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巻頭言 

                            2018/3/26 

三尾幸治、上原和也 

 

 本論⽂は、2016 年秋に逝去された数理情報研究所の吉村和美⽒によるものである。本論

⽂の投稿手続き中に亡くなられたため、その後ご家族の同意のもと下妻隆（NIFS）及び学

部・⼤学の同窓⽣（鈴⽊孝利、上原和也、三尾幸治）で、論⽂原稿の主張点を保持して、

発表できる形に校正を加えたものである。 

 

概要は下記のとおりである。 

  流体の流れなどの観測にレーザーシートを照射する場合がある。この論⽂では２成分混

合分子気体にレーザーシートなどを照射して発⽣する擾乱によって⽣ずる非線形波動を表

す式を、流体の基礎⽅程式から出発して逓減摂動法により求めている。 その結果気体分

子密度の非線形変調波動が、超電導他、種々の物理事象を記述することで知られる

Ginzburg-Landau(GL)⽅程式で表されることを示している。また、GL ⽅程式の一つの解

である、非線形孤⽴波の発⽣条件を求め、数値計算によりその挙動を調べている。本論⽂

は、この孤⽴波だけでなく、２成分混合気体の GL ⽅程式であらわされる他の様々な事象を

検討する道を開いたことで意味あるものと考えられる。今後、本論⽂が関連分野の研究の

参考になれば幸いである。 





 
 

 
Nonlinear Wave Propagations in Binary-Gas Mixture  
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Nonlinear wave propagations in binary-gas mixture in one-
dimensional half-space ),0[   are discussed, based on two Boltzmann 
equations. The nonlinear integro-partial differential equations are 
derived applying the reductive perturbation method to the three 
conservation equations with relaxation terms and the equation of 
state. Further, the Ginzburg-Landau equation for the gas densities is 
derived using Fourier perturbed expansion from the nonlinear 
integro-partial differential equations. Based on the Ginzburg-Landau 
equation derived, the necessary conditions and the numerical 
calculation results for the stationary propagating nonlinear waves in 
binary-gas mixture are discussed.  

 
Key word: Binary-Gas Mixture, Stationary Wave Propagation, Boltzmann Equation, Ginzburg-

Landau Equation, Reductive Perturbation Method, Fourier Perturbed expansion 
method, Solitary wave 

 
 

1. Introduction 

In this paper, the propagation of disturbance in a binary gas-mixture is discussed based on 

the fluid mechanics. The fluid mechanical equations for a binary gas-mixture where the 

temperatures of both gases are equal are known [1].  The fluid mechanical equations for the 

binary gas mixture in which the temperatures as well as the velocities, the densities, the 

pressures and the stresses are not equal between the gas components have been obtained [2], [3].  

Here the nonlinear wave propagation phenomena in binary-gas mixture are further studied 

with theoretical and numerical standpoints. In section 2, the basic equations for binary-gas 

mixture are presented.  In section 3, the nonlinear integro-partial differential equation for a gas 

density is derived applying the reductive perturbation method to the basic equations. In section 4, 

in order to theoretically analyze the equations derived, the Fourier expansion method is applied 

to them. Then the equation derived finally is the Ginzburg-Landau (GL) equation for the gas 

density. In section 5, based on the known solution [4] of the GL equations the necessary 

conditions for stationary propagating waves in binary gas-mixture are discussed. In section 6, 
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the stationary wave propagation by the local disturbance is numerically investigated based on 

the GL equations under the condition discussed in section 5.  

 

2. Basic Equations 

 One dimensional fluid motion of binary-gas mixture may be described by the following basic 

equations based on the Boltzmann equations [2]:  
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Equations (2.1), (2.2) and (2.3) are the continuity equation for gas molecule i ( i = 1 or 2, i ≠ j), 

the motion equation for the gas molecules and the energy conservation equation, respectively; 

 in  denotes the density of gas molecule i,   iv the average velocity of gas molecule i,  im  the 

mass of gas molecule i,  ip11 the momentum and  iq heat flux are described as follows [1],  
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where the coefficients  i
V  and  i  are the proportional constants of the velocity gradient and 

the heat gradient respectively.  Bk  Boltzmann constant,  iT the temperature of gas molecule i, 

       jijj mmmmmM  00 , .  

