IAW front breaks up,
and subsequent formation of the MeV range ion-vortices in ion phase-space. Ion-vortices
were also found in simulations in nonuniform plasma. Also, it is found that the trapped
EAW mode is similar to the KEEN waves.
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Chapter 5

Ponderomotive Potential and

Magnetization

High-intensity electromagnetic waves interacting with a plasma may cause a variety of
ponderomotive effects,where the term ponderomotive usually refers to nonlinear slow
timescale (low-frequency) phenomena induced by the fast timescale oscillating (high-
frequency) fields. It appears as a generic multi-scale plasma paradigm, represented by two,
nonlinearly interlinked, slow and fast timescale plasma dynamics. These ponderomotive
effects play an important role in many physical- laboratory and fusion and astrophysi-
cal situations. In many treatments of ponderomotive effects, single-particle dynamics has
been employed [254, 255]; that is, the effective force was taken the particle number density
times the single particle force. This would mean that collective effects were neglected.
Moreover, although the need for a more exact treatment was often mentioned, the only
term taken into account in the ponderomotive force was the one involving the gradient of
the time-averaged high-frequency electromagnetic radiation field energy density. Deriva-
tions of expressions for the ponderomotive force have used a variety of approaches, such
as, fluid equations [256], kinetic approaches [257, 258, 259, 260], Lie transform technique
[261] and phenomenological methods [262]. Typically, these derivations are all relatively
complicated [263], and its is our aim to present a simple and rigorous Hamiltonian treat-
ment of ponderomotive interactions in a Vlasov plasma following Škorić and ter Haar
[264].

5.1 Hamiltonian formulation of ponderomotive inter-

actions in a Vlasov plasma

A Hamiltonian formulation of ponderomotive interactions in a Vlasov plasma is presented.
Transformation from the rest frame to the oscillation center frame (OCF) is achieved,
and a Liouville equation is derived from the low-frequency OCF distribution function, the
Hamiltonian in this equation includes the ponderomotive terms. The equation is solved
in the adiabatic approximation, the corresponding charge and current densities evaluated,
and the first-order nonadiabatic correction to the current density is derived.

Here, we shall consider a hot, collisionless, nonrelativistic electron plasma [264] and
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neglect ion motions which serve as neutralizing background. In a Vlasov plasma the
Liouville equation reduces to the Vlasov equation for the single electron distribution
function f(r,v, t) as

∂f

∂t
+ (v · ∇)f − e

m

(
E + (v × B) · ∂f

∂v

)
= 0, (5.1)

where E and B are (self-consistent) electric and magnetic fields from the Maxwell equa-
tions (c = 1) and where −e and m are the electron charge and mass, respectively. We
shall restrict ourselves to the case where there are no external electric and magnetic fields.
Consider now the situation where a (strong) high-frequency (transverse or longitudinal)
electromagnetic wave, with electric and magnetic fields E

H
and B

H
, is excited in the

plasma We follow [261, 264], and introduce, instead of the rest-frame distribution func-
tion f , the so-called oscillation center frame (OCF) distribution function F (r,v, t) where

u = v − vq, (5.2)

with v
q

the linear electron quiver velocity in the high-frequency field, and

dvq

dt
= − e

m
EH . (5.3)

The transformation from f(r,v, t) to F (r,v, t) reflects the fact that once the high-
frequency transient effects have died out, the electrons respond linearly to a high-frequency
field by relaxing toward the so-called the oscillating (Maxwell) distribution function; that
is, to a distribution function f which is the initial (equilibrium) distribution function f0

with the velocity argument shifted by the linear quiver velocity, thus

F = f0(v − vq). (5.4)

Put mathematically, the transformation from f → F , when made in Eq. (5.1) enables
us to remove the lowest-order linear response, thus easing the perturbative calculation of
higher-order nonlinear terms. It also turns out that the transformed Eq.(5.1) is suitable
for compact Hamiltonian formalism. The equation for F is the (Hamiltonian) Liouiville
equation

∂F

∂t
+ [F ,H ] = 0, (5.5)

where [....] is a Poisson bracket-in terms of r and p = mu and H is the OCF Hamiltonian.

