太陽大気偏光観測手法の LHDプラズマ計測への応用

後藤基志 核融合科学研究所

^{M03a} **Lya**線 偏光分光観測ロケット **CLASP** が切り拓く太陽彩層磁場測定

鹿野良平(国立天文台)

常田佐久、坂東貴政(NAOJ)、成影典之(ISAS)、石川遼子、久保雅仁、 勝川行雄、末松芳法、原 弘久(NAOJ)、久保雅稔(明星大)、 DONG UK SONG(SNU)、一本 潔、渡邉皓子(京大)、 坂尾太郎(ISAS)、KEN KOBAYASHI(UAH)、JONATHAN CIRTAIN(NASA)、JAVIER TRUJILLO BUENO(IAC)

2011/9/20 日本天文学会2011年秋季年会

- - 主鏡は"Cold Mirror" coatingを施す。
 - 空間分解能~数秒角
- 偏光分光器
 - 等間隔球面回折格子をinverse Wadsworth mountingに配置。

 - 回転1/2波長板と反射型偏光板によるStokes-I,Q,Uの測定。
 - 波長分解能 0.1 Å (0.05 Å sampling)。
- 観測時間:~300 sec

2011/9/20

日本天文学会2011年秋季年会

+1次光と-1次光の両方を使い、直交2成分の直線偏光の同時測定。

W21b:坂東貴政ほか CLASP観測装置全般 W20b:久保雅仁ほか CLASP偏光解析装置の試験結果

THE ASTROPHYSICAL JOURNAL LETTERS, 839:L10 (6pp), 2017 April 10

© 2017. The American Astronomical Society. All rights reserved.

Discovery of Scattering Polarization in the Hydrogen $Ly\alpha$ Line of the Solar Disk Radiation

R. Kano¹, J. Trujillo Bueno^{2,3,4}, A. Winebarger⁵, F. Auchère⁶, N. Narukage¹, R. Ishikawa¹, K. Kobayashi⁵, T. Bando¹, Y. Katsukawa¹, M. Kubo¹, S. Ishikawa⁷, G. Giono^{1,8}, H. Hara¹, Y. Suematsu¹, T. Shimizu⁷, T. Sakao⁷, S. Tsuneta⁷, K. Ichimoto⁹, M. Goto¹⁰, L. Belluzzi^{11,12}, J. Štěpán¹³, A. Asensio Ramos³, R. Manso Sainz¹⁴, P. Champey¹⁵, J. Cirtain¹⁶, B. De Pontieu¹⁷, R. Casini¹⁸, and M. Carlsson¹⁹ ¹ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; ryouhei.kano@nao.ac.jp ² Instituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205, Spain ³ Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain ⁴ Consejo Superior de Investigaciones Científicas, Spain ⁵ Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), Huntsville, AL 35812, USA ⁶Institut d'Astrophysique Spatiale, Université Paris Sud, Batiment 121, F-91405 Orsay, France ['] Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210, Japan ⁸ The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan ⁹ Hida Observatory, Kyoto University, Takayama, Gifu 506-1314, Japan ¹⁰ National Institute for Fusion Science, Toki, Gifu 509-5292, Japan ¹¹ Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti, Switzerland ¹² Kiepenheuer-Institut für Sonnenphysik, D-79104 Freiburg, Germany ¹³ Astronomical Institute, Academy of Sciences of the Czech Republic, 25165 Ondrejov, Czech Republic ¹⁴ Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany ¹⁵ University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA ¹⁶ University of Virginia, Department of Astronomy, 530 McCormick Road, Charlottesville, VA 22904, USA ¹⁷ Lockheed Martin Solar & Astrophysics Laboratory, Palo Alto, CA 94304, USA ¹⁸ High Altitude Observatory, National Center for Atmospheric Research, Post Office Box 3000, Boulder, CO 80307-3000, USA ¹⁹ University of Oslo, Postboks 1029 Blindern, NO-0315 Oslo, Norway Received 2017 March 24; accepted 2017 March 26; published 2017 April 10

Figure 1. CLASP data. (A) Broadband Ly α (a) intensity and (b) Q/I images taken by the CLASP slit-jaw camera. The black line in (a) indicates the spectrograph's slit, which covers 400 arcsec. (B) Variation along the slit of the intensity (I) and fractional polarization (Q/I and U/I) profiles of the hydrogen Ly α line observed by the CLASP spectropolarimeter. The solar limb is at +175 arcsec. (a) Stokes I in logarithmic scale, (b, c) Stokes Q/I, and (d, e) Stokes U/I. The fractional polarization is clipped between $\pm 6\%$ in (b) and (d) for an optimal visualization of the wings and between $\pm 0.6\%$ in (c) and (e) for the line core. The reference directions for positive Stokes Q and U are indicated by the red arrows in the corresponding (B) panels.

