NIFS-383

FULL TEXT (PDF, 785 KB)


Author(s):

K. Ichiguchi, O. Motojima, K. Yamazaki, N. Nakajima and M. Okamoto

Title:

Flexibility of LHD Configuration with Multi-Layer Helical Coils

Date of publication:

Nov. 1995

Key words:

LHD, multi-layer helical coils, heliotron, magnetic well, Mercier criterion, bootstrap current

Abstract:

The Large Helical Device (LHD) is a heliotron device with two helical coils, each of which has a structure of three current layers. It is designed so that the current in each layer should be controlled independently. By changing the combination of the coil current in the layers, it is possible to vary the effective minor radius of the helical coils, which enlarges the flexibility of the configuration. The properties of the plasmas for several combinations of the layers are investigated numerically. In the vacuum configuration, it is obtained that the combination of the layers corresponding to a large effective coil radius has a large outermost surface. In this case, the rotational transform decreases and the magnetic hill is reduced compared with the configuration with all three layers. The large Shafranov shift which is due to the small rotational transform enhances the magnetic well and the magnetic shear to stabilize the Mercier mode, however, it degrades the equilibrium beta limit. In the case of the combination for a small effective coil radius, the Mercier mode is destabilized, because the magnetic hill is enhanced. The effect on the bootstrap current is also studied.

List of NIFS Report (1995)Return toContents Page Return toNIFS Homepage
footer
 National Institute for Fusion Science
Copyright: 1995-2007 National Institute for Fusion Science (NIFS)
Address: 322-6,Oroshi-cho, Toki, GIFU, 509-5292, Japan
Telephone:+81-572-58-2222