H =
1

2
m(u + vq)

2. (5.6)

As standard, we split the various quantities into two, fast and slow timescales;i.e. a
high frequency part and a low-frequency (time averaged, indicated by angular brackets
〈....〉, indicated, respectively, by the indices H and L. Equation (5.5) then reduces to the
following pair of coupled equations:

∂FL

∂t
+ [FL,HL] + 〈[FH ,HH ]〉 = 0, (5.7)
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∂FH

∂t
+ [FH ,HL] + [FL,HH ] = 0, (5.8)

where we neglect terms corresponding to second and higher-order harmonics, an approxi-
mation as discussed discussed elsewhere [263], - that is, concentrate on the high-frequency
dynamics around the fundamental frequency Ω of the high-frequency wave. The slow
timescale (L) and fast timescale (H) Hamiltonians are given by the equations

HL =
1

2
(u2 +

〈
v2

q

〉
),HH = m(u · vq). (5.9)

The distribution functions FH and FL determine the moments, electron density n and
current density j .. in the rest frame, as follows:

n =

∫
f d3v =

∫
Fd3u,

j = −e
∫

f vd3v = −envq −
∫

uFd3u, (5.10)

or, split into low-frequency and high-frequency components

nL =

∫
FLd

3u,nH =

∫
FHd

3u, (5.11)

jL = −e 〈nHvq〉 −
∫

uFLd
3u, (5.12)

jH = −enLvq −
∫

uFHd
3u.

We need, thefore to solve Eqs.(5.7) and (5.8), and to do this we shall use the perturbation
treatment This has been done by other authors [257, 258, 259, 264], but we shall present a
simpler albeit rigorous derivation [264] of the final results. We introduce a small parameter
δT which characterizes the thermal dispersion and which is the ratio of the electron thermal
velocity vT to the phase velocity of the high-frequency waves [264, 265].

δT = (vTkH/ω) << 1, (5.13)

where kH is a typical high-frequency wavenumber. Assuming the validity of the inequality
(5.13) we are the same time ensured of the absence of resonant kinetic high-frequency
wave- electron effects. We now solve Eq. (5.8) for FH in the linear approximation,
keeping only terms of first order in δT . This leads to

∂FH

∂t
+ [FL,H H ] = 0, (5.14)

or

FH =

[
FL,

∫
HHdt

]
= −[FL, m(u · rq)], (5.15)
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where the integration is on the high-frequency scale while rq =
∫

vqdt is the linear quiver
displacement. One can check by inspection that the term [FH ,H L] neglected in writing
down (5.14) which gives nonlinear contribution, is small whenever W � 1, where W is
the so-called plasma turbulence parameter W = v2

q/v
2
T . Substituting (5.15) into (5.7) we

find [264]

∂FL

∂t
+ [FL,H L] + 〈[HH , [FL, m(u · rq)]]〉 = 0. (5.16)

If the plasma is not very nonuniform so that typical wave-numbers corresponding
to the spatial variation of FL are much smaller than kH and since, as can be verified
a posteriori, the velocity gradient of FL is sufficiently small, we can neglect all second
derivatives of FL. (We note that the terms involving ∂2FL/∂ui∂uj lead to a diffusion in
velocity space [123]. More precisely, in the presence of a growing oscillation this effect
could result in an increase of the time- averaged momentum and energy of nonresonant
electrons. The so-called fake diffusion has been studied by some authors [261, 266, 267].
In such a case, the last term on the left-hand-side of (5.16) can be transformed as follows,

〈[HH , [FL, m(u · rq)]]〉 =〈
∇(u · vq) · ∂

∂u
− (vq · ∇) · (rq · ∇) −∇(u · rq) · ∂

∂u
FL

〉
=

〈[∇FL · (rq · ∇)vq)〉 −
〈
∇(rq · ∇)(u · vq] · ∂

∂u
FL

〉

−〈(vq · ∇)(rq · ∇) + (rq · ∇)(vq · ∇)〉FL (5.17)

+ un 〈[(rq · ∇)∇mvqn] + [(vq · ∇)∇mrqn]〉 ∂

∂um

FL,

where summation over repeated indices is implied. The last two terms on the right-hand-
side of (5.17) are both time-averages of time derivatives and therefore vanish for slowly
modulated waves, The first two terms on the right-hand-side of (5.17) can be combined
into a single Poisson bracket so that we end up with the equation

∂FL

∂t
+ [FL,HP ] = 0, (5.18)

where

HP = HL + 〈(rq · ∇)HH〉 , (5.19)

is the effective -ponderomotive Hamiltonian, which, together with any low-frequency
fields, determines the slow timescale dynamics of electrons in high-frequency waves. The
approximation HP =HL is the one mentioned in the introduction , while the extra term
corresponds to what Cary and Kaufman [261] called, the ponderomotive Hamiltonian.
We can rewrite Eq.(5.19) as follows,
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HP =
1