The velocity dissipation  ij  and the heat dissipation  ij  between the different gas components 

are expressed as follows, 
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where  ij
Ck is written as 
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 ijb , and    ijg cc  are respectively the impact parameter, the deflection angle and the 

relative velocity between i and j component molecules.   ic  denotes the velocity of gas 

molecule i.  ijS denotes the total cross-section of the collision for different component gases.   

The total collision cross-section  ijS may be estimated by the interactive potential energy 

  24 rrU ba
ij   where ba  , are respectively the potential coefficients of the repulsive 

and attractive forces [5].  The interactive potential energies    jjii UU ,  between same 

components gases also exist.  

 

2.1 Total Collision Cross-section 

The deflection angle  ij  is obtained by the orbit integration, that is, 
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Where the total energy  iE of a molecule is 22g and mr is the most neighboring distance 

between two molecules.    
0mmm ji is the effective mass of binary gas and g is the 

relative velocity expressed by the average of thermal velocity and the relative velocity as 

follows[6], 
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Putting ,rby  then the range  ,mr  of r integration are transformed into  00 ,y of y

integration. Furthermore, we introduce a variableu  for simplifying of integrations as follows, 

 ,21 22
0  yu   using parameter as follows ,2 42

0 bga   22
0 2 bgb    , 
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and  ,2222
0  k  where the ending point 0y of the y integration is transformed to 

 22
000 21  yu   of  the u integration. The distance r between two molecule centers 

become most neighbor mr  when the differential distance to the angle    2ij  between 
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the direction of the relative velocity and apse line becomes zero, that is, .0 r  Because, in 

that case, 00 u , the first kind of Legendre-Jacobi's elliptic integration is zero 

  .011 222
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0






   uukdu

uij        (2.11) 

Therefore, we obtain the integration of the deflection angle as  

  22
0 )(22   kKij ,        (2.12) 

where K is the first kind of the complete elliptic integration,  
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In the case of 10 k , then        2
0

2
0 2114 kkK  . 

Consequently, when   0ij , then  
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In the case of    ij ,   02 b .  Then the total collision cross-section may be estimated as 
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where  ij is deflection angle viewed from i component molecule and, 
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3. Derivation of Nonlinear Integro-Partial Differential Equation by Reductive 

Perturbation Method 

    The propagation of disturbance in a binary gas-mixture could be expressed as slowly varying 

phenomena when it would be observed on coordinate moving with near velocity of the 

disturbance propagation. Then, in the two component gases, the coordinates ),(   moving on 

the velocity V is introduced using an parameter  (<1) as follows, 

  tVtx 2,             (3.1) 

Then the spatial and time derivative of phenomena are expressed as 
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The physical variable      iii Tvn ,, are expanded with a perturbation parameter   as follows, 
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Where    ii andTn 00 are the spatial uniform constant values. As a binary-gas is initially stationary 

state,   00 iv . The relative velocity (2.9) is expanded as, 
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where the coefficients ,,,, 3210 aaaa  are expressed by       ,,, 321
iii vvv and         ,,,, 3210

iiii TTTT . 

These values are symmetric for the gas component i and j  which can be replaced each other in 

the equations.. The total collision cross-section are also expanded as 

             ijijijijijij SSSSSS 4
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where         ,,,, 3210
ijijijij SSSS  , are expressed by ,,,, 3210 aaaa  and   in .  

Introducing the above equations (3.1) ~ (3.7) into the basic equations (2.1) ~ (2.3), the following 

sets of equations for each power of  are derived. 

 

3.1. Each  power equation for equation (2.1)  
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3.2. Each  power equation for equation (2.2)  

Where due to simplify the expression, we use the notation      i
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3.3. Each  power equation for equation (2.3)  
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3.4. Physical Variable of 0  and 1 order Approximation 

The notation of     VvV ii  0 and     VvV jj  0 are introduced to simplify the expression. 