Javier Trujillo-Bueno (カナリア諸島

天体物理学研究所)

核融合研究所

後藤基志

偏光線輪郭形成の 理論的モデルの構築

2010年8月9日

国立天文台

小林 研 (アラバマ大学)

高精度偏光測定の 観測装置開発

分子科学研究所 観測装置の性能評価

(分子研のシンクロトロン放射光施設 UVSORは高輝度・高偏光のLya光源と して、CLASP装置性能評価に最適)

Takashi Fujimoto Atsushi Iwamae *Editors*

SPRINGER SERIES ON ATOMIC, OPTICAL AND PLASMA PHYSICS 44

Plasma Polarization Spectroscopy

Contents

1 Introduction

T	Fujimoto	1
1.1	What is Plasma Polarization Spectroscopy?	1
1.2	History of PPS	5
1.3	Classification of PPS Phenomena	7
1.4	Atomic Physics	8
Ref	erences	10
2 Z	Zeeman and Stark Effects	
М.	Goto	13
2.1	General Theory	13
2.2	Zeeman Effect	17
2.3	Stark Effect	20
2.4	Combination of Electric and Magnetic Fields	25
Ref	erences	27
3 F	Plasma Spectroscopy	
T.	Fujimoto	29
3.1	Collisonal-Radiative Model: Rate Equations for Population	29
		- ·

3.2	Ionizin	g Plasma and Recombining Plasma	34
	3.2.1	Ionizing Plasma Component	34
	3.2.2	Recombining Plasma Component	39
	3.2.3	Ionizing Plasma and Recombining Plasma	45
Refer	ences .		49

4 Population-Alignment Collisional-Radiative Model

T.	Fujimoto		51
4.1	Popula	ation and Alignment	51
4.2	Excita	tion, Deexcitation and Elastic Collisions:	
	Semicl	assical Approach	55
	4.2.1	Monoenergetic Beam Perturbers and Cross Sections	56
	4.2.2	Axially Symmetric Distribution	58

2010年8月	CLASPへの参加の打診
2010年9月	CLASPに関する最初の打合せ @NIFS
2011年4月	CLASP特別講義(第1回)@NAOJ
2011年12月	CLASP特別講義(第2回)@NAOJ
2012年1月	CLASP特別講義(第3回)@NAOJ
2012年6月	IAC (@Tenerife, Spain) 出張
2012年7月	CLASP特別講義(第4回)@NAOJ
2012年7月	HAO(@Boulder, USA) 出張
2012年8月	HINODE-6 (@St. Andrews) 出席
2012年11月	国立天文台併任
2013年7月	CLASP特別講義(第5回)@NAOJ
2013年9月	SPW7 (@昆明)にて発表

2013年11月	HINODE-7 (@高山)にて発表
2014年6月	ICSLS22 (@Tullahoma, USA) にてハンレ効果について発
2014年10月	LHDでの衝突偏光計測開始
2014年12月	ITC24にてハンレ効果について発表
2015年9月	CLASP観測成功
2017年9月	天文学会発表
2017年11月	ISHWにて衝突偏光計測について報告
2019年6月	ハンレ効果関連論文発表
2019年6月	ICSLS24 (@Dublin) にて衝突偏光計測について報告
2019年9月	衝突偏光計測の研究で指導学生が学位取得
2020年12月	衝突偏光計測に関して論文発表
2021年2月	衝突偏光計測に関して論文発表

表		

anisotropic collisions give rise to polarized line emissions

FIG. 5. Dependence of the profiles of the H_{α} line spectra separated into the FIG. 4. Polarization separation optics (PSO). GTP: Glan–Taylor prism. L: *e*-ray and *o*-ray components on the rotation angle of PSO. This is for an NBI Lens. OF: optical fiber of 400 µm core diameter. SP: Spectrometer. CCD: discharge plasma (shot No. 41 312). charge-coupled device.

anisotropy in terms of T_{\parallel}/T_{\perp} derived from *P*

- 1. これまでの連携研究の成果
- 2. これまでの連携研究に期待したこと、得られたこと
- 3. これまでの連携研究を実施した枠組みや研究体制
- 4. 今後の連携研究の展開や、新しく連携したい課題について

それぞれの分野における具体的な課題をお互いに紹介する研究会があれば、

そこに出席することで自分の知識や経験が役立つところ、あるいは自分の抱

えている問題解決への手がかりが見つかることもあるかもしれない。