2
m[(u − u0)

2 +
〈
v2

q

〉− u2
0], (5.20)

where we have introduced an ansatz for slow timescale induced drift velocity u0 , by the
equation

u0 = −〈(rq · ∇)vq〉 (5.21)

and Eq.(5.18) can be written in the form

∂FL

∂t
+ [(u− u0) · ∇FL) + ∇[−1

2
< v2

q > +(u · u0)] · ∂FL

∂u
= 0, (5.22)

a result also obtained via a different procedure[258]. We see that apart from the well-
known gradient ponderomotive force ∇1

2

〈
v2

q

〉
there is an additional term in the effective

ponderomotive force which derives from the deformation of FL due to the slow timescale
flow induced by ponderomotive interactions (see Eq. (5.21)). In the case of a warm plasma
when the phase velocity ω/kL of the low-frequency motions is small compared with vT ,

ω/kL << vT , (5.23)

we can look for a stationary solution of Eq.(5.18). In steady state this equation has the
general adiabatic solution,

FL = F0(HP ), (5.24)

where F0 is an arbitrary distribution function. Before discussing this solution, a few
remarks are appropriate. First, the rest frame distribution is obtained just by replacing u

with u − u0. Second, if one wants to take into account the low-frequency charge separation
field, one should simply replace HP with HP −eΦ in Eqs, (5.18) and (5.24), where Φ is
the appropriate scalar potential. Third, in the absence of high-frequency waves, the
solution (5.24) should reduce to the initial velocity distribution which we shall assume
to be Maxwellian. Fourth, in the OCF, the solution for FL is the initial distribution
shifted by u0 as a result of nonlinear ponderomotive interactions. This lead to a linear,
first order term that should affect the current density (5.12). Finally, we briefly examine
the validity of adiabatic approximation. This approximation is also characteristics of
most of earlier works [259], while Cary and Kaufman [261] also work essentially work
in this approximation when obtaining their result for the low-frequency ponderomotive
response. One might feel that as far as the nonadiabatic resonant type of correction
to the high-frequency electron dynamics are concerned, the smallness of δT justifies the
adiabatic procedure. However, the situation is different for the case of the slow timescale-
low-frequency response. Condition (5.23) implies that a considerable number of electrons
are in resonance with the low-frequency motion. It would therefore be useful to find
the quantitative measure of such a nonadiabatic effect. To do this, we have assumed
that FL = F0 + δF , where |δF | � F0 and, substituting this expression into Eq. (5.18),
linearizing and Fourier transforming and further assuming that F0 is Maxwellian we find in
the leading term of the Fourier transform δj∗,ωL of the (nonadiabatic) resonant contribution
to the nonlinear low-frequency current density, the expression
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δj∗,ωL = −i(π/2)1/2(Ω/kvT )[nLu0]
⊥
k,Ω, (5.25)

where the superscript ⊥ indicates the component at the right angle to k. We see that
this correction gives a nonlinear Landau damping mechanism for high-frequency waves,
which could be small as long as the condition (5.23) holds. Let us now return to Eq.
(5.24). Assuming that F0 is Maxwellian, and using the fact that u2

0/ < v2
q >∼ Wδ2

T � 1
to neglect u2

0 in Hp in the exponent, we get from Eqs. (5.11) and (5.12)

nL = n0 exp (− < v2
q > /2v2

T ), (5.26)

a well-known result for the electron density, modified because of ponderomotive inter-
actions [268]. We now turn to the low-frequency ponderomotive current density jL To
evaluate nHvH we can use either (5.11) and (5.15) or the high-frequency equation of
continuity. Either procedure gives us

nH = −∇ · (nLrq) (5.27)

The second contribution to jL becomes nLu0 if we use for FL the shifted Maxwellian
distribution. Using Eqs. (5.27) and (5.21) and the vanishing of the time average of
expressions such as (rqivqj + vqirqj) ( cf. discussion following Eq. (5.17)) we find

jL = e 〈(∇ · (nLrq))vq − enL(vq · ∇)rq〉 =
1

2
e [∇× 〈(vq × rq)〉], (5.28)

which is important, hence less known result for the nonlinear ponderomotive electron
current density. We note that this equation is consistent with the requirement of slow
timescale quasineutrality (∇ · jL) = 0. The result given by (5.28) was obtained three
decades ago in the search for a possible collisionless mechanism for the nonlinear excitation
of quasistatic magnetic fields by Langmuir waves [257, 269]. However, it should be stressed
that it is just a general manifestation of ponderomotive interactions as the more widely
exploited density modification formula (5.26). Naturally, the basic generation equation
for the low-frequency magnetic field δB due to the nonlinear current density (5.28) follows
simply from the appropriate Maxwell equation in which we can neglect the displacement
current and the ion contribution, therefore