Integrating the first 1 order term of equation (3.8), 
    .0 constVn ii  . As 

 in0 and V are assumed 

the constant parameters, then    .0 constv i  . 

From 0 order term equation (3.12), the average velocities of ji, component,    ij vv 00  . 

Similar,    ij TT 00   from 0 order term equation (3.17) because            04 0000 jiijji nnSmmm  . 

 

3.5. Physical Variable of 1  Order Approximation 
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From 1 order term equations (3.13) and (3.18),    ij vv 11  and    ij TT 11   because

  00  iv ,   00  in and   00  iT .      

   

3.6. Physical Variable of 2  Order Approximation 

Integrating the 2 order term equation (3.9), the variable 
 iv1 can be expressed by using

 in1 , 

that is 
        iiii nnVv 101  . As 

   ij vv 11  , 
 jn1  can be expressed by using 

 in1 as, 

            ijiijj nVnVnn 1001  .         (3.22) 

Furthermore, integrating the sum of the exchanged i and j of 2 order equation (3.14) for and 

using the relations between  jv1 and  jn1 , following relation can be derived. 
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3.7 Physical Variables of 2 and 3 order Approximation 

From the 3 order equation (3.10),    in2  and    jn2 are expressed by    iv2 , 

   jv2 and  in1 as follows, 
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Using above equations, the sum of i and j  component exchanged equations for the 3 order 

term equation (3.15) are expressed with          ijiji nTTvv 12222 ,,,, as follows, 
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Last, the sum of i and j  component exchanged equations for the 3 order equation (3.20) are 

expressed with          ijiji nTTvv 12222 ,,,, as follows, 

             
0

2
1

2

21

2

1
1

1
1

2222 





























 

i

n

i

sn

i

n

j
B

Tj

i
B

Ti

j

vj

i

vi

n
d

n
d

n
d

Tk
d

Tk
d

v
d

v
d . 

            (3.32) 

where the coefficients,  snnTjTivjvi dddddd 11 ,,,,, , and 21nd  are respectively constants 

expressed by    ,, 00
ji nn      ,,,0

jii VVT      ,,, iji mm   and  j . Solving above four equations 

(3.27), (3.28), (3.30) and (3.32) about
      ,,, 222   iji Tvv    jT2 , these variables 

are expressed by 
 in1 as, 
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Where, the coefficients  jsTin pp 22 ,,～ are expressed by 0 order physical parameters, the 

potential parameters ba  , and the physical parameters        jij
V

i
V  ,,, . Integrating these 

differential equations for  , these variable        jiji TTvv 2222 ,,, are described with the first order 

approximation of the number density  in1  and it’s integration for ,  which is described by 
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Where, the integral constants are zero as the disturbances are regarded as zero at the infinity. 

 

3.8Physical Variables of 4 order Approximation 

Using the 4  order equation (3.11),  in3 and  jn3 are expressed by using variables  iv3 ,  jv3  

as follows, 

 

 

 
          

 

 

 

 
          

 































































j

jjjjj
j

j

j

i
iiiii

i

i

i

v
nvnvn

n
V

n

v
nvnvn

n
V

n

3
02112

23

3
02112

23

1

1

.    (3.35) 

10



 
 

Now,  jiv4 =
   ij vv 44   in eq.(3.16) and  jiT4 =

   ij TT 44  in eq.(3.21) are neglected to close 

the high expansion order calculation. Then substituting  jiv3 =
   ij vv 33   get from eq.(3.15) and

 jiT3 =
   ij TT 33  get from eq.(3.20) into eqs.(3.16) and (3.21), following set of equations are 

obtained, 
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.  (3.36) 

where, 
       j

E
i

E
j

v
i

v ΦΦΦΦ 3333 ,,, are the function of 
 in1 and TvTjTivjvivjvi  ,,,,,,, are 

expressed by the 0 order physical variables. From above four equations, following equations 

are obtained.  
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Substituting eq.(3.37) into eq.(3.16), following nonlinear integro-partial differential equations  

for  in1 is derived. 
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,    (3.38) 

Where, the coefficients 4321 AAAARQP ,,,,,, are expressed by the 0 order physical variables.  

