NIFS-588

FULL TEXT (PDF, 799 KB)


Author(s):

W.X. Wang, N. Nakajima, S. Murakami and M. Okamoto

Title:

An Accurate delta f Method for Neoclassical Transport Calculation

Date of publication:

Mar. 1999

Key words:

neoclassical transport,, drift kinetic equation, delta f algorithm, Monte Carlo collision operator

Abstract:

A delta f method, solving drift kinetic equation, for neoclassical transport calculation is presented in detail. It is demonstrated that valid results essentially rely on the correct evaluation of marker density g in weight calculation. A general and accurate weighting scheme is developed without using some assumed g in weight equation for advancing particle weights, unlike the previous schemes. This scheme employs an additional weight function to directly solve g from its kinetic equation using the idea of delta f method. Therefore the severe constraint that the real marker distribution must be consistent with the initially assumed g during a simulation is relaxed. An improved like-particle collision scheme is presented. By performing compensation for momentum, energy and particle losses arising from numerical errors, the conservations of all the three quantities are greatly improved during collisions. Ion neoclassical transport due to self-collisions is examined under finite banana case as well as zero banana limit. A solution with zero particle and zero energy flux (in case of no temperature gradient) over whole poloidal section is obtained. With the improvement in both like-particle collision scheme and weighting scheme, the delta f simulation shows a significantly upgraded performance for neoclassical transport study.

List of NIFS Report (1998)Return toContents Page Return toNIFS Homepage
footer
 National Institute for Fusion Science
Copyright: 1995-2007 National Institute for Fusion Science (NIFS)
Address: 322-6,Oroshi-cho, Toki, GIFU, 509-5292, Japan
Telephone:+81-572-58-2222