∇2δB = −(4πe/c)(∇× jL),

∇2δB = −(2πe/c)[∇× (∇× 〈(vq × rq)〉)], (5.29)

which for longitudinal EH simplifies to the formula

δB = (2πe/c)nL 〈(vq × rq)〉 . (5.30)

If one goes beyond the adiabatic approximation, an integral term to the left-hand side
of Eq. (5.29), would appear which represents the anomalous skin damping of the mag-
netic field, characteristic of the propagation of quasi-static (electro)-magnetic wave in a
overdense Vlasov plasma Ω � ωpe so that the condition (5.23) is satisfied [271]. In con-
clusion, we note that above results indicate that slow-scale magnetic fields together with
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well-known density modification are both expected as general features of ponderomotive
effects in turbulent plasmas [272, 273, 274, 275].

5.2 The hydrodynamics of ponderomotive interac-

tions in a collisionless plasma

Ponderomotive effects, that is, nonlinear low-frequency phenomena induced by high-
intensity electromagnetic waves, have been the subject of many studies [254]. Ponderomo-
tive interactions have been invoked to explain a number of important phenomena, both
in laboratory, fusion, space and astrophysical plasmas. In particular, such as is a mecha-
nism of nonlinear generation of ponderomotively driven large quasistatic magnetic fields
in laser plasmas. As discussed above, it has been shown [257, 263] that in a collisionless
plasma, magnetic fields can be excited by a ponderomotive solenoidal electron current jL,
given by the expression

jL = −e 〈nv〉 =
1

2
e∇× (nL 〈vq × rq〉),

where −e,m and v are, respectively, the electron charge, number density, and velocity,
while the pointed brackets, as before, indicate time averaging over the period of high-
frequency waves. The quantities vq and rq are, respectively, the electron linear quiver
velocity and displacement in the high-frequency electromagnetic (transverse or longitu-
dinal) field (EH, BH), which satisfy the relations d2rq/dt

2 ≡ dvq/dt = −eEH/m,where
m is the nonrelativistic electron mass, and indices Land H denote, the high-frequency
(fast timescale) and the low-frequency (slow timescale) parts of the relevant quantities,
respectively. In earlier papers, e.g. in refs. [257, 263] (see above) the above equation for
jL was obtained by using the adiabatic kinetic theory in a warm collisionless plasma as-
suming that mobile electrons are in equilibrium with the slow timescale motions. In that
way the equation, as expected, is consistent with the requirement for the slow timescale
quasineutrality, (∇ · jL) = 0. Later kinetic studies [258, 259, 270, 256, 269, 261] have
examined nonlinear collisionless mechanism in more detail confirming the original result.
Subsequent study using a Hamiltonian approach, given in a previous section, gave a simple
formalism and physical insight into the mechanism [265, 272, 273, 274, 264, 261].

It has been often claimed that only a kinetic theory can derive the correct expression
for jL in a collisionless plasma and that all attempts to use hydrodynamics without ”a
correction for the particle stress perturbed by ponderomotive terms” are doomed to failure
[257, 258, 259]. This statement was further reinforced by the fact that most of earlier
hydrodynamic attempts failed to obtain complete results [276, 277, 269, 278]. It is the
purpose of the following to present a simple rigorous hydrodynamic derivation of the
correct result, while showing the basic physical approximations involved [273, 274, 275,
279].

As usual, we split all physical quantities into their slow and fast timescale parts, the
total slow timescale ponderomotive electron current density will consist of two terms, a
fast timescale beat contribution and a slow timescale part:

159

159



jL = −e 〈nv〉 = −e(〈nHvH〉 + nLvL). (5.31)

As we are interested only in the contributions to jL,which are quadratic in the high-
frequency field amplitude, it is sufficient to evaluate the first ”beat” term in (5.31) by
solving the linear evolution for each, nH and vH , or more precisely, by using the linearized
equation of continuity for nH and the equation of electron motion for vH , respectively. The
thermal correction which is of the second-order in the dispersion parameter is neglected,
cf. (13) in [264] Thus, we simple have

−e 〈nHvH〉 = e 〈∇ · (nLrq)vq〉 (5.32)