 

4. Derivation of the Ginzburg-Landau Equation by Fourier Perturbed Expansion Method  

In order to study the characteristic of the nonlinear wave propagations based on the equation 

(3.38), we expand furthermore the gas density  in1  with Fourier “perturbed” expansion method 

[7] as, 
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1 .       (4.1) 

Where, k and  are respectively the wave number and the frequency, which are complex 

parameters. A higher Fourier expanded term of  in1 may become to be small rapidly. The 
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coordinate   , describes an envelope part and the coordinate   ,  describes a carrier part of 

the wave. The variables of   ,  is the coordinate of slowly moving than   , . Then   ,

may be described, using a small parameter  ( < 1) as 

   2,  gv .         (4.2) 

Therefore the time and the spatial derivative of  in1  are described as, 
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From eqs.(4.1), (4.2) and (4.3), the indefinite integration of  in1  about is, 
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Furthermore performing integration of right side of eq.(4.4) and neglecting higher order of  , 

following approximation is derived, 
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Above relation means that the integration can be described approximately using the differential 

term. The derivative of the indefinite integration of  in1 for  is returned nearly to  in1 from eq. 

(4.2), as follows, 
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Next, as a higher perturbed expansion term of  imn )(ˆ
 become to be small rapidly, the higher 

perturbed terms of 2m  are neglected. And 0 order perturbed gas density is zero. Further, 

neglecting the terms of 2 , the nonlinear term in the equation (3.38) is described as 

                       iiiiiimimim nnnnnnnn 1
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  .     (4.7) 

We could describe   in 1
1

ˆ to be  in1  if above conditions of m are satisfied.  

Furthermore, the terms of Fourier expansion of  are the constants. Substituting the Fourier 

perturbed expansion of  in1 into the nonlinear integro-partial differential equations (3.38), 

following equations are obtained for each  order,  
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             (4.10) 

The wave numberk  and the frequency   which are complex numbers can be obtained, solving 

the equations (4.8) and (4.9). The real and imaginary parts of ,k , that is, irir kk  ,,, are 

expressed by 3,AP and gv .  From equation (4.10), the Ginzburg-Landau (GL) equation is derived 

as, 
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where coefficients irir qqpp ,,, are expressed by irir kk  ,,, , 321 ,,, AAAQ .  A special solution of 

GL equation are known [4] as 

      
ir

i
a

i iiΘhnn   expsec 1
1 .       (4.12) 

where the coefficients irΘ  ,,,  are expressed by irir qqpp ,,, .  In eq. (4.12), the growing or 

the damping phenomena are included, depending on the values of irir  ,,, .  

 

5. Necessary Conditions for Stationary Wave Propagations 

First, the 0 order densities of both gas components, 
   ji nn 00 , must be real and positive. 

Then the relations of the densities between gas components derived from the 2 order of 

equation (3.19) must be concluded as follows,  
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where, 
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 jn0 is real and positive, that is, 02  jin bba and 02  jjinn bbbaa ,   

then the values of     ji VV ,  must be within the limits as  
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j
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i
a SVSandSVS         (5.2) 

where, aS  and bS are obtained from the real and positive condition of 
 jn0 .  
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Second, as the wave number ir kk , and the frequency ir  ,  must be real numbers, then 

25.03 PA .  

Third, when  = r +i i  and k = rk +i ik  are substituted to the equations (4.8) and (4.9), only 

trivial solution 0gv is obtained.  Then instead of r , we introduce the real frequency 

,
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   where wf  is weight function. 