The slow timescale velocity in (5.31) is more difficult to evaluate , since as nL(≈ n0)
is the zero-order quantity, we have to calculate vL to the second order in the high-
frequency field amplitude. We now introduce a hydrodynamic (fluid) description of the
nonrelativistic electron motion:

∂v

∂t
+ v × (∇× v− e

mc
B)+

e

m
E + ∇v 2 +

1

nm
∇pe = 0 (5.33)

where pe is the electron pressure term, which we shall take into account in its standard,
isotropic form. In that connection we should note an important result of the adiabatic
kinetic theory (see above); the only effect on the collisionless ponderomotive interactions
on the steady-state electron distribution is a shift by mean high- and low-frequency ve-
locities; this means that if the electron distribution was initially Maxwellian, the electron
pressure term remains isotropic [258, 264, 273].

We look for an expression for vL. Since (∇ · jL) = 0, together with (5.31) and (5.33)
already defines the potential part of vL, it will be sufficient to determine the remaining
solenoidal (transverse) component. Therefore, we take the curl of equation (5.33) to
arrive at a general (Helmholtz) equation [in a nonuniform plasma ∇× (∇pe/nm) can
give rise to a (non-ponderomotive) thermoelectric magnetization current proportional to
(∇nL ×∇T ) (e.g. see ref. [258, 259])]:

∂ω

∂t
−∇× (v × ω) = 0, (5.34)

describing the vortex dynamics of an electron fluid; the electron vorticity is defined by the
equation ω = ∇× v−eB/mc.As usual, splitting the physical quantities into low-frequency
and high-frequency parts and neglecting second- (and higher- order) harmonics [257], we
get from (5.34)

∂ωH

∂t
−∇× (vL×ωH) −∇× (vH×ωL) = 0, (5.35)

∂ωL

∂t
−∇× (vL×ωL) −∇×〈vH×ωH〉= 0; (5.36)

if we assume that electrons are in a steady state as far as the slow time scale motion us
concerned, we can drop the time derivative in (5.36). As the linear part ωq of the high-
frequency vorticity ωH vanishes, we solve (5.35) for the nonlinear (third order in high-
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frequency amplitude) part of ωH . The zero value of ωq follows directly from the equation
of motion for vq, as

∂

∂t
∇× vq= −∇×EH

m
=

e

mc

∂BH

∂t
.

From the above it follows that the introduction of the vorticity equation (5.34) - removes
the lowest order linear response- which appears to be analogous to the transformation to
the oscillating center frame in the kinetic approach (see above [264]). We can now solve
(5.35) for the nonlinear ωH , by using the linear high-frequency quantities for vq and ωq,
hence we have

ωH = ∇× (rq×ωL). (5.37)

Substituting (5.37) into (5.36) we readily get

∂ωL

∂t
−∇× [(vL×ωL)+

〈
vq×∇× (rq×ωL)

〉
] = 0, (5.38)

where in the steady state we can put the time derivative term equal to zero.
After some tedious manipulations (shown below), we find that the last term in the

equation (5.38)can be transformed into

∇×
〈
vq×∇× (rq×ωL)

〉
= ∇× [ωL×

〈
(vq · ∇)rq

〉
], (5.39)

so that in the steady state equation (5.38) reduces to

∇× [ωL×(vL −
〈
(vq · ∇)rq

〉
] = 0, (5.40)

which directly yields a trivial solution

vL =
〈
(vq · ∇)rq

〉
, (5.41)

which fully agrees with the kinetic result [257, 258, 259], contrary to some earlier state-
ments. At this point, we stress that, indeed, equation (5.40) is the fourth order in the
amplitude, which is necessary in order to derive the correct formulae for slow timescale-
ponderomotive velocity term.

By combining equations (5.41) and (5.42) with (5.31) and (5.32) we readily get the
required equation for the ponderomotive electron current

jL = e
〈
vq(∇ · nLrq) − nL(vq · ∇)rq

〉
=

1

2
e∇× (nL 〈vq×rq〉). (5.42)

The basic equation for the generation of slow timescale magnetic fields by the pon-
deromotive magnetization current (5.42) follows simply from Ampère’s law with the dis-
placement current and the ion contribution neglected, as was pointed out earlier.