Then we can get the values of      iji TVV 0,, and  i
gv by solving the simultaneous four 

equations  

0,0,0,0 2211  irir                                                                                        (5.3)  

where irir 2211 ,,   are the real and the imaginary parts of eqs.(4.8) and (4.9),  
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Fourth, the coordinate transformations (4.2) with use of Fourier perturbed expansion methods 

have also means of the Galilean transformation. We can get the new GL solution with Galilean 

invariance by transforming the GL equation (4.11) to new GL equations as follows,  
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Obtaining the new GL solutions with the Galilean invariance, we replace  in with a new 

function as follows, 

        
irir

i
a

i KiiiKKihnn   expsec 1
1 .    (5.5) 

Then we get the necessary conditions for stationary wave propagation without growing or 

damping in any values  and  as, 
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As 0Gv , the wave propagating velocity of Galilei invariability is the velocity gv which is used 

in the coordinate transformation of the Fourier perturbed expansion series. Gf  is the Galilei 

invariant function which describes the condition of the Galilean invariance at 0Gf . 

 

6. Numerical results 

In order to investigate the nonlinear wave propagation in binary-gas mixture, we put the 

physical parameters      ,,, 0
iji nmm and    jj  , respectively as here

      ,100,1,130 0  iji nmm and     1,1  jj  . Then    ,, ji VV     ji TT 00  and     jgi
g vv   can 

be obtained, numerically solving the simultaneous equations (5.3) if wf is determined. Here, we 

put wf as the construction factor to the interpolation function of the experimental data which are 

presented by D. G. Henshaw and A. D. B. Woodsn [8]. The interpolation function is described 

as follows,  

       
    rgqgp

dgcgbga
gw cwvcwvc

cwvcwvcwvc
wvf




 2

23

.      (6.1) 

where, w is the weight parameter of gv and the coefficients ra cc ～  are shown in Table 1. Here 

we put 1w and use the values of  i
b  ～ as shown in Table 2, then we obtain the values of 

   ,, ji VV    ,00
ji TT   and    j

g
i
g vv  as Table 2. These values satisfies the conditions

25.03 PA and  (5.2).  In this case, the condition (5.2) and the values of     ji VV ,  in Table 2 

are shown in Fig.1. We can plot Gf and wf about gv  with several weight parameter w as Fig2.  

We put  
ir

i innn   in the new GL equation (5.4), then the real and imaginary parts are,  
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In the numerical calculations for the differential equations (6.2), we set the initial and boundary 

conditions as follows, 
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(6.3) 

where, rqΘ ,, are the functions of the weight parameterw .  

We put 400  , then the numerical calculation is done around σ=40. The direction of 

wave propagation in the numerical calculation is disposed so that the incident wave 

propagates from the left hand side to right hand side.  From the equation 0Gf  of the Galilei 

invariant condition (5.6), we get the numerical solution of Gv which must be almost 

correspond to the value gv obtained from equation (5.3). It means that Gv  which meet the 

Galilei invariant condition also almost satisfies the equation (5.3) under the proper value for

,b
 i and  i .  

By numerical calculations for equation (5.3), we obtain the solitary wave propagation 

profiles which are different from the soliton of the nonlinear Shrodinger equation [9] because

0 . The numerical calculation of the simultaneous differential equations (6.2) is 

performed with various weight parameter w  for the incident wave of 4an . The amplitude 

change with time for the incident waves are shown in Fig.3. In the case of weight parameter

187.0w , the incident wave does not change the amplitude during propagation. 

The wave propagation in the case of 187.0w and 8an  is shown in Fig.4. When the 

amplitudes of the incident wave become high, the amplitudes of the propagating waves 

temporarily change and then approach to the incident amplitude as shown in Fig.5a. Fig.5b 

indicates the stationary state amplitudes by numerical calculation for the incident wave 

amplitudes.  The reciprocalΘ of the solitary wave width does not change in the Galilean 

transformation. In eq.(5.5),  

Θ  = Ck | an |                                                                                                                 (6.4) 

    where, coefficient Ck is determined by     ,, ji mm            ii
ba

i
g

iji vTVV  ,,,,,,, 0 .   

The numerical results ofΘ in propagating waves in case of 187.0w are plotted for several 

incident wave amplitudes an  in Fig.6.  This results are compatible with the estimation by 
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eq.(6.4). The solitary wave velocities   Δ　Δ /  numerically calculated are plotted in  Fig.7 

under the same condition as the calculation of Fig.5 and Fig.6.    

Fig.8 shows the propagation profiles of  in1 ,      iij vTn 111 ,,  for the incident wave of amplitude

  2ian .  These numerical results are in consistency with the analytical estimates. 

On the other hand, under the other values    ii
b  ,, of the matter, we may get also the 

stationary propagating wave which have the other value of the velocity weight.  

The value of the velocity gv satisfied with the Galilean invariance condition in the profile of

wf on 187.0w have the position at 0gw dvdf . But in the case of the other values of

   ii
b  ,, andw , the velocity gv is at 0gw dvdf . There are no relations between the 

positions of the velocity on the profiles of wf and the conditions of the stationary propagation 

of the solitary waves. 

 

7. Conclusions 

The nonlinear solitary wave propagation generated by the laser sheet injection in the 

molecular binary-gas mixture is discussed. First the nonlinear integro-partial differential 

equations for the first order approximation of the i component gas density are derived by 

applying the reductive perturbation method to the three macro conservation laws with relaxation 

terms and the state of the equation based on the two Boltzmann equations. Furthermore, from 

the nonlinear integro-partial differential equations, the Ginzburg-Landau (GL) equation is 

derived by expanding the first order approximation gas density using Fourier perturbed 

expansion method. Then applying Galilean transformation to the GL equation and the particular 

solution, the conditions of Galilean invariance are obtained. If the velocity of the coordinate in 

the Galilean transformation correspond to the velocity which satisfy the simultaneous equations 

constituted of the first and second approximate relations on the Fourier perturbed expansion of 

the gas density, the velocity of the Galilean invariance also satisfy the first and second 

approximation relations with the weight function (the construction factor) under the suitable 

value of the matter which are the parameter of the intermolecular attractive force, the coefficient 

of the resistance and the heat conductivity under the ratio of the masses of i and j component 

gas molecules. The propagation profiles of stationary propagating solitary waves based on the 

new GL equations derived are numerically calculated in the certain values of the matter as 

shown in Section 6. In other cases of the mass ratio for i and j gas component molecules, the 
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stationary propagating nonlinear wave propagations can be investigated with the GL equation 

derived here. Moreover, as the solitary wave solution is only a particular solution of the GL 

equation, other physical phenomena expressed by the GL equation may also exist in the binary-

gas mixture.  
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Table 1. Coefficients of the interpolation function wf  eq. (6-1). 

 

 

 

 

 

 

 

 

 

Table 2. The solution values of    ,, ji VV    ,00
ji TT  and    j

g
i
g vv  under  i

b  ～  given. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Wave existence condition (gray part) in     ji VV ,  coordinate by eq.(5.2). Black dot 

shows a     ji VV ,  point in case of     1,130  ji mm . 
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Fig.2. Profiles of the weight function wf of the real frequency and the Galilei invariant function

Gf  for velocities gv  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Temporal amplitude development of the incident wave 4an  with various weight 

parameter w  . 

 

0

4

8

30 50 70

A
m
p
lit
u
d
e

Time

w=0.1

w=0.187

w=0.25
w=0.3

w=0.15

20



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Plots of the propagating wave at the spatial points of ,120,80,40,0 240,200,160  

in case of     1,130  ji mm , the amplitude 8an  of the incident wave. The bold, thin and  

broken lines indicate respectively the absolute, the real and the imaginary part of the gas  

density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5a. Temporal amplitude change for incident waves of 8,6,4,3,2,1an . 
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Fig.5b. Stationary state amplitudes (shown by dots) by numerical calculation for the incident 

wave amplitudes. 
 

 

 

 

 

 

 

 

 

 

 

Fig.6. Numerical results of inverse number Θ  which is the reciprocal of the solitary wave width 

are plotted in case of 187.0w . Solid line shows the estimation by eq.(6.4). 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Solitary wave velocities   Δ　Δ /  numerically calculated in case of 187.0w . 
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Fig.8. Propagation profiles of        iiji vTnn 1111 ,,,  for the incident wave of amplitude   2ian  in 

case of 187.0w .  
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