Let us briefly comment on some previous work on this subject. Some of hydrodynamic
derivation in a cold electron fluid limit [276, 277, 278] typically recover only the first term
in (5.36) and thus obtained (∂/∂t)[∇× vL − (eBL/mc)] = 0. As was pointed out in Refs.
[258, 261, 279] such result are applicable just for the short-time response, before electrons
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have time to equilibrate with the slow timescale ponderomotive dynamics. Moreover,
it was claimed that in most experimental situations in laser plasmas the actual scaling
does not follow the cold plasma approximation, but it supports the steady state solution
given by (5.42). Moreover, we note, the above result for the ponderomotive magnetization
current is typically not recovered in the static and collisionless limit of many results on
nonstationary ponderomotive interactions [280] (and references therein).

Derivation of equation (5.39),[279]
To prove Eq. (5.39) we shall use tensor notation involving the totally antisymmetric

third rank unit tensor εijk, which satisfies the relations

εijk = −εikj = −εjik,

and ∑
k

εijkεklm = δliδmj − δmiδij ,

where δij is the Kronecker symbol.
We also use the fact that vq and rq are high-frequency quantities while ωL is a low-

frequency quantity, so that on averaging over the high-frequency motions we have relations
like (compare the discussion in the above section)

〈vi∂jrkωl + ri∂jvkωl〉 = 0, 〈rivi∂jωl〉 = 0, (5.43)

where vi, ∂i, ri and ωi denote, respectively, the components of vq, rq, ∇ and ωL. We
finally remind that from the definition of vorticity, (∇ · ωL) = 0.

We now write the ith component of the key vector expression in (5.39)

〈
vq×∇× (rq×ωL)

〉
i

=
∑
j,k,l
m,p,s

〈εijkεklmεmpsvj∂lrpωs〉

=
∑
j,p,s

〈εjpsvj∂irpωs + εipsvj∂jrsωp〉

=
∑
j,p,s

〈εipsωpvj∂jrs + εipsrsvj∂jωp + εjpsvj∂jrpωs〉

= ωL×
〈
(vq · ∇)rq

〉
i
+

1

2

〈∑
j,p,s

(εjps(∂i(vjrpωs)

+ vjrp∂iωs) + εips(rsvj∂jωp + vprj∂jωs))〉
=
〈
vq×∇× (rq×ωL)

〉
i
+

1

2

〈
∇(vq · rq × ωL

〉
i

+
1

2

∑
j,p,s

〈εjpsvjrp∂iωs + εips(rsvj∂jωp + vprj∂jωs〉 ,

where we have used (5.43) and the properties of εijk.We now in the first sum, involving
εjps, take into account that one out of j, p, s must necessarily equal i so that we can
write
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∑
j,p,s

εjpsrpvj∂iωs =
∑
p,s

εips(rpvi∂iωs + rsvp∂iωi + rivs∂iωp), (5.44)

where we have indulged in some renaming of dummy indices. In the sums involving εips

we use the fact that j must for given p and s take on the values i, p, and s so that those
sums can be written in the form

∑
j,p,s

εips(rsvj∂jωp + vprj∂jωs) =
∑
p,s

εips(rsvi∂iωp + rivp∂iωs + rsvp∂pωp (5.45)

+rpvp∂pωs + rsvs∂sωp + rsvp∂sωs).

Combining (5.44) and (5.45) and using the properties of εips we find for the expression

〈∑
p,s

εips[rsvp(∂iωi + ∂pωp + ∂sωs) + rpvp∂pωs + rsvs∂sωp]

〉
= 〈vq×rq(∇ · ωL)i, 〉

where we have used (5.43). Hence we finally get

〈
vq×∇× (rq×ωL)

〉
= ωL×

〈
(vq · ∇)rq

〉
+

1

2

〈
∇(vq · rq × ωL

〉
+

1

2
〈vq×rq(∇ · ωL)〉 ,

from which (5.39) follows, if we use that (∇ · ωL) = 0.

5.3 Spontaneous generation of magnetostatic fields

In a collisionless plasma regime, large amplitude magnetostatic fields can be driven by
the ponderomotive electron magnetization current. Accordingly, under an action of trans-
verse pump field, generally two types of parametric instabilities: magneto-modulational
instability and stimulated magnetostatic scattering instability were found [274, 275].
Parametric growth rates indicate possible importance in high-intensity laser plasma in-
teraction studies.

Under the action of intense laser light (pump) various plasma oscillation modes can
become coupled and can grow in time and space before getting saturated at large ampli-
tudes and dissipated in a plasma. A linear parametric theory of laser light instabilities,
including a decay, oscillating-two-stream (OTS), stimulated Brillouin (SBS), stimulated
Raman (SRS) and stimulated Compton scattering and filamentation, is well developed
[97, 281, 105].

In particular, much ongoing effort has been put into studies of scattering instabilities
which have a potential to substantially reduce laser light absorption in a target. In this
section, we wish to discuss a less known competing parametric processes due to excitation
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of magnetostatic field instabilities. In a collisionless regime, the basic mechanism driv-
ing magnetostatic (slow timescale) fields has appeared to be due to the ponderomotive
electron magnetization current, derived above (5.42), written in the form

jM = − ieω2
pe

16πmω3
0

∇× (E ×E∗) , (5.46)

where, E is the complex amplitude of the high-frequency (ω0) laser field.
The basic magnetostatic field generation equation is readily obtained from the Am-

peres law, following the procedure, indicated above (for details see Kono et al., [256]),
written as

∇2δB + Skin =
ieω2

pe

4mcω3
0

∇×∇× (E × E∗) , (5.47)

with the displacement current neglected, and where Skin represents the skin (anoma-
lous) damping term which characterizes propagation of a magnetostatic mode (ω � ωpe)
through a warm overcritical density plasma.

5.3.1 Coupled mode equations

We shall focus on a nonlinear state of a nonisothermal (Te � Ti) collisionless plasma
subjected to an action of a finite amplitude laser pump wave Ẽ (ω0,k0) . We generalize the
standard derivation of parametrically coupled modes [97, 281, 105], by taking into account,
apart from the usual low-frequency density perturbation, the additional ponderomotive
effect in the from of ponderomotivelly driven magnetostatic fluctuations. Leaving out
details of the straightforward procedure (see Refs. [274, 275]) the basic set of coupled
equations is written as

∂2Ẽ

∂t2
+ ω2

peẼ + c
2∇×

(
∇× Ẽ

)
− 3v2

Te∇
(
∇ · Ẽ

)
=
δn

n0
ω2

peẼ+
e

mc

∂Ẽ

∂t
× δB, (5.48)

∂2δn

∂t2
−∇2δn =

1

16πM
∇2
∣∣∣Ẽ∣∣∣2 , (5.49)

∇2δB =
ieω2

pe

4mcω3
0

∇×∇× (E× E∗) − Skin, (5.50)

where

Skin = − ω2
pe

(2π)3/2 c2vTe

∂

∂t

∫
δB (r′)
|r − r′|dr

′, (5.51)

where Ẽ is the high-frequency laser field with a complex amplitude E and δn and δB
stand for the low-frequency density and magnetostatic field perturbation, respectively.
An integral term (5.51) represents the anomalous skin effect (Landau damping). From
equations (5.48) to (5.51) it appears that parametric excitation of magnetostatic fields
([274, 275] ) coexists with standard type of laser-plasma instabilities, such as e.g. OTS
and stimulated Brilloun and Raman scattering instabilities.
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5.3.2 Instability analysis

Applying a linear parametric theory method, we investigate the instability growth rate
against an excitation of magnetostatic fields δB (Ω,q) . One founds that generally taken,
the parametric coupling involves a pump (t), a magnetostatic wave (m) and high-frequency
side-bands. Depending on a nature of these side-bands, two types of magnetostatic insta-
bilities were found by Škorić, [274, 275]

I MMI- magneto-modulational instability involving the Langmuir (l) side-bands;

II MSI- magnetostatic stimulated scattering instability which corresponds to a fully
electromagnetic (t) instability.

In order to further illustrate, we put some typical values for calculated instability
growth rates, which depend on the laser pump intensity v0/c (v0 ≡ eE0/mω0), the fre-
quency mismatch Δω = ω0 − ωpe, and the electron temperature vTe.

(i) Magneto-modulational instability (MMI). (t→ l +m)

This instability is of a purely growing type (4-wave) involving both resonant Langmuir
sidebands. An interesting case is when k0 � 2 (k0 ⊥ q) with a dispersion relation

(iξ − 1)
(
Ω2 − Δω2

0

)
+

1

4

ω2
pe

ω0

q2

q2 + k2
0

Δω0

(v0

c

)2

= 0, (5.52)

where Δω0 = (c2k2
0 − 3v2

Teq
2) /2ω0, ω

2
0 = ω2

pe + c2k2
0, and the Landau damping term gives

ξ = (π/2)
(
ω2

peΩ/c
2vTeq

3
)
. In the case of weak damping, i.e. ξ � 1, one gets for a

maximum growth rate

γ =
ω2

pe

8ω0

(v0

c

)2

, (5.53)

for q2
max =

[
c2k2

0 +
(
ω2

pe/4
) (

v0

c

)2
/3v2

Te

]
, which is a slow instability, of the order of weakly

relativistic correction (relativistic mass increase).

For a nonzero damping, ξ ∼ σ (1), one normally expects an instability growth rate
smaller than (5.53). In a dipole pump limit, above results agree with the other results,
being similar to the magneto-modulational instability studied in detail for the Langmuir
pump by Kono et al., [269, 256].

(ii) Stimulated magnetostatic scattering instability (MSI). (t→ t′ +m)

This instability, proposed by Škorić [274, 275], looks particularly interesting, as a
3-wave process (resonant Stokes sideband) with a dispersion relation in the form

(Ω + iω∗) (Ω − Δω0) − iω∗
ω2

pe

ω0

(v0

c

)
sin2 θ = 0, (5.54)

where ω∗ = Ω/ξ, (ξ is given above) comes from the Landau damping term (Skin), Δω0 =
c2q (2k0 cos θ − q) /2ω0, and angle θ� (k0,q) . Following ( 5.54), we get for a finite k0, a
maximum growth rate γ ≡ Im (Ω)

γ � 0.3ω0

(vTe

c

) 1

2

(v0

c

)(ck0

ω0

) 3

2

, (5.55)
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for

θ ∼ 400, if
k0c

ω0
� vTe

c

(
ω0

ωpe

)2 (v0

c

)2

,

which can become pronounced in a high-intensity laser driven hot plasma regimes.
For the resonance regime, in a limit of dipole pump, both sidebands are driven resonant

(4-wave), resulting in a growth rate lower that (5.55), given as

γ � ωpe

2
√

2

ck0

ω0

v0

c
, (5.56)

for
θ = π/2, if 1 � (q/k0)

2 <
(
1/
√

2
)

(ωpe/ck0) (v0/c) .

Generally taken, MSI which maximizes for perturbations transverse to the pump field is
pronounced at high (laser) intensities in low density hot plasmas; coexisting and possibly
competing with electromagnetic stimulated scattering instabilities, such as, is SBS, SRS
and Compton; as well as with the 4-wave filamentation type of instability. Magnetostatic
field excitation, appears as a general feature of parametrically unstable warm plasmas.
For a more complete and consistent description of electromagnetic parametric instabilities
by laser light, inclusion of (weak) relativistic effects would be appropriate [282].
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[36] Lj.R. Hadžievski, M.M. Škorić. A.M. Rubenchik, E.G. Shapiro, S.K. Turitsin: Phys.
Rev. A 42 3561 ( 1990).

[37] M.A. Berezovskii, A.I. Dyachenko, A.M. Rubenchik: Sov. Phys.-JETP 61, 701
(1985).

[38] H.L. Rowland: Phys. Fluids 28, 150 (1986).

[39] M.V. Goldman, J.C. Weatherall, D.R. Nicholson: Phys. Fluids 24, 668 (1981).

168

168



[40] J.P. Sheerin, J.C. Weatherall, D.R. Nicholson, G.L. Payne, M.V. Goldman, P.J.
Hansen: J. Atmos. Terr. Phys. 44, 1043 (1982).

[41] H.L. Pecseli, J. J. Rasmussen, K. Thomsen: Phys. Lett. A 99, 175 (1983).

[42] M.J. Giles: Phys. Rev. Lett. 47, 1606 (1981).

[43] V.V. Krasnosel’skikh, V.I. Sotnikov: Sov. J. Plasma Phys. 3, 491 (1977).

[44] B.A. Trubnikov S.K. Zhdanov: Phys. Rep. 155, 137 (1987).

[45] P.A. Jansenn, J. J. Rasmussen: Phys. Fluids 26, 1297 (1983).

[46] N.R. Pereira, R.N. Sudan, J.Denavit: Phys. Fluids 20, 936 (1977).

[47] P.A. Robinson, D.L. Newman, M. V. Goldman: Phys. Rev. Lett. 62, 2132 (1989).

[48] S. Lipatov: JETP Lett. 26, 337 (1977).

[49] V.E. Zakharov. E.A. Kuznetsov: Sov. Phys. JETP 64, 773 ( 1986).
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[117] M.S. Jovanović and M.M. Škorić: In Low Temperature and General Plasmas, ed. by
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[272] M.M. Škorić: Lj. Stokić, Phys. Lett A 92, 389 (1